1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
|
#include <torch/csrc/autograd/python_function.h>
#include <ATen/ATen.h>
#include <ATen/SequenceNumber.h>
#include <c10/util/irange.h>
#include <pybind11/pybind11.h>
#include <structmember.h>
#include <torch/csrc/python_headers.h>
#include <torch/csrc/utils/pybind.h>
#include <ATen/FuncTorchTLS.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/autograd/functions/accumulate_grad.h>
#include <torch/csrc/autograd/functions/basic_ops.h>
#include <torch/csrc/autograd/functions/utils.h>
#include <torch/csrc/autograd/grad_mode.h>
#include <torch/csrc/autograd/graph_task.h>
#include <torch/csrc/autograd/python_anomaly_mode.h>
#include <torch/csrc/autograd/python_cpp_function.h>
#include <torch/csrc/autograd/python_hook.h>
#include <torch/csrc/autograd/saved_variable.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/jit/python/python_tracer.h>
#include <torch/csrc/utils/python_strings.h>
#include <exception>
#include <functional>
#include <memory>
#include <stdexcept>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace torch;
using namespace torch::autograd;
using namespace torch::jit;
using at::Tensor;
PyObject* THPFunctionClass = nullptr;
#define THPFunction_assert(condition, ...) \
if (!(condition)) { \
THPUtils_setError(__VA_ARGS__); \
throw python_error(); \
}
// Anonymous namespace for helpful functions used in this file
namespace {
// Throw a python_error with the PyErr state persisted, so that we
// don't lose the error state if the GIL is released when we don't
// have a PyThreadState created beforehand, this is made so that
// even for pure C++ thread without a pre-created PyThreadState could
// also capture the correct error message.
// TODO: This is a temporary approach to allow C++ thread to correctly
// capture Python Error in autograd, remove this when c10 thread pool
// allow to do one time initialization.
// see discussion in https://github.com/pytorch/pytorch/pull/34845
// Follow up issue: https://github.com/pytorch/pytorch/issues/35006
void throw_python_error() {
python_error err;
err.persist();
throw err;
}
} // namespace
namespace torch {
namespace autograd {
// NOTE: this function is written in a way that assumes it's only called for
// backward; it's used by engine.cpp. This is responsible for forwarding a call
// from C++'s Node::apply to a Python method "apply".
auto PyNode::apply(variable_list&& inputs) -> variable_list {
pybind11::gil_scoped_acquire gil;
at::OptionalDeviceGuard _device_guard;
THPFunction* py_fn = (THPFunction*)obj;
// Massage a C++ variable_list into a Python arguments tuple
auto num_inputs = inputs.size();
THPObjectPtr pyInputs(PyTuple_New(num_inputs));
if (!pyInputs)
throw_python_error();
auto& output_info = py_fn->output_info;
for (const auto i : c10::irange(num_inputs)) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
PyObject* input;
if (inputs[i].defined() || !py_fn->materialize_grads) {
input = THPVariable_Wrap(inputs[i]);
} else {
input = THPVariable_Wrap(output_info[i].zeros(_device_guard));
}
if (!input)
throw_python_error();
PyTuple_SET_ITEM(pyInputs.get(), i, input);
}
THPObjectPtr apply_fn(PyObject_GetAttrString(obj, "apply"));
if (!apply_fn)
throw_python_error();
THPObjectPtr r(PyObject_CallObject(apply_fn, pyInputs.get()));
if (!r)
throw_python_error();
ensure_tuple(r);
auto& is_variable_input = py_fn->is_variable_input;
int num_outputs = PyTuple_GET_SIZE(r.get());
int num_forward_inputs = is_variable_input.size();
// Returning too many results is ok, but only as long as they're all None.
// Truncate the result tuple in that case.
