1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
|
#include <torch/csrc/autograd/profiler_legacy.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/runtime/interpreter.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <ATen/code_template.h>
#include <ATen/core/op_registration/op_registration.h>
#include <torch/library.h>
#include <fstream>
#include <list>
#include <mutex>
#include <sstream>
#include <string>
#include <vector>
#include <ATen/record_function.h>
#include <c10/core/Allocator.h>
#include <c10/util/ThreadLocalDebugInfo.h>
#include <c10/util/irange.h>
#include <iostream>
namespace torch {
namespace autograd {
namespace profiler {
// We decompose the profiler logic into the following components:
//
// ThreadLocalDebugInfo:
//
// ThreadLocalDebugInfo is a thread local mapping from slots into
// the debug information structs.
// ThreadLocalDebugInfo is automatically propagated across thread
// boundaries, including the cases of:
// - launching async jobs with at::launch
// - executing JIT continuations
// - moving from the forward threads into autograd (backward) threads
//
// Entries in ThreadLocalDebugInfo are managed by DebugInfoGuard
// which can be used to add or overwrite an entry in the thread local
// mapping. A corresponding entry is removed when the guard is destroyed,
// potentially revealing the previously set value for the same slot.
//
// For the async tasks, slots previuosly set in the main thread before
// launching of an async task are shared and visible in the async task.
//
// On the other hand, any adding or overwriting of the mapping by the
// async task is not visible to the main thread and any modification
// (including removal of the entries) in the main thread is not visible
// to the async task if it happends after launching the task.
//
// We use ThreadLocalDebugInfo (slot PROFILER_STATE) to store profiler config,
// as well as a list of events that happen during profiling.
// An instance of ThreadLocalDebugInfo is created each time we enter
// profiler (i.e. enter profiling context manager/call enableConfig) and
// uniquely identifies a profiling run.
//
// We automatically propagate ThreadLocalDebugInfo into async tasks,
// as well as across JIT continuations and autograd thread, so all
// the operations that happen between profiling start and end
// (not necessarily within the same thread) are recorded.
// Unless the profiling slot is overwritten as in the case of nested
// profiling ranges (in this case events for the subrange are handled
// by the nested profiler)
//
// When we exit a profiling range (either by exiting profiling context
// manager or by calling disableProfiler), we remove the previously set
// profiling entry for the given thread local mapping, and consolidate
// events in the profiling result
//
//
// ThreadLocalState:
//
// ThreadLocalState takes a 'snapshot' of thread local variables
// using provided getters. It is used together with ThreadLocalStateGuard
// to transfer the snapshot across thread boundary and set the thread local
// values as in the parent task.
//
// Profiler uses ThreadLocalState to propagate profiler's thread local state.
// ThreadLocalState also automatically propagates profiler callbacks.
//
//
// at::RecordFunction and observers
//
// Profiler uses observers mechanism to add a pair of thread local callbacks
// that are executed on a number of predetermined ranges, including:
// - c10/ATen ops
// - TorchScript functions/methods
// - user defined named ranges (see `record_function` python context manager)
//
// Profiler setups a pair of callbacks that record profiling events and save
// them into the thread local profiler struct (ThreadLocalDebugInfo,
// PROFILER_STATE slot)
//
//
// Thus, the overall logic is:
//
// enableProfiler:
// - checks that profiler is not enabled (otherwise throws)
// - pushes new ThreadLocalDebugInfo (slot PROFILER_STATE) as the profiler
// config for the current thread
// - pushes profiling callbacks for the current thread
//
// disableProfiler:
// - pops PROFILER_STATE slot from the current ThreadLocalDebugInfo and
// consolidates events
// - removes profiling callbacks
//
// ThreadLocalState:
// - propagates ThreadLocalDebugInfo across threads
// - propagates profiler callbacks across threads
//
// Profiler callbacks:
