1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
|
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <torch/csrc/autograd/profiler_kineto.h>
#include <c10/macros/Export.h>
#include <c10/util/C++17.h>
#include <c10/util/Exception.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/irange.h>
#include <c10/util/overloaded.h>
#include <c10/util/variant.h>
#include <torch/csrc/profiler/api.h>
#include <torch/csrc/profiler/collection.h>
#include <torch/csrc/profiler/containers.h>
#include <torch/csrc/profiler/itt_observer.h>
#include <torch/csrc/profiler/kineto_shim.h>
#include <torch/csrc/profiler/nvtx_observer.h>
#include <torch/csrc/profiler/orchestration/observer.h>
#include <torch/csrc/profiler/util.h>
#include <ATen/Context.h>
#include <deque>
#include <limits>
#include <sstream>
#include <stdexcept>
#ifdef USE_KINETO
#include <libkineto.h>
#include <time_since_epoch.h>
#ifndef _MSC_VER
// TODO: TO be removed, once this properly works from libkineto
// Literal copy-n-paste from third_party/kineto/libkineto/src/WeakSymbols.cpp
extern "C" {
// This function is needed to avoid superfluous dependency on GNU OpenMP library
// when cuPTI is linked statically For more details see
// https://github.com/pytorch/pytorch/issues/51026
__attribute__((weak)) int acc_get_device_type() {
throw std::runtime_error(
"Dummy implementation of acc_get_device_type is not supposed to be called!");
}
} // extern "C"
#endif // _MSC_VER
#endif // USE_KINETO
namespace torch {
namespace autograd {
namespace profiler {
namespace {
inline int64_t getTimeUs() {
#ifdef USE_KINETO
return libkineto::timeSinceEpoch(std::chrono::system_clock::now());
#else
return torch::profiler::impl::getTime() / 1000;
#endif // USE_KINETO
}
using torch::profiler::impl::ActiveProfilerType;
using torch::profiler::impl::dtypesToStr;
using torch::profiler::impl::EventType;
using torch::profiler::impl::ExtraFields;
using torch::profiler::impl::ProfilerStateBase;
using torch::profiler::impl::PyExtraFieldsBase;
using torch::profiler::impl::Result;
using torch::profiler::impl::shapesToStr;
using torch::profiler::impl::stacksToStr;
struct MetadataBase {
MetadataBase(const std::shared_ptr<Result>& result)
: kineto_activity_{result->kineto_activity_} {
if (c10::holds_alternative<ExtraFields<EventType::Kineto>>(
result->extra_fields_)) {
// In order to add metadata we have to downcast from
// `libkineto::ITraceActivity` to `libkineto::GenericTraceActivity`. We
// know that all activities provided by PyTorch are of the correct type,
// however Kineto profilers can (and do) add events that inherit directly
// from ITraceActivity. As a result, any Result which was constructed from
// an event that Kineto provided is unsafe to cast.
if (!(SOFT_ASSERT(!hasKinetoActivity()))) {
result->kineto_activity_ = nullptr;
}
kineto_activity_ = result->kineto_activity_;
}
}
void addMetadata(const std::string& key, const std::string& value) {
if (kineto_activity_ && !value.empty() && value != "\"\"") {
torch::profiler::impl::kineto::addMetadata(kineto_activity_, key, value);
}
}
bool hasKinetoActivity() const {
return kineto_activity_ != nullptr;
}
private:
const torch::profiler::impl::kineto::activity_t* kineto_activity_{nullptr};
};
struct AddTensorboardFields : public MetadataBase {