if (num_outputs > num_forward_inputs) {
bool all_none = true;
for (const auto i : c10::irange(num_forward_inputs, num_outputs)) {
all_none &= PyTuple_GET_ITEM(r.get(), i) == Py_None;
}
if (all_none) {
num_outputs = num_forward_inputs;
r = PyTuple_GetSlice(r.get(), 0, num_forward_inputs);
if (!r)
throw_python_error();
}
}
// Now the number of gradients should match
if (num_outputs != num_forward_inputs) {
std::string msg("function ");
msg += name() + " returned an incorrect number of gradients (expected ";
msg += std::to_string(num_forward_inputs) + ", got ";
msg += std::to_string(num_outputs) + ")";
throw std::runtime_error(msg);
}
// Massage the Python results tuple back into a C++ variable_list
variable_list results;
results.reserve(num_outputs);
for (int i = 0; i != num_outputs; ++i) {
PyObject* output = PyTuple_GET_ITEM(r.get(), i);
bool was_variable = is_variable_input[i];
if (!was_variable) {
if (output != Py_None) {
std::string msg("function ");
msg += name() + " returned a gradient different than None at position ";
msg += std::to_string(i + 1) +
", but the corresponding forward input was not a Variable";
throw std::runtime_error(msg);
}
continue;
}
if (output == Py_None) {
results.emplace_back();
} else {
if (!THPVariable_Check(output)) {
std::string msg("expected Variable or None (got ");
msg += THPUtils_typename(output);
msg += ")";
throw std::runtime_error(msg);
}
results.emplace_back(THPVariable_Unpack(output));
}
}
return results;
}
auto PyNode::is_traceable() -> bool {
pybind11::gil_scoped_acquire gil;
THPObjectPtr forward_class{PyObject_GetAttrString(obj, "_forward_cls")};
if (!forward_class)
throw_python_error();
THPObjectPtr traceable_py_bool{
PyObject_GetAttrString(forward_class, "is_traceable")};
if (!traceable_py_bool)
throw_python_error();
return traceable_py_bool == Py_True;
}
auto PyNode::release_variables() -> void {
// This function is called as part of the Node destructor!
// Since this object might be kept alive by C++, it is possible
// that the python interpreter is already dead here. In that case
// we just leak the saved objects.
if (Py_IsInitialized()) {
pybind11::gil_scoped_acquire gil;
auto f = (THPFunction*)obj;
f->saved_variables.clear();
f->has_freed_buffers = 1;
}
}
auto PyNode::name() const -> std::string {
pybind11::gil_scoped_acquire gil;
auto f = (THPFunction*)obj;
auto name = std::string(Py_TYPE(f)->tp_name);
return name;
}
} // namespace autograd
} // namespace torch
// Traverse and clear are required for supporting Python's GC cycle handling.
static int THPFunction_traverse(THPFunction* self, visitproc visit, void* arg) {
// cdata could be null if the PyNode has already gone out of scope
// by the time we're GC'ing this THPFunction (e.g., the user saved grad_fn
// only).
//
// TODO: I'm not really sure if we're actually obligated to traverse PyObject
// that is stored in PyNode, since we don't really own that C++ object.
if (auto cdata = self->cdata.lock()) {
for (const auto& hook : cdata->pre_hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionTensorPreHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
for (const auto& hook : cdata->post_hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionPostHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
}
Py_VISIT(self->to_save);
Py_VISIT(self->non_differentiable);
Py_VISIT(self->dirty_tensors);
Py_VISIT(self->saved_for_forward);
return 0;
}
static int THPFunction_clear(THPFunction* self) {
// Note that the cdata might not be expired yet in the case where this
// object is part of a cycle and the GC happens to tp_clear this PyObject
// before the other ones that trigger the de-allocation of the cdata
Py_CLEAR(self->needs_input_grad);
Py_CLEAR(self->to_save);
Py_CLEAR(self->non_differentiable);
Py_CLEAR(self->dirty_tensors);
Py_CLEAR(self->saved_for_forward);
self->output_info.clear();
self->input_info.clear();
self->saved_variables.clear();
self->is_variable_input.clear();
return 0;
}
static void THPFunction_dealloc(THPFunction* self) {
// Why is this guaranteed to be true? Suppose that self->cdata is non-null
// (otherwise the condition is trivially true). Then there is a PyNode
// which contains an owning reference to this object. But we are only
// allowed to clear if all owning references are gone! Contradiction.
//
// However, note that THPFunction_clear is typically called in the shared_ptr
// destructor of PyNode; in that case, per
// https://cplusplus.github.io/LWG/lwg-active.html#2751 it's not currently
// specified in the standard that this is guaranteed. If you see this
// assert triggering in the wild, feel free to comment it out. They're
// likely to standardize that you ARE guaranteed to see the weak pointers
// as expired in the destructor in the future, so we'll keep this for now.
TORCH_INTERNAL_ASSERT(self->cdata.expired());
PyObject_GC_UnTrack(self);
THPFunction_clear(self);
self->cdata.~weak_ptr<PyNode>();
self->output_info.~vector();
self->input_info.~vector();
self->saved_variables.~vector();
self->is_variable_input.~vector();
Py_TYPE(self)->tp_free((PyObject*)self);
}
PyObject* THPFunction_new(
PyTypeObject* type,
PyObject* args,
PyObject* kwargs) {
PyObject* obj = type->tp_alloc(type, 0);
if (!obj)
return nullptr;
// Python zero-initializes the object memory, so there's no need to initialize
// most fields
THPFunction* self = (THPFunction*)obj;
// Setup the PyNode later; we can't keep it live here
new (&self->cdata) std::weak_ptr<PyNode>();
new (&self->output_info) std::vector<VariableInfo>();
new (&self->input_info) std::vector<VariableInfo>();
new (&self->saved_variables) std::vector<SavedVariable>();
new (&self->is_variable_input) std::vector<bool>();
self->materialize_grads = true;
return obj;
}
////////////////////////////////////////////////////////////////////////////////
// Forward
////////////////////////////////////////////////////////////////////////////////
// Bump the counters of all recorded dirty input tensors, adding each of them
// into dirty_inputs. Also does some sanity checking.