// - get the current profiling state (PROFILER slot in ThreadLocalDebugInfo)
// - save profiling events into the profiling state
//
namespace {
using torch::profiler::impl::ActiveProfilerType;
using torch::profiler::impl::ProfilerStateBase;
struct ProfilerLegacyThreadLocalState : public ProfilerStateBase {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
explicit ProfilerLegacyThreadLocalState(
const torch::profiler::impl::ProfilerConfig& config)
: ProfilerStateBase(config), remoteProfiledEvents_{c10::nullopt} {}
~ProfilerLegacyThreadLocalState() override = default;
static ProfilerLegacyThreadLocalState* getTLS() {
auto tls = ProfilerStateBase::get(/*global=*/false);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
tls == nullptr || tls->profilerType() == ActiveProfilerType::LEGACY);
return static_cast<ProfilerLegacyThreadLocalState*>(tls);
}
thread_event_lists consolidate();
void mark(std::string name, bool include_cuda = true);
void setOrAddRemoteProfiledEvents(
std::vector<LegacyEvent>&& remoteProfiledEvents);
void pushRange(
const at::RecordFunction& fn,
const bool record_cuda,
std::vector<std::vector<int64_t>>&& shapes = {});
void popRange(const at::RecordFunction& fn, const bool record_cuda);
void reportMemoryUsage(
void* /* unused */,
int64_t alloc_size,
int64_t /* total_allocated, unused for legacy */,
int64_t /* total_reserved, unused for legacy */,
c10::Device device) override;
ActiveProfilerType profilerType() override {
return ActiveProfilerType::LEGACY;
}
void leakHandle() {
handle_ = 0;
}
protected:
RangeEventList& getEventList(int64_t thread_id = -1);
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
std::mutex state_mutex_;
std::unordered_map<uint64_t, std::shared_ptr<RangeEventList>>
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
event_lists_map_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
c10::optional<std::vector<std::vector<LegacyEvent>>> remoteProfiledEvents_;
};
thread_event_lists ProfilerLegacyThreadLocalState::consolidate() {
std::lock_guard<std::mutex> g(state_mutex_);
thread_event_lists result;
for (auto& kv : event_lists_map_) {
auto& list = kv.second;
result.emplace_back(list->consolidate());
}
// Consolidate remote events if applicable as well.
if (remoteProfiledEvents_) {
result.insert(
result.end(),
std::make_move_iterator(remoteProfiledEvents_->begin()),
std::make_move_iterator(remoteProfiledEvents_->end()));
}
return result;
}
void ProfilerLegacyThreadLocalState::mark(std::string name, bool include_cuda) {
if (config_.disabled()) {
return;
}
if (config_.state == torch::profiler::impl::ProfilerState::NVTX) {
torch::profiler::impl::cudaStubs()->mark(name.c_str());
} else {
LegacyEvent evt(
EventKind::Mark,
at::StringView(std::move(name)),
at::RecordFunction::currentThreadId(),
include_cuda &&
config_.state == torch::profiler::impl::ProfilerState::CUDA);
evt.setNodeId(at::RecordFunction::getDefaultNodeId());
getEventList().record(std::move(evt));
}
}
void ProfilerLegacyThreadLocalState::setOrAddRemoteProfiledEvents(
std::vector<LegacyEvent>&& remoteProfiledEvents) {
// Lock to serialize access from multiple callback threads.
std::lock_guard<std::mutex> guard(state_mutex_);
if (remoteProfiledEvents_) {
(*remoteProfiledEvents_).emplace_back(remoteProfiledEvents);
} else {
remoteProfiledEvents_ = {std::move(remoteProfiledEvents)};
}
}
void ProfilerLegacyThreadLocalState::pushRange(
const at::RecordFunction& fn,
const bool record_cuda,
std::vector<std::vector<int64_t>>&& shapes) {
if (config_.disabled()) {
return;
}
if (config_.state == torch::profiler::impl::ProfilerState::NVTX) {
torch::profiler::impl::cudaStubs()->rangePush(
torch::profiler::impl::getNvtxStr(fn.name(), fn.seqNr(), shapes)
.c_str());
} else {
LegacyEvent evt(
EventKind::PushRange,
at::StringView(std::string(fn.name())),
at::RecordFunction::currentThreadId(),
record_cuda,
fn.handle(),
std::move(shapes),
at::RecordFunction::getDefaultNodeId(),
fn.isAsync());
evt.setSequenceNr(fn.seqNr());
evt.setFwdThreadId(fn.forwardThreadId());
evt.setScope((uint8_t)fn.scope());
if (config_.with_flops) {
evt.setExtraArgs(torch::profiler::impl::saveExtraArgs(fn));
evt.setFlops(torch::profiler::impl::computeFlops(
std::string(fn.name()), evt.extraArgs()));
}
// TODO: will unify the two macros BUILD_LITE_INTERPRETER and C10_MOBILE soon.