AddTensorboardFields(
const std::shared_ptr<Result>& result,
KinetoEvent& kineto_event)
: MetadataBase(result) {
result->visit(*this);
const auto module_hierarchy = kineto_event.moduleHierarchy();
addMetadata("Module Hierarchy", stacksToStr(module_hierarchy.vec(), "."));
addMetadata("Call stack", stacksToStr(kineto_event.stack().vec(), ";"));
result->visit_if_base<PyExtraFieldsBase>([&, this](const auto& i) -> void {
this->addMetadata("Python id", std::to_string(i.id_));
c10::optional<std::string> parent_id;
std::shared_ptr<Result> parent = result->parent_.lock();
while (parent && !parent_id.has_value()) {
parent->visit_if_base<PyExtraFieldsBase>(
[&](const auto& j) { parent_id = std::to_string(j.id_); });
parent = parent->parent_.lock();
}
this->addMetadata("Python parent id", parent_id.value_or("null"));
});
}
void operator()(const ExtraFields<EventType::PyCall>& py_call) {
if (py_call.module_.has_value()) {
addMetadata("Python module id", std::to_string(py_call.module_->id_));
}
}
template <typename T>
void operator()(const T&) {}
};
struct AddGenericMetadata : public MetadataBase {
AddGenericMetadata(std::shared_ptr<Result>& result) : MetadataBase(result) {
result->visit(*this);
result->visit_if_base<PyExtraFieldsBase>([&, this](const auto& i) -> void {
this->addMetadata("Python thread", std::to_string(i.python_tid_));
});
}
void operator()(ExtraFields<EventType::TorchOp>& op_event) {
auto& shapes = op_event.inputs_.shapes_;
if (!shapes.empty()) {
addMetadata("Input Dims", shapesToStr(shapes));
}
auto& dtypes = op_event.inputs_.dtypes_;
if (!dtypes.empty()) {
addMetadata("Input type", dtypesToStr(dtypes));
}
// add information about an associated forward op, if a sequence number
// is available (e.g. during training)
if (op_event.sequence_number_ >= 0) {
addMetadata("Fwd thread id", std::to_string(op_event.forward_tid_));
addMetadata("Sequence number", std::to_string(op_event.sequence_number_));
}
}
void operator()(ExtraFields<EventType::Backend>& backend_event) {
if (!backend_event.backend_.empty()) {
addMetadata("Backend", "\"" + backend_event.backend_ + "\"");
}
}
void operator()(const ExtraFields<EventType::Allocation>& alloc) {
addMetadata("Device Type", std::to_string((int8_t)alloc.device_type_));
addMetadata("Device Id", std::to_string(alloc.device_index_));
addMetadata("Addr", std::to_string(reinterpret_cast<intptr_t>(alloc.ptr_)));
addMetadata("Bytes", std::to_string(alloc.alloc_size_));
if (alloc.total_allocated_ >= 0) {
addMetadata("Total Allocated", std::to_string(alloc.total_allocated_));
}
if (alloc.total_reserved_ >= 0) {
addMetadata("Total Reserved", std::to_string(alloc.total_reserved_));
}
}
void operator()(const ExtraFields<EventType::OutOfMemory>& alloc) {
addMetadata("Device Type", std::to_string((int8_t)alloc.device_type_));
addMetadata("Device Id", std::to_string(alloc.device_index_));
addMetadata("Bytes", std::to_string(alloc.alloc_size_));
if (alloc.total_allocated_ >= 0) {
addMetadata("Total Allocated", std::to_string(alloc.total_allocated_));
}
if (alloc.total_reserved_ >= 0) {
addMetadata("Total Reserved", std::to_string(alloc.total_reserved_));
}
}
template <typename T>
void operator()(const T&) {}
};
// Assumption: Total threads number will not exceed 2^16-1, and total ops will
// not exceed 2^48 -1.