static std::unordered_set<at::TensorImpl*> _mark_dirty(THPFunction* self) {
// Increase versions of modified tensors
std::unordered_set<at::TensorImpl*> dirty_inputs;
if (!self->dirty_tensors)
return dirty_inputs;
THPFunction_assert(
PyTuple_Check(self->dirty_tensors),
"autograd "
"internal error: dirty_tensors attribute is expected to be a tuple "
"but is %s",
THPUtils_typename(self->dirty_tensors));
Py_ssize_t num_dirty = PyTuple_GET_SIZE(self->dirty_tensors);
dirty_inputs.reserve(num_dirty);
for (const auto i : c10::irange(num_dirty)) {
PyObject* obj = PyTuple_GET_ITEM(self->dirty_tensors, i);
THPFunction_assert(
THPVariable_Check(obj),
"mark_dirty can "
"only accept variables, but argument %d is of type %s",
i,
THPUtils_typename(obj));
const auto& tensor = THPVariable_Unpack(obj);
dirty_inputs.insert(tensor.unsafeGetTensorImpl());
torch::autograd::impl::bump_version(tensor);
}
// We're not going to ever need this so let's remove references now
Py_CLEAR(self->dirty_tensors);
return dirty_inputs;
}
static std::unordered_set<at::TensorImpl*> _parse_non_differentiable(
THPFunction* self);
// Given a Python tuple of raw output tensors (raw_output), set each of
// the corresponding entries in a different Python tuple (outputs) with
// these tensors wrapped with variables. We save the gradient function (self)
// to the variable if the output requires grad.
//
// There is a considerable amount of complexity to handle if the operation
// that produced these output tensors is inplace. A mapping of *input*
// tensors to variables (t2var) is used to test if this occurred, and
// the set of dirty tensors (dirty_inputs) is used to figure out what to
// do in this case. After this method is run, t2var is extended with
// mappings for output tensors as well.
static void _wrap_outputs(
const std::shared_ptr<PyNode>& cdata,
THPFunction* self,
const variable_list& input_vars,
PyObject* raw_output,
PyObject* outputs,
bool is_executable) {
auto cdata_if_executable = is_executable ? cdata : nullptr;
Py_ssize_t num_outputs = PyTuple_GET_SIZE(raw_output);
if (is_executable) {
self->output_info.clear();
self->output_info.reserve(num_outputs);
}
auto non_differentiable = _parse_non_differentiable(self);
auto dirty_inputs = _mark_dirty(self);
std::vector<c10::optional<Variable>> raw_output_vars;
raw_output_vars.reserve(num_outputs);
for (const auto i : c10::irange(num_outputs)) {
PyObject* obj = PyTuple_GET_ITEM(raw_output, i);
// Only process tensors as outputs for autograd purposes.
if (THPVariable_Check(obj)) {
raw_output_vars.emplace_back(THPVariable_Unpack(obj));
} else {
raw_output_vars.emplace_back();
}
}
_jvp_fn_t jvp_user_function = [self](
variable_list inputs,
variable_list grad_inputs) {
pybind11::gil_scoped_acquire gil;
// Massage a C++ variable_list into a Python arguments tuple
// Making sure to introduce the proper None for non-Tensor inputs
auto num_inputs = self->is_variable_input.size();
THPObjectPtr pyInputs(PyTuple_New(num_inputs));
if (!pyInputs)
throw_python_error();
int64_t variable_idx = 0;
for (const auto i : c10::irange(num_inputs)) {
PyObject* input = nullptr;
if (self->is_variable_input[i]) {
if (grad_inputs[variable_idx].defined() || !self->materialize_grads) {
input = THPVariable_Wrap(grad_inputs[variable_idx]);
} else {
input = THPVariable_Wrap(at::zeros_like(inputs[variable_idx]));
}
if (!input) {
throw_python_error();
}
variable_idx++;
} else {
Py_INCREF(Py_None);
input = Py_None;
}
PyTuple_SET_ITEM(pyInputs.get(), i, input);
}
THPObjectPtr apply_jvp_fn(
PyObject_GetAttrString((PyObject*)self, "apply_jvp"));
if (!apply_jvp_fn)
throw_python_error();
THPObjectPtr r(PyObject_CallObject(apply_jvp_fn, pyInputs.get()));
if (!r)
throw_python_error();
ensure_tuple(r);
// Massage the Python results tuple back into a C++ variable_list
// Don't do any check on the number of results here as
// it is handled by the caller
const int num_outputs = PyTuple_GET_SIZE(r.get());
variable_list results;
results.reserve(num_outputs);
for (const auto i : c10::irange(num_outputs)) {
PyObject* output = PyTuple_GET_ITEM(r.get(), i);
if (output == Py_None) {
results.emplace_back();
} else {
TORCH_CHECK(
THPVariable_Check(output),
"expected Variable or None (got ",
THPUtils_typename(output),
") for grad output ",
i,
".")