#if !defined BUILD_LITE_INTERPRETER && !defined C10_MOBILE
// backward nodes source range corresponds to the forward node
// TODO: consider using C++ stack trace
if (config_.with_stack &&
fn.scope() != at::RecordScope::BACKWARD_FUNCTION) {
auto cs =
torch::profiler::impl::prepareCallstack(jit::currentCallstack());
if (cs.empty()) {
cs = torch::profiler::impl::prepareCallstack(
jit::tracer::pythonCallstack());
}
evt.setStack(callstackStr(cs));
}
#endif
getEventList().record(std::move(evt));
}
}
void ProfilerLegacyThreadLocalState::popRange(
const at::RecordFunction& fn,
const bool record_cuda) {
if (config_.disabled()) {
return;
}
if (config_.state == torch::profiler::impl::ProfilerState::NVTX) {
torch::profiler::impl::cudaStubs()->rangePop();
} else {
// In some cases RecordFunction (and popRange) may be
// called on a different thread than pushRange
// As a convention, we put the async pop on the original
// thread and save current thread id in pop event
LegacyEvent evt(
EventKind::PopRange,
at::StringView(""),
at::RecordFunction::currentThreadId(),
record_cuda,
fn.handle());
evt.setNodeId(at::RecordFunction::getDefaultNodeId());
getEventList(fn.threadId()).record(std::move(evt));
}
}
void ProfilerLegacyThreadLocalState::reportMemoryUsage(
void* /* unused */,
int64_t alloc_size,
int64_t /* total_allocated, unused for legacy */,
int64_t /* total_reserved, unused for legacy */,
c10::Device device) {
if (config_.profile_memory && !config_.disabled()) {
uint64_t thread_id = at::RecordFunction::currentThreadId();
LegacyEvent evt(
EventKind::MemoryAlloc,
at::StringView(""),
thread_id,
config_.state == torch::profiler::impl::ProfilerState::CUDA);
evt.updateMemoryStats(alloc_size, device);
getEventList(thread_id).record(std::move(evt));
}
}
RangeEventList& ProfilerLegacyThreadLocalState::getEventList(
int64_t thread_id) {
if (thread_id < 0) {
thread_id = at::RecordFunction::currentThreadId();
}
RangeEventList* list_ptr = nullptr;
std::lock_guard<std::mutex> guard(state_mutex_);
auto it = event_lists_map_.find(thread_id);
if (it != event_lists_map_.end()) {
list_ptr = it->second.get();
} else {
auto event_list = std::make_shared<RangeEventList>();
event_lists_map_[thread_id] = event_list;
list_ptr = event_list.get();
}
return *list_ptr;
}
enum EventIValueIdx {
KIND = 0,
NAME,
THREAD_ID,
HANDLE,
NODE_ID,
CPU_MEM_USAGE,
CPU_NS,
CUDA_RECORDED,
CUDA_MEM_USAGE,
CUDA_DEVICE,
CUDA_US,
SHAPES,
NUM_EVENT_IVALUE_IDX // must be last in list
};
const std::unordered_set<std::string> disable_cuda_profiling = {
"aten::view",
"aten::t",
"aten::transpose",
"aten::stride",
"aten::empty",
"aten::empty_like",
"aten::empty_strided",
"aten::as_strided",
"aten::expand",
"aten::resize_",
"aten::squeeze",
"aten::unsqueeze",
"aten::slice",
"aten::_unsafe_view",
"aten::size"};
void pushProfilingCallbacksLegacy() {
auto registration_state_ptr = ProfilerLegacyThreadLocalState::getTLS();
TORCH_INTERNAL_ASSERT(registration_state_ptr, "Expected profiler state set");
auto handle = at::addThreadLocalCallback(