static inline uint64_t getForwardThreadKey(uint64_t tid, uint64_t seqNr) {
return (((tid) << 48) | ((seqNr) & (((uint64_t)1 << 48) - 1)));
}
struct KinetoThreadLocalState : public ProfilerStateBase {
explicit KinetoThreadLocalState(
const ProfilerConfig& config,
std::set<torch::profiler::impl::ActivityType> activities)
: ProfilerStateBase(config),
start_time_(getTimeUs()),
record_queue_(config, activities) {}
~KinetoThreadLocalState() override = default;
static KinetoThreadLocalState* get(bool global) {
auto* state = ProfilerStateBase::get(/*global=*/global);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
state == nullptr ||
state->profilerType() == ActiveProfilerType::KINETO);
return static_cast<KinetoThreadLocalState*>(state);
}
ActiveProfilerType profilerType() override {
return ActiveProfilerType::KINETO;
}
void reportMemoryUsage(
void* ptr,
int64_t alloc_size,
int64_t total_allocated,
int64_t total_reserved,
c10::Device device) override {
if (config_.profile_memory && !config_.disabled()) {
record_queue_.getSubqueue()->emplace_allocation_event(
torch::profiler::impl::getApproximateTime(),
ptr,
alloc_size,
total_allocated,
total_reserved,
device.type(),
device.index());
}
}
void reportOutOfMemory(
int64_t alloc_size,
int64_t total_allocated,
int64_t total_reserved,
c10::Device device) override {
if (config_.profile_memory && !config_.disabled()) {
record_queue_.getSubqueue()->emplace_ooms_event(
torch::profiler::impl::getApproximateTime(),
alloc_size,
total_allocated,
total_reserved,
device.type(),
device.index());
}
}
const post_process_t& getEventPostProcessingCallback() const {
return event_post_process_cb_;
}
void setEventPostProcessingCallback(post_process_t&& cb) {
event_post_process_cb_ = std::move(cb);
}
std::unique_ptr<torch::profiler::impl::kineto::ActivityTraceWrapper>
finalizeTrace() {
auto end_time = getTimeUs();
record_queue_.stop();
std::lock_guard<std::mutex> guard(state_mutex_);
auto converter = clock_converter_.makeConverter();
auto records_and_trace =
record_queue_.getRecords(converter, start_time_, end_time);
materializeOpEvents(records_and_trace.first);
// finalizeCPUTrace(cpu_trace_.get());
// `kineto_events_` does not include Python events. Instead it exposes them
// via the `stacks` property.
kineto_events_.erase(
std::remove_if(
kineto_events_.begin(),
kineto_events_.end(),
[](const auto& i) { return i.isPythonFunction(); }),
kineto_events_.end());
return std::move(records_and_trace.second);
}
template <typename T>
void invokeCallback(T& t) {
if (event_post_process_cb_) {
event_post_process_cb_(t.debug_handle_, t.jit_stack_, t.jit_modules_);
}
}
void materializeOpEvents(std::vector<std::shared_ptr<Result>>& events) {
for (auto& e : events) {
if (e->parent_.expired()) {
event_tree_.push_back(e);
}
if (e->finished_) {
e->visit(c10::overloaded(
[this](ExtraFields<EventType::TorchOp>& i) { invokeCallback(i); },
[this](ExtraFields<EventType::Backend>& i) { invokeCallback(i); },
[](auto&) {}));
kineto_events_.emplace_back(e, config_.experimental_config.verbose);
AddTensorboardFields add_tb(e, kineto_events_.back());
AddGenericMetadata add_generic(e);
// It is not safe to use the activity after post processing.
e->kineto_activity_ = nullptr;
}
}
}
void finalizeCPUTrace(
std::unique_ptr<torch::profiler::impl::kineto::trace_t>& cpu_trace) {
#ifndef USE_KINETO
}
#else // USE_KINETO
TORCH_INTERNAL_ASSERT(
cpu_trace->activities.size() == kineto_events_.size());
// startThreadId_seqNum to pointer of activity.
// Low-16bits of startThreadId and low-48bits seqNum are concatenated into
// one uint64_t variable as key.
// From the time being, we need disable the forward/backward correlation
// feature to workaround the crash bug.
// TODO: by Mike Guo
// reenable the forward/backward correlation when kineto fix the following
// raw pointer
// GenericTraceActivity.flow.linkedActivity
/*
std::unordered_map<uint64_t, libkineto::GenericTraceActivity*>
tidSeq2activity;
for (const auto idx : c10::irange(cpu_trace->activities.size())) {
auto& kineto_event = kineto_events_[idx];
auto& activity = cpu_trace->activities[idx];
// add information about an associated forward op, if a sequence number
// is available (e.g. during training)
if (kineto_event.sequenceNr() >= 0) {
generateForwardBackwardLink(
kineto_event, fwd_bwd_link_id, activity, tidSeq2activity);
}
}
*/
}
void generateForwardBackwardLink(
const KinetoEvent& kineto_event,
uint64_t& fwd_bwd_link_id,
libkineto::GenericTraceActivity& activity,
std::unordered_map<uint64_t, libkineto::GenericTraceActivity*>&
tidSeq2activity) {
if (kineto_event.fwdThreadId() > 0) {
// act is backward op.