results.emplace_back(THPVariable_Unpack(output));
}
}
return results;
};
// Wrap only the tensor outputs.
auto wrapped_outputs = _wrap_outputs(
input_vars,
non_differentiable,
dirty_inputs,
raw_output_vars,
cdata_if_executable,
jvp_user_function);
for (const auto i : c10::irange(num_outputs)) {
PyObject* obj = PyTuple_GetItem(raw_output, i);
// Keep the non-tensor outputs as is.
if (!THPVariable_Check(obj)) {
if (is_executable) {
self->output_info.emplace_back();
}
Py_INCREF(obj);
PyTuple_SetItem(outputs, i, obj);
} else {
if (is_executable) {
self->output_info.emplace_back(*wrapped_outputs[i]);
}
PyTuple_SetItem(outputs, i, THPVariable_Wrap(*wrapped_outputs[i]));
}
}
}
// Save any variables that requested by to_save
static void _save_variables(
const std::shared_ptr<PyNode>& cdata_ptr,
THPFunction* self) {
if (!self->to_save)
return;
THPFunction_assert(
PyTuple_Check(self->to_save),
"autograd internal "
"error: to_save attribute is expected to be a tuple but is %s",
THPUtils_typename(self->to_save));
Py_ssize_t num_saved = PyTuple_GET_SIZE(self->to_save);
self->saved_variables.clear();
self->saved_variables.reserve(num_saved);
for (const auto i : c10::irange(num_saved)) {
PyObject* obj = PyTuple_GET_ITEM(self->to_save, i);
if (obj == Py_None) {
self->saved_variables.emplace_back();
continue;
} else if (THPVariable_Check(obj)) {
const auto& tensor = THPVariable_Unpack(obj);
bool is_output = tensor.grad_fn().get() == cdata_ptr.get();
self->saved_variables.emplace_back(tensor, is_output);
} else {
throw torch::TypeError(
"save_for_backward can only save variables, but argument %ld is of "
"type %s",
i,
Py_TYPE(obj)->tp_name);
}
}
// Free .to_save
Py_CLEAR(self->to_save);
}
// Mark requires_grad = 0 on non-differentiable variables (as per
// non_differentiable)
static std::unordered_set<at::TensorImpl*> _parse_non_differentiable(
THPFunction* self) {
std::unordered_set<at::TensorImpl*> set;
if (!self->non_differentiable)
return set;
THPFunction_assert(
PyTuple_Check(self->non_differentiable),
"autograd "
"internal error: non_differentiable attribute is expected to be a "
"tuple but is %s",
THPUtils_typename(self->non_differentiable));
Py_ssize_t num_nondiff = PyTuple_GET_SIZE(self->non_differentiable);
set.reserve(num_nondiff);
for (const auto i : c10::irange(num_nondiff)) {
PyObject* t = PyTuple_GET_ITEM(self->non_differentiable, i);
THPFunction_assert(
THPVariable_Check(t),
"mark_non_differentiable "
"only accepts variable arguments, but got %s",
THPUtils_typename(t));
set.insert(THPVariable_Unpack(t).unsafeGetTensorImpl());
}
Py_CLEAR(self->non_differentiable);
return set;
}
struct UnpackedInput {
THPObjectPtr input_tuple;
variable_list input_vars;
};
struct InputFlags {
bool is_executable = false;
edge_list next_edges;
THPObjectPtr needs_input_grad;
std::vector<bool> is_variable_input;
};
template <bool enforce_variables>
std::pair<UnpackedInput, InputFlags> unpack_input(PyObject* args) {
UnpackedInput unpacked;
InputFlags flags;
auto num_args = PyTuple_GET_SIZE(args);
unpacked.input_tuple = PyTuple_New(num_args);
flags.needs_input_grad = PyTuple_New(num_args);
for (const auto i : c10::irange(num_args)) {
PyObject* arg = PyTuple_GET_ITEM(args, i);
bool is_variable = THPVariable_Check(arg);
flags.is_variable_input.push_back(is_variable);
if (!is_variable) {
// TODO: remove this code path once Variable and Tensor are merged in
// Python
if (enforce_variables) {
THPUtils_setError(
"expected a Tensor argument, but got %s", THPUtils_typename(arg));
throw python_error();
}
Py_INCREF(Py_False);
PyTuple_SET_ITEM(flags.needs_input_grad.get(), i, Py_False);
} else {
const auto& tensor = THPVariable_Unpack(arg);
unpacked.input_vars.push_back(tensor);
PyObject* needs_grad = tensor.requires_grad() ? Py_True : Py_False;
Py_INCREF(needs_grad);
PyTuple_SET_ITEM(flags.needs_input_grad.get(), i, needs_grad);
}