at::RecordFunctionCallback(
[](const at::RecordFunction& fn)
-> std::unique_ptr<at::ObserverContext> {
auto state_ptr = ProfilerLegacyThreadLocalState::getTLS();
if (!state_ptr || state_ptr->config().disabled()) {
return nullptr;
}
bool record_cuda = state_ptr->config().state ==
torch::profiler::impl::ProfilerState::CUDA;
if (record_cuda &&
disable_cuda_profiling.find(fn.name()) !=
disable_cuda_profiling.end()) {
record_cuda = false;
}
if (state_ptr->config().report_input_shapes) {
auto sizes = torch::profiler::impl::inputSizes(fn);
state_ptr->pushRange(fn, record_cuda, std::move(sizes));
} else {
state_ptr->pushRange(fn, record_cuda);
}
return nullptr;
},
[](const at::RecordFunction& fn, at::ObserverContext*) {
auto state_ptr = ProfilerLegacyThreadLocalState::getTLS();
if (!state_ptr || state_ptr->config().disabled()) {
return;
}
bool record_cuda = state_ptr->config().state ==
torch::profiler::impl::ProfilerState::CUDA;
if (record_cuda &&
disable_cuda_profiling.find(fn.name()) !=
disable_cuda_profiling.end()) {
record_cuda = false;
}
state_ptr->popRange(fn, record_cuda);
})
.needsInputs(registration_state_ptr->config().report_input_shapes)
.needsIds(true));
registration_state_ptr->setCallbackHandle(handle);
}
} // namespace
void enableProfilerLegacy(
const torch::profiler::impl::ProfilerConfig& new_config) {
TORCH_CHECK(
new_config.state != torch::profiler::impl::ProfilerState::NVTX ||
torch::profiler::impl::cudaStubs()->enabled(),
"Can't use NVTX profiler - PyTorch was compiled without CUDA");
TORCH_CHECK(new_config.state != torch::profiler::impl::ProfilerState::KINETO);
auto state_ptr = ProfilerLegacyThreadLocalState::getTLS();
TORCH_CHECK(!state_ptr, "Profiler is already enabled on this thread");
auto state = std::make_shared<ProfilerLegacyThreadLocalState>(new_config);
c10::ThreadLocalDebugInfo::_push(c10::DebugInfoKind::PROFILER_STATE, state);
pushProfilingCallbacksLegacy();
state->mark("__start_profile", false);
}
thread_event_lists disableProfilerLegacy(
c10::optional<ProfilerDisableOptions> profilerDisableOptions) {
auto cleanupTLSState =
profilerDisableOptions ? profilerDisableOptions->cleanupTLSState : true;
auto consolidate =
profilerDisableOptions ? profilerDisableOptions->consolidate : true;
// all the DebugInfoBase objects are scope based and supposed to use
// DebugInfoGuard
std::shared_ptr<c10::DebugInfoBase> state;
if (cleanupTLSState) {
state = c10::ThreadLocalDebugInfo::_pop(c10::DebugInfoKind::PROFILER_STATE);
} else {
state =
c10::ThreadLocalDebugInfo::_peek(c10::DebugInfoKind::PROFILER_STATE);
}
auto state_ptr = static_cast<ProfilerLegacyThreadLocalState*>(state.get());
TORCH_CHECK(
state_ptr && !state_ptr->config().disabled(),
"Can't disable profiler when it's not running");
cleanupTLSState ? state_ptr->removeCallback() : state_ptr->leakHandle();
if (!consolidate ||
state_ptr->config().state == torch::profiler::impl::ProfilerState::NVTX) {
return thread_event_lists();
}
state_ptr->mark("__stop_profile", false);
// Note that this will erase the underlying events.