uint64_t key = getForwardThreadKey(
kineto_event.fwdThreadId(), kineto_event.sequenceNr());
auto iter = tidSeq2activity.find(key);
if (iter != tidSeq2activity.end()) {
libkineto::GenericTraceActivity* fwd = iter->second;
fwd->flow.start = true;
activity.flow.id = fwd->flow.id = fwd_bwd_link_id;
activity.flow.type = fwd->flow.type = libkineto::kLinkFwdBwd;
++fwd_bwd_link_id;
}
} else if (kineto_event.startThreadId() != 0) {
// act is forward op.
uint64_t key = getForwardThreadKey(
kineto_event.startThreadId(), kineto_event.sequenceNr());
// Assumption: Among all ops with same sequence number,
// the one with biggest start time is most likely launching backward op.
auto iter = tidSeq2activity.find(key);
if (iter == tidSeq2activity.end()) {
tidSeq2activity[key] = &activity;
} else {
// Now the sequence number is only incremented on creating a "Node"
// object for backward pass, by calling
// "at::sequence_number::get_and_increment()". Among all ops with same
// sequence number, the one with biggest startTime is the one launching
// backward op.
if (activity.startTime >= iter->second->startTime) {
tidSeq2activity[key] = &activity;
}
}
}
}
#endif // USE_KINETO
uint64_t start_time_;
torch::profiler::impl::ApproximateClockToUnixTimeConverter clock_converter_;
torch::profiler::impl::RecordQueue record_queue_;
std::vector<KinetoEvent> kineto_events_;
std::vector<experimental_event_t> event_tree_;
// Optional, if event post-processing is enabled.
post_process_t event_post_process_cb_;
};
template <bool use_global_state_ptr = false>
std::unique_ptr<at::ObserverContext> onFunctionEnter(
const at::RecordFunction& fn) {
auto state_ptr = KinetoThreadLocalState::get(use_global_state_ptr);
if (!state_ptr) {
return nullptr;
}
return state_ptr->record_queue_.getSubqueue()->begin_op(fn);
}
// @lint-ignore CLANGTIDY clang-diagnostic-unused-parameter
template <bool use_global_state_ptr = false>
void onFunctionExit(
const at::RecordFunction& fn,
at::ObserverContext* ctx_ptr) {
auto state_ptr = KinetoThreadLocalState::get(use_global_state_ptr);
if (!state_ptr) {
return;
}
const auto& config = state_ptr->config();
auto* kineto_ctx_ptr =
static_cast<torch::profiler::impl::KinetoObserverContext*>(ctx_ptr);
TORCH_INTERNAL_ASSERT(kineto_ctx_ptr != nullptr);
kineto_ctx_ptr->event_->end_time_ =
torch::profiler::impl::getApproximateTime();
kineto_ctx_ptr->event_->basic_fields_.end_tid_ =
at::RecordFunction::currentThreadId();
if (config.state == ProfilerState::KINETO_GPU_FALLBACK) {
try {
auto fallback = kineto_ctx_ptr->fallback_;
TORCH_INTERNAL_ASSERT(fallback != nullptr);
torch::profiler::impl::cudaStubs()->record(
nullptr, &fallback->cuda_event_end_, nullptr);
} catch (const std::exception& e) {
LOG(WARNING) << "Failed to record CUDA event. " << e.what();
}
}
if (fn.scope() == at::RecordScope::USER_SCOPE) {
torch::profiler::impl::kineto::popUserCorrelationId();
} else {
torch::profiler::impl::kineto::popCorrelationId();
}
}
template <bool use_global_callback = false>
void pushProfilingCallbacks(const std::unordered_set<at::RecordScope>& scopes) {
auto registration_state_ptr =
KinetoThreadLocalState::get(use_global_callback);
TORCH_INTERNAL_ASSERT(registration_state_ptr, "Expected profiler state set");
auto recordFunctionCallback =
at::RecordFunctionCallback(
onFunctionEnter<use_global_callback>,
onFunctionExit<use_global_callback>)
.needsInputs(registration_state_ptr->config().report_input_shapes)
.scopes(scopes);
auto handle = c10::guts::if_constexpr<use_global_callback>(
[&] { return at::addGlobalCallback(recordFunctionCallback); },
[&] { return at::addThreadLocalCallback(recordFunctionCallback); });
registration_state_ptr->setCallbackHandle(handle);
}
} // namespace
void reportBackendEventToActiveKinetoProfiler(
const int64_t start_time_us,
const int64_t end_time_us,
const int64_t debug_handle,
const at::RecordScope scope,
const std::string& event_name,
const std::string& backend_name) {
TORCH_INTERNAL_ASSERT(
KinetoThreadLocalState::get(/*global=*/true) == nullptr,
"On-demand profiling does not support post processing callback");
auto state_ptr = KinetoThreadLocalState::get(/*global=*/false);
if (!state_ptr) {
return;
}
state_ptr->record_queue_.getSubqueue()->emplace_backend_event(
start_time_us,
end_time_us,
debug_handle,
scope,
event_name,
backend_name);
/* no support for input shapes now?