Py_INCREF(arg);
PyTuple_SET_ITEM(unpacked.input_tuple.get(), i, arg);
}
flags.is_executable =
GradMode::is_enabled() && any_variable_requires_grad(unpacked.input_vars);
flags.next_edges =
(flags.is_executable ? collect_next_edges(unpacked.input_vars)
: edge_list());
return std::make_pair(std::move(unpacked), std::move(flags));
}
// Given a prim::PythonOp node, _append_subgraph creates a subgraph such that:
// (1) It has the same inputs as the prim::PythonOp node
// (2) The intermediate nodes used in the PythonOp are cloned and stored in the
// subgraph (3) trace_outputs stores the Value* objects, before a new trace
// value is assigned by the prim::PythonOp node and helps to eventually route
// the outputs of the subgraph correctly This newly created subgraph is then
// added to the prim::PythonOp node as a subgraph attribute
static void _append_subgraph(
torch::jit::Node* node,
torch::jit::Graph* graph,
std::vector<torch::jit::Value*> trace_outputs,
bool unpack_output) {
node->g_(
torch::jit::attr::Subgraph,
std::make_shared<torch::jit::Graph>(graph->current_scope()));
auto subgraph = node->g(torch::jit::attr::Subgraph);
std::unordered_map<Value*, Value*> value_map;
auto value_map_func = [&](Value* v) { return value_map.at(v); };
for (size_t i = 0; i < node->inputs().size(); ++i) {
auto subgraph_input = subgraph->addInput();
subgraph_input->copyMetadata(node->inputs().at(i));
value_map[node->inputs().at(i)] = subgraph_input;
}
// Find node position in owning block, all subsequent nodes after are added to
// subgraph
auto owning_block = node->owningBlock();
auto it = std::find(
owning_block->nodes().begin(), owning_block->nodes().end(), node);
// Skip TupleUnpack node if created
if (!unpack_output) {
it++;
}
for (it++; it != owning_block->nodes().end(); ++it) {
torch::jit::Node* node = *it;
auto* clone_node =
subgraph->insertNode(subgraph->createClone(node, value_map_func));
for (size_t i = 0; i < node->outputs().size(); ++i) {
value_map[node->outputs()[i]] = clone_node->outputs()[i];
auto trace_it = std::find(
trace_outputs.begin(), trace_outputs.end(), node->outputs()[i]);
if (trace_it != trace_outputs.end()) {
subgraph->registerOutput(clone_node->outputs()[i]);
}
}
}
}
static torch::jit::Node* _trace_pre_record(
PyObject* op_obj,
PyObject* input_objects,
const variable_list& input_vars) {
if (!jit::tracer::isTracing()) {
return nullptr;
}
// Save scalar args and the calling convention
auto num_args = PyTuple_GET_SIZE(input_objects);
pyobj_list scalar_args;
std::string arg_types;
arg_types.reserve(num_args);
scalar_args.reserve(num_args);
for (const auto i : c10::irange(num_args)) {
PyObject* arg_object = PyTuple_GET_ITEM(input_objects, i);
if (THPVariable_Check(arg_object)) {
arg_types.push_back('d');
} else {
arg_types.push_back('c');
Py_INCREF(arg_object);
scalar_args.emplace_back(arg_object);
}
}
Py_INCREF(op_obj);
auto pyobj = THPObjectPtr(op_obj);
return jit::tracer::preRecordPythonTrace(
std::move(pyobj), arg_types, input_vars, std::move(scalar_args));
}
static void _trace_post_record(
torch::jit::Node* node,
PyObject* op_obj,
const variable_list& input_vars,
PyObject* output_objects,
bool is_inplace,
bool unpack_output) {
if (!jit::tracer::isTracing()) {
return;
}
node->i_(jit::attr::inplace, is_inplace);
if (PyObject* module_name = PyDict_GetItemString(
((PyTypeObject*)op_obj)->tp_dict, "__module__")) {
if (auto ptr = PyUnicode_AsUTF8(module_name)) {
node->s_(jit::attr::module, std::string(ptr));
}
}
// Isolate C variable ptrs in a vector
int num_outputs = PyTuple_GET_SIZE(output_objects);
auto graph = node->owningGraph();
node->addOutput();
auto old_node = node;
if (!unpack_output) {
std::vector<TypePtr> tuple_values(num_outputs, TensorType::get());
TypePtr tuple_type = TupleType::create(std::move(tuple_values));
// Original type is tuple of tensors "without" element type and shape.