return state_ptr->consolidate();
}
void addEventList(std::vector<LegacyEvent>&& profiledEvents) {
auto state_ptr = ProfilerLegacyThreadLocalState::getTLS();
TORCH_CHECK(state_ptr, "Profiler must be enabled.");
state_ptr->setOrAddRemoteProfiledEvents(std::move(profiledEvents));
}
void LegacyEvent::record(bool record_cuda) {
if (record_cuda) {
torch::profiler::impl::cudaStubs()->record(&device_, &cuda_event, &cpu_ns_);
return;
}
cpu_ns_ = torch::profiler::impl::getTime();
}
/* static */ LegacyEvent LegacyEvent::fromIValue(
const at::IValue& eventIValue) {
TORCH_INTERNAL_ASSERT(
eventIValue.isList(),
"Expected IValue to contain type c10::impl::GenericList");
auto ivalues = eventIValue.toList();
TORCH_INTERNAL_ASSERT(
ivalues.size() >= NUM_EVENT_IVALUE_IDX,
"Expected at least ",
NUM_EVENT_IVALUE_IDX,
" elements to reconstruct LegacyEvent.");
// Reconstruct input shapes from ivalues.
auto shapeListIValue = ivalues.get(EventIValueIdx::SHAPES);
TORCH_INTERNAL_ASSERT(
shapeListIValue.isList(),
"Expected profiler shapes IValue to contain type c10::impl::GenericList.");
auto shapeList = shapeListIValue.toList();
std::vector<std::vector<int64_t>> shapes;
shapes.reserve(shapeList.size());
for (const auto i : c10::irange(shapeList.size())) {
std::vector<int64_t> s;
auto shapeIValue = shapeList.get(i);
TORCH_INTERNAL_ASSERT(
shapeIValue.isList(),
"Expected each profiler shape element to contain shapes of type c10::impl::GenericList.")
auto curShapesList = shapeIValue.toList();
s.reserve(curShapesList.size());
for (const auto j : c10::irange(curShapesList.size())) {
s.emplace_back(curShapesList.get(j).toInt());
}
shapes.emplace_back(s);
}
LegacyEvent evt(
static_cast<EventKind>(
ivalues.get(EventIValueIdx::KIND).toInt()), // EventKind
at::StringView(ivalues.get(EventIValueIdx::NAME).toStringRef()), // name
ivalues.get(EventIValueIdx::THREAD_ID).toInt(), // thread_id
static_cast<at::RecordFunctionHandle>(
ivalues.get(EventIValueIdx::HANDLE).toDouble()), // handle
std::move(shapes), // input shapes
ivalues.get(EventIValueIdx::NODE_ID).toInt(), // node id
true, // is remote
ivalues.get(EventIValueIdx::CPU_MEM_USAGE).toInt(), // cpu_mem_usage
ivalues.get(EventIValueIdx::CPU_NS).toInt(), // cpu_ns
ivalues.get(EventIValueIdx::CUDA_RECORDED).toBool(), // was cuda recorded
ivalues.get(EventIValueIdx::CUDA_MEM_USAGE).toInt(), // cuda memory usage
ivalues.get(EventIValueIdx::CUDA_DEVICE).toInt(), // device
ivalues.get(EventIValueIdx::CUDA_US).toInt() // cuda_us
);
return evt;
}
at::IValue LegacyEvent::toIValue() const {
c10::impl::GenericList eventIValueList(at::AnyType::get());
eventIValueList.reserve(NUM_EVENT_IVALUE_IDX);
eventIValueList.emplace_back(static_cast<int64_t>(kind_));
eventIValueList.emplace_back(std::string(name_.str()));
eventIValueList.emplace_back(static_cast<int64_t>(thread_id_));
eventIValueList.emplace_back(static_cast<double>(handle_));
eventIValueList.emplace_back(node_id_);
eventIValueList.emplace_back(cpu_memory_usage_);
eventIValueList.emplace_back(cpu_ns_);
// CUDA event information
bool cuda_profiling_enabled = hasCuda();
eventIValueList.emplace_back(cuda_profiling_enabled);
eventIValueList.emplace_back(static_cast<int64_t>(cuda_memory_usage_));
eventIValueList.emplace_back(device_);
eventIValueList.emplace_back(cuda_us_);
// Shapes
c10::impl::GenericList shapesList =
c10::impl::GenericList(at::ListType::create(at::IntType::get()));
shapesList.reserve(shapes_.size());
for (const auto& shape : shapes_) {
c10::impl::GenericList s = c10::impl::GenericList(at::IntType::get());
s.reserve(shape.size());
for (const auto& k : shape) {
s.emplace_back(k);
}
shapesList.emplace_back(s);
}
eventIValueList.emplace_back(shapesList);
return at::IValue(eventIValueList);
}
double LegacyEvent::cudaElapsedUs(const LegacyEvent& e) const {
TORCH_CHECK(e.hasCuda() && hasCuda(), "Events were not recorded for CUDA");
TORCH_CHECK(
e.device() == device(),
c10::str(
"Events are not on the same device: ", e.device(), " vs ", device()));
if (isRemote() && e.isRemote()) {
// validate that cuda_us_ has been set properly.