if (config.report_input_shapes) {
ctx_ptr->shapes = inputSizes(fn);
ctx_ptr->dtypes = inputTypes(fn);
}
*/
}
void prepareProfiler(
const torch::profiler::impl::ProfilerConfig& config,
const std::set<torch::profiler::impl::ActivityType>& activities) {
if (config.state == ProfilerState::NVTX ||
config.state == ProfilerState::ITT) {
return;
}
TORCH_CHECK(
config.state == ProfilerState::KINETO ||
config.state == ProfilerState::KINETO_GPU_FALLBACK,
"Supported only in Kineto profiler");
torch::profiler::impl::kineto::prepareTrace(
/*cpuOnly=*/!at::hasCUDA(), activities, config.experimental_config);
}
void enableProfilerWithEventPostProcess(
const torch::profiler::impl::ProfilerConfig& config,
const std::set<torch::profiler::impl::ActivityType>& activities,
post_process_t&& cb,
const std::unordered_set<at::RecordScope>& scopes) {
TORCH_CHECK(
config.state != ProfilerState::NVTX,
"NVTX does not support post processing callback.");
TORCH_CHECK(
config.state != ProfilerState::ITT,
"ITT does not support post processing callback.");
TORCH_INTERNAL_ASSERT(
KinetoThreadLocalState::get(/*global=*/true) == nullptr,
"On-demand profiling does not support post processing callback");
enableProfiler(config, activities, scopes);
auto state_ptr = KinetoThreadLocalState::get(config.global());
state_ptr->setEventPostProcessingCallback(std::move(cb));
}
void enableProfiler(
const torch::profiler::impl::ProfilerConfig& config,
const std::set<torch::profiler::impl::ActivityType>& activities,
const std::unordered_set<at::RecordScope>& scopes) {
const auto has_cpu = activities.count(ActivityType::CPU);
TORCH_CHECK(
KinetoThreadLocalState::get(/*global=*/config.global()) == nullptr,
"Profiler is already enabled",
(config.global() ? "." : " on this thread."));
if (config.state == ProfilerState::NVTX) {
torch::profiler::impl::pushNVTXCallbacks(config, scopes);
return;
} else if (config.state == ProfilerState::ITT) {
torch::profiler::impl::pushITTCallbacks(config, scopes);
return;
}
TORCH_CHECK(
config.state == ProfilerState::KINETO ||
config.state == ProfilerState::KINETO_GPU_FALLBACK || config.global());
TORCH_CHECK(!activities.empty(), "No activities specified.");
TORCH_INTERNAL_ASSERT(
has_cpu || !config.global(),
"Ondemand profiling must enable CPU tracing");
KinetoThreadLocalState::push(
std::make_shared<KinetoThreadLocalState>(config, activities));
if (has_cpu) {
config.global() ? pushProfilingCallbacks</*global=*/true>(scopes)
: pushProfilingCallbacks</*global=*/false>(scopes);
}
if (!config.global()) {
torch::profiler::impl::kineto::startTrace();
}
}
std::unique_ptr<ProfilerResult> disableProfiler() {
auto state_ptr = ProfilerStateBase::pop();
const auto& config = state_ptr->config();
TORCH_CHECK(
state_ptr &&
(config.state == ProfilerState::KINETO ||
config.state == ProfilerState::KINETO_GPU_FALLBACK ||
config.state == ProfilerState::KINETO_ONDEMAND ||
config.state == ProfilerState::NVTX ||
config.state == ProfilerState::ITT),
"Can't disable Kineto profiler when it's not running");
state_ptr->removeCallback();
// Traces are converged via libkineto automatically for ondemand flow
if (state_ptr->config().global()) {
(void)std::static_pointer_cast<KinetoThreadLocalState>(state_ptr)
->finalizeTrace();
return std::make_unique<ProfilerResult>();
}
// Shared among NVTX, KINETO, KINETO_GPU_FALLBACK
std::unique_ptr<ProfilerResult> result;
if (state_ptr->config().state == ProfilerState::NVTX) {
result = std::make_unique<ProfilerResult>();
}
if (config.state == ProfilerState::KINETO ||
config.state == ProfilerState::KINETO_GPU_FALLBACK) {
auto kineto_state_ptr =
std::static_pointer_cast<KinetoThreadLocalState>(state_ptr);