// The missed parts will be added below.
node->output()->setType(tuple_type);
auto unpacked = graph->createTupleUnpack(node->output())->insertAfter(node);
node = unpacked;
}
std::vector<torch::jit::Value*> trace_outputs;
for (const auto i : c10::irange(num_outputs)) {
PyObject* obj = PyTuple_GET_ITEM(output_objects, i);
if (THPVariable_Check(obj)) {
Value* value = node->outputs()[i];
const auto& tensor = THPVariable_Unpack(obj);
if (tensor.defined()) {
value->inferTypeFrom(tensor);
trace_outputs.push_back(jit::tracer::getValueTrace(tensor));
jit::tracer::setValueTrace(tensor, value);
}
}
}
py::bool_ is_in_onnx_export =
py::module::import("torch.onnx.__init__").attr("is_in_onnx_export");
if (py::cast<bool>(is_in_onnx_export)) {
_append_subgraph(old_node, graph, trace_outputs, unpack_output);
}
// If TupleUnpack operator is created, we copy its output type back
// to the original tuple type.
if (!unpack_output) {
std::vector<TypePtr> new_tuple_values;
for (const auto i : c10::irange(num_outputs)) {
TypePtr ptr = node->outputs()[i]->type();
new_tuple_values.push_back(ptr);
}
TypePtr tuple_type = TupleType::create(std::move(new_tuple_values));
// The i-th tuple element receives a new tensor type with element type and
// shape.
old_node->output()->setType(tuple_type);
}
}
PyObject* process_outputs(
PyObject* op_obj,
const std::shared_ptr<PyNode>& cdata,
THPFunction* grad_fn,
const UnpackedInput& unpacked,
PyObject* inputs,
THPObjectPtr&& raw_output,
bool is_executable,
torch::jit::Node* node) {
bool unpack_output = ensure_tuple(raw_output);
auto num_outputs = PyTuple_GET_SIZE(raw_output.get());
THPObjectPtr outputs(PyTuple_New(num_outputs));
if (!outputs)
throw python_error();
cdata->clear_input_metadata();
// Record type, device, and size information about inputs
if (is_executable) {
grad_fn->input_info.clear();
grad_fn->input_info.reserve(unpacked.input_vars.size());
for (auto& var : unpacked.input_vars) {
grad_fn->input_info.emplace_back(var);
}
}
bool is_inplace = static_cast<bool>(grad_fn->dirty_tensors);
_wrap_outputs(
cdata, grad_fn, unpacked.input_vars, raw_output, outputs, is_executable);
_trace_post_record(
node, op_obj, unpacked.input_vars, outputs, is_inplace, unpack_output);
// It is important that creating the SavedVariables happen after the output
// wrapping as the outputs must have their grad_fn/fw_grad properly set before
// we save them.
if (is_executable) {
_save_variables(cdata, grad_fn);
} else {
// Remove unnecessary attributes
Py_XDECREF(grad_fn->to_save);
grad_fn->to_save = nullptr;
Py_XDECREF(grad_fn->non_differentiable);
grad_fn->non_differentiable = nullptr;
}
Py_XDECREF(grad_fn->saved_for_forward);
grad_fn->saved_for_forward = nullptr;
// Unpack the output, unless .forward() returned a tuple
if (unpack_output) {
PyObject* output = PyTuple_GET_ITEM(outputs.get(), 0);
Py_INCREF(output);
return output;
}
return outputs.release();
}
PyObject* THPFunction_name(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
auto cdata = ((THPFunction*)self)->cdata.lock();
TORCH_CHECK(
cdata,
"Attribute 'name' is invalid for this instance of _C._FunctionBase. "
"Accessing this attribute directly on an instance of autograd.Function is a legacy "
"access pattern that is no longer supported. For examples on how to use new-style "
"autograd functions, see "
"https://pytorch.org/docs/stable/autograd.html#torch.autograd.Function ");
return THPUtils_packString(cdata->name());
END_HANDLE_TH_ERRORS
}
PyObject* THPFunction_maybe_clear_saved_tensors(
PyObject* self,
PyObject* noargs) {
HANDLE_TH_ERRORS;
auto cdata = ((THPFunction*)self)->cdata.lock();
if (!get_current_graph_task_keep_graph()) {
cdata->release_variables();
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPFunction_apply(PyObject* cls, PyObject* inputs) {
HANDLE_TH_ERRORS
// save a local copy of seq_id before it gets incremented
int seq_id = at::sequence_number::peek();
auto info_pair = unpack_input<false>(inputs);
UnpackedInput& unpacked_input = info_pair.first;
InputFlags& input_info = info_pair.second;
// Call record function after all the inputs have been decoded, but
// before context has been allocated.