TORCH_INTERNAL_ASSERT(cuda_us_ >= 0 && e.cuda_us_ >= 0);
return static_cast<double>(e.cuda_us_ - cuda_us_);
}
return torch::profiler::impl::cudaStubs()->elapsed(
&cuda_event, &e.cuda_event);
}
static const at::jit::CodeTemplate event_template(R"(
{
"name": "${name}",
"ph": "X",
"ts": ${ts},
"dur": ${dur},
"tid": ${tid},
"pid": "CPU Functions",
"args": {}
})");
void writeProfilerEventsToStream(
std::ostream& out,
const std::vector<LegacyEvent*>& events) {
TORCH_CHECK(out, "Could not open file");
LegacyEvent* profiler_start = nullptr;
for (LegacyEvent* e : events) {
if (0 == strcmp(e->name(), "__start_profile")) {
profiler_start = e;
break;
}
}
TORCH_CHECK(profiler_start, "Could not find __start_profile mark");
struct PairHash {
size_t operator()(
std::pair<at::RecordFunctionHandle, int> p) const noexcept {
return std::hash<at::RecordFunctionHandle>()(p.first) ^
std::hash<int64_t>()(p.second);
}
};
std::unordered_map<
std::pair<at::RecordFunctionHandle, int64_t>,
LegacyEvent*,
PairHash>
events_map;
out << "[\n";
bool first = true;
for (LegacyEvent* evt : events) {
if (evt->kindStr() == "push") {
events_map[std::make_pair(evt->handle(), evt->nodeId())] = evt;
} else if (evt->kindStr() == "pop") {
if (!first) {
out << ",\n";
}
first = false;
auto it = events_map.find(std::make_pair(evt->handle(), evt->nodeId()));
TORCH_CHECK(it != events_map.end(), "Unmatched pop event");
LegacyEvent* evt_start = it->second;
events_map.erase(it);
at::jit::TemplateEnv env;
env.s("name", evt_start->name());
env.d("ts", profiler_start->cpuElapsedUs(*evt_start));
env.d("dur", evt_start->cpuElapsedUs(*evt));
env.d("tid", evt_start->threadId());
out << event_template.format(env);
}
}
out << "]\n";
}
RecordProfile::RecordProfile(std::ostream& out) : out_(out) {
init();
}
RecordProfile::RecordProfile(const std::string& filename)
: file_(new std::ofstream(filename)), out_(*file_) {
init();
}
void RecordProfile::init() {
enableProfilerLegacy(torch::profiler::impl::ProfilerConfig(
torch::profiler::impl::ProfilerState::CPU));
}
RecordProfile::~RecordProfile() {
try {
thread_event_lists event_lists = disableProfilerLegacy();
std::vector<LegacyEvent*> events;
for (auto& l : event_lists) {
for (auto& e : l) {
events.push_back(&e);
}
}
processEvents(events);
} catch (const std::exception& e) {
LOG(ERROR) << e.what() << std::endl;
} catch (...) {
LOG(ERROR) << "Unknown error" << std::endl;
}
}
void RecordProfile::processEvents(const std::vector<LegacyEvent*>& events) {
writeProfilerEventsToStream(out_, events);
}
} // namespace profiler
} // namespace autograd
} // namespace torch
|