auto trace = kineto_state_ptr->finalizeTrace();
result = std::make_unique<ProfilerResult>(
kineto_state_ptr->start_time_,
std::move(kineto_state_ptr->kineto_events_),
std::move(trace),
std::move(kineto_state_ptr->event_tree_));
}
return result;
}
KinetoEvent::KinetoEvent(
std::shared_ptr<const torch::profiler::impl::Result> result,
const bool verbose)
: result_{result} {
TORCH_INTERNAL_ASSERT(result != nullptr);
if (verbose) {
// Populate Python stack
auto parent = result_->parent_.lock();
while (parent != nullptr) {
parent->visit_if_base<PyExtraFieldsBase>(
[&](const auto& i) { python_stack_.push_back(parent->name()); });
parent = parent->parent_.lock();
}
}
}
bool KinetoEvent::isPythonFunction() const {
bool out{false};
result_->visit_if_base<PyExtraFieldsBase>([&](const auto&) { out = true; });
return out;
}
const c10::ArrayRef<std::string> KinetoEvent::stack() const {
auto get = [&](const auto& i) -> auto& {
return !i.jit_stack_.empty() ? i.jit_stack_ : python_stack_;
};
using out_t = const c10::ArrayRef<std::string>;
return result_->visit(c10::overloaded(
[&](const ExtraFields<EventType::TorchOp>& i) -> out_t { return get(i); },
[&](const ExtraFields<EventType::Backend>& i) -> out_t { return get(i); },
[&](const auto&) -> out_t { return python_stack_; }));
}
const c10::ArrayRef<std::string> KinetoEvent::moduleHierarchy() const {
return result_->visit(c10::overloaded(
[](const ExtraFields<EventType::TorchOp>& e)
-> const c10::ArrayRef<std::string> { return e.jit_modules_; },
[](const ExtraFields<EventType::Backend>& e)
-> const c10::ArrayRef<std::string> { return e.jit_modules_; },
[](const auto&) -> const c10::ArrayRef<std::string> { return {}; }));
}
uint64_t KinetoEvent::durationUs() const {
return (result_->endTimeNS() - result_->start_time_ns_) / 1000;
}
int64_t KinetoEvent::debugHandle() const {
return result_->visit(c10::overloaded(
[](const ExtraFields<EventType::TorchOp>& i) { return i.debug_handle_; },
[](const ExtraFields<EventType::Backend>& i) { return i.debug_handle_; },
[](const auto&) -> int64_t { return -1; }));
}
uint8_t KinetoEvent::deviceIndex() const {
return result_->visit(c10::overloaded(
[](const ExtraFields<EventType::Allocation>& i) {
return static_cast<uint8_t>(i.device_index_);
},
[](const ExtraFields<EventType::OutOfMemory>& i) {
return static_cast<uint8_t>(i.device_index_);
},
[&](const auto&) {
return static_cast<uint8_t>(result_->kineto_info_.device);
}));
}
bool KinetoEvent::hasStack() const {
return !stack().empty();
}
int64_t KinetoEvent::cudaElapsedUs() const {
auto cuda_event_start = fallbackStart();
auto cuda_event_end = fallbackEnd();
if (!cuda_event_start || !cuda_event_end) {
return -1;
}
try {
return (int64_t)torch::profiler::impl::cudaStubs()->elapsed(
&cuda_event_start, &cuda_event_end);
} catch (std::exception& e) {
LOG(WARNING) << "Failed to measure time between two CUDA events. "
<< e.what();
}
return -1;
}
#define FORWARD_FROM_RESULT(method_name, result_expr) \
decltype(std::declval<KinetoEvent>().method_name()) \
KinetoEvent::method_name() const { \
return static_cast<decltype(std::declval<KinetoEvent>().method_name())>( \
result_->result_expr); \
}
FORWARD_FROM_RESULT(startThreadId, start_tid_)
FORWARD_FROM_RESULT(endThreadId, endTID())
FORWARD_FROM_RESULT(activityType, kinetoType())
FORWARD_FROM_RESULT(name, name())
FORWARD_FROM_RESULT(deviceType, deviceType())
FORWARD_FROM_RESULT(startUs, start_time_ns_ / 1000)
FORWARD_FROM_RESULT(correlationId, correlationID())
FORWARD_FROM_RESULT(deviceResourceId, kineto_info_.resource)
#undef FORWARD_FROM_RESULT
// Most of the fields in `KinetoEvent` only make sense for a single event type.