RECORD_FUNCTION(
((PyTypeObject*)cls)->tp_name,
std::vector<c10::IValue>(
unpacked_input.input_vars.begin(), unpacked_input.input_vars.end()),
seq_id);
// Temporary hack to improve functorch UX. We'll find a better solution.
const auto& functorch_tls = at::functorch::functorchTLSAccessor();
if (functorch_tls) {
functorch_tls->checkSupportsAutogradFunction();
}
THPObjectPtr backward_cls(PyObject_GetAttrString(cls, "_backward_cls"));
if (!backward_cls)
return nullptr;
THPObjectPtr ctx_obj(PyObject_CallFunctionObjArgs(backward_cls, nullptr));
if (!ctx_obj)
return nullptr;
THPFunction* ctx = (THPFunction*)ctx_obj.get();
auto cdata =
std::shared_ptr<PyNode>(new PyNode(std::move(ctx_obj)), deleteNode);
ctx->cdata = cdata;
// Record input nodes if tracing
auto* node = _trace_pre_record(cls, inputs, unpacked_input.input_vars);
// Initialize backward function (and ctx)
bool is_executable = input_info.is_executable;
cdata->set_next_edges(std::move(input_info.next_edges));
ctx->needs_input_grad = input_info.needs_input_grad.release();
ctx->is_variable_input = std::move(input_info.is_variable_input);
// Prepend ctx to input_tuple, in preparation for static method call
auto num_args = PyTuple_GET_SIZE(inputs);
THPObjectPtr ctx_input_tuple(PyTuple_New(num_args + 1));
if (!ctx_input_tuple)
return nullptr;
Py_INCREF(ctx);
PyTuple_SET_ITEM(ctx_input_tuple.get(), 0, (PyObject*)ctx);
for (const auto i : c10::irange(num_args)) {
PyObject* arg = PyTuple_GET_ITEM(unpacked_input.input_tuple.get(), i);
Py_INCREF(arg);
PyTuple_SET_ITEM(ctx_input_tuple.get(), i + 1, arg);
}
// Call forward
THPObjectPtr tensor_outputs;
{
AutoGradMode grad_mode(false);
at::AutoFwGradMode fw_grad_mode(false);
THPObjectPtr forward_fn(PyObject_GetAttrString(cls, "forward"));
if (!forward_fn)
return nullptr;
tensor_outputs = PyObject_CallObject(forward_fn, ctx_input_tuple);
if (!tensor_outputs)
return nullptr;
}
return process_outputs(
cls,
cdata,
ctx,
unpacked_input,
inputs,
std::move(tensor_outputs),
is_executable,
node);
END_HANDLE_TH_ERRORS
}
////////////////////////////////////////////////////////////////////////////////
// Other methods / attributes
////////////////////////////////////////////////////////////////////////////////
PyObject* THPFunction__register_hook_dict(PyObject* _self, PyObject* _var) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPVariable_Check(_var), "_register_hook_dict expected a Tensor");
THPVariable* var = reinterpret_cast<THPVariable*>(_var);
const auto& tensor = THPVariable_Unpack(var);
std::unique_ptr<FunctionPreHook> hook(
new PyFunctionTensorPreHook(var->backward_hooks, tensor.output_nr()));
auto self = (THPFunction*)_self;
auto cdata = self->cdata.lock();
TORCH_CHECK(
cdata,
"Attribute '_register_hook_dict' is invalid for this instance of _C._FunctionBase. "
"Accessing this attribute directly on an instance of autograd.Function is a legacy "
"access pattern that is no longer supported. For examples on how to use new-style "
"autograd functions, see "
"https://pytorch.org/docs/stable/autograd.html#torch.autograd.Function ");
cdata->add_pre_hook(std::move(hook));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THPFunction_register_hook(PyObject* _self, PyObject* hook) {
HANDLE_TH_ERRORS
auto self = (THPFunction*)_self;
auto cdata = self->cdata.lock();
TORCH_CHECK(
cdata,
"Attribute 'register_hook' is invalid for this instance of _C._FunctionBase. "
"Accessing this attribute directly on an instance of autograd.Function is a legacy "
"access pattern that is no longer supported. For examples on how to use new-style "
"autograd functions, see "
"https://pytorch.org/docs/stable/autograd.html#torch.autograd.Function ");
return torch::autograd::registerFunctionHook(*cdata, hook);
END_HANDLE_TH_ERRORS
}
PyObject* THPFunction_register_prehook(PyObject* _self, PyObject* hook) {
HANDLE_TH_ERRORS
auto self = (THPFunction*)_self;
auto cdata = self->cdata.lock();
TORCH_CHECK(
cdata,
"Attribute 'register_prehook' is invalid for this instance of _C._FunctionBase. "