// (Generally TorchOp.) For all other types they simply return the default
// value. This macro provides a succinct way of expressing this behavior.
#define TYPED_ATTR_WITH_DEFAULT( \
event_type, method_name, expression, default_value) \
decltype(std::declval<KinetoEvent>().method_name()) \
KinetoEvent::method_name() const { \
using out_t = decltype(std::declval<KinetoEvent>().method_name()); \
return result_->visit(c10::overloaded( \
[](const ExtraFields<EventType::event_type>& e) -> out_t { \
return expression; \
}, \
[](const auto&) -> out_t { return default_value; })); \
}
#define TYPED_ATTR(event_type, method_name, expression) \
TYPED_ATTR_WITH_DEFAULT(event_type, method_name, expression, {})
TYPED_ATTR_WITH_DEFAULT(TorchOp, sequenceNr, e.sequence_number_, -1)
TYPED_ATTR(TorchOp, fwdThreadId, e.sequence_number_ >= 0 ? e.forward_tid_ : 0)
TYPED_ATTR(TorchOp, hasShapes, !e.inputs_.shapes_.empty())
TYPED_ATTR(TorchOp, shapes, e.inputs_.shapes_)
TYPED_ATTR(TorchOp, hasTypes, !e.inputs_.dtypes_.empty())
TYPED_ATTR(TorchOp, dtypes, e.inputs_.dtypes_)
TYPED_ATTR(TorchOp, scope, static_cast<uint8_t>(e.scope_))
TYPED_ATTR(TorchOp, hasModuleHierarchy, !e.jit_modules_.empty())
TYPED_ATTR(TorchOp, isAsync, e.is_async_)
TYPED_ATTR(TorchOp, fallbackStart, e.gpu_fallback_.cuda_event_start_)
TYPED_ATTR(TorchOp, fallbackEnd, e.gpu_fallback_.cuda_event_end_)
TYPED_ATTR(
TorchOp,
flops,
!e.extra_args_.empty() ? computeFlops(e.name_, e.extra_args_) : 0)
TYPED_ATTR(Backend, backend, e.backend_)
TYPED_ATTR(Allocation, nBytes, e.alloc_size_)
TYPED_ATTR(Kineto, linkedCorrelationId, [&]() {
const auto linked = e.linked_activity_.lock();
return linked ? linked->correlationID() : 0;
}())
#undef TYPED_ATTR
#undef TYPED_ATTR_WITH_DEFAULT
ProfilerResult::ProfilerResult(
uint64_t start_time,
std::vector<KinetoEvent> events,
std::unique_ptr<torch::profiler::impl::kineto::ActivityTraceWrapper>&&
trace,
std::vector<experimental_event_t>&& event_tree)
: trace_start_us_(start_time),
events_(std::move(events)),
trace_(std::move(trace)),
event_tree_(std::move(event_tree)) {}
ProfilerResult::ProfilerResult() = default;
ProfilerResult::~ProfilerResult() = default;
void ProfilerResult::save(const std::string& path) {
trace_->save(path);
}
} // namespace profiler
} // namespace autograd
} // namespace torch
|