"Accessing this attribute directly on an instance of autograd.Function is a legacy "
"access pattern that is no longer supported. For examples on how to use new-style "
"autograd functions, see "
"https://pytorch.org/docs/stable/autograd.html#torch.autograd.Function ");
return torch::autograd::registerFunctionPreHook(*cdata, hook);
END_HANDLE_TH_ERRORS
}
int THPFunction_set_materialize_grads(
THPFunction* self,
PyObject* value,
void* unused) {
HANDLE_TH_ERRORS
if (!PyBool_Check(value)) {
THPUtils_invalidArguments(
value, nullptr, "set_materialize_grads", 1, "(bool)");
return -1;
}
self->materialize_grads = (value == Py_True);
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
static PyObject* unpack_saved_variables(
THPFunction* self,
const std::function<PyObject*(const Variable&)>& unpack_fn) {
THPUtils_assert(!self->has_freed_buffers, ERR_BACKWARD_TWICE);
auto& saved_variables = self->saved_variables;
if (saved_variables.empty())
return PyTuple_New(0);
int num_saved = saved_variables.size();
THPObjectPtr saved(PyTuple_New(num_saved));
if (!saved)
return nullptr;
auto saved_for = self->cdata.lock();
// This is really a true assert, because we've already tested for the
// self->has_freed_buffers case at the beginning of this function:
// buffers are freed when PyNode dies; if the buffers are not freed,
// PyNode must be live. (Note that the buffers could be freed
// even though the PyNode is live, but that doesn't matter here
// because we will never hit this line of code if the buffers are freed--
// and in any case saved_for will be non-NULL.)
TORCH_INTERNAL_ASSERT(saved_for);
for (const auto i : c10::irange(num_saved)) {
auto unpacked_var = saved_variables[i].unpack(saved_for);
THPObjectPtr value;
if (!unpacked_var.defined()) {
Py_INCREF(Py_None);
value = Py_None;
} else {
value = unpack_fn(unpacked_var);
}
PyTuple_SET_ITEM(saved.get(), i, value.release());
}
return saved.release();
}
PyObject* THPFunction_saved_tensors(THPFunction* self, void* _unused) {
HANDLE_TH_ERRORS
if (self->saved_for_forward) {
Py_INCREF(self->saved_for_forward);
return self->saved_for_forward;
} else {
return unpack_saved_variables(
self, [](const Variable& var) { return THPVariable_Wrap(var); });
}
END_HANDLE_TH_ERRORS
}
PyObject* THPFunction_saved_variables(THPFunction* self, void* _unused) {
HANDLE_TH_ERRORS
auto r = PyErr_WarnEx(
PyExc_DeprecationWarning,
"'saved_variables' is deprecated; use 'saved_tensors'",
0);
if (r != 0)
throw python_error();
return unpack_saved_variables(
self, [](const Variable& var) { return THPVariable_Wrap(var); });
END_HANDLE_TH_ERRORS
}
PyObject* THPFunction_raw_saved_tensors(THPFunction* self, void* _unused) {
HANDLE_TH_ERRORS
// User tries to access saved variables after they have been freed
THPUtils_assert(!self->has_freed_buffers, ERR_BACKWARD_TWICE);
const auto& saved_variables = self->saved_variables;
if (saved_variables.empty())
return PyTuple_New(0);
size_t num_saved = saved_variables.size();
THPObjectPtr saved(PyTuple_New(num_saved));
if (!saved) {
return nullptr;
}
for (const auto i : c10::irange(num_saved)) {
py::object obj =
py::cast(saved_variables[i], py::return_value_policy::reference);
PyTuple_SET_ITEM(saved.get(), i, obj.release().ptr());
}
return saved.release();
END_HANDLE_TH_ERRORS
}
PyObject* THPFunction_next_functions(THPFunction* self, void* _unused) {
HANDLE_TH_ERRORS
auto cdata = self->cdata.lock();
TORCH_CHECK(
cdata,
"Attribute 'next_functions' is invalid for this instance of _C._FunctionBase. "
"Accessing this attribute directly on an instance of autograd.Function is a legacy "
"access pattern that is no longer supported. For examples on how to use new-style "
"autograd functions, see "
"https://pytorch.org/docs/stable/autograd.html#torch.autograd.Function ");
const auto num_outputs = cdata->num_outputs();
THPObjectPtr result(PyTuple_New(num_outputs));
if (!result)
return nullptr;
for (const auto i : c10::irange(num_outputs)) {
THPObjectPtr fn_tuple(PyTuple_New(2));
if (!fn_tuple)
return nullptr;
const auto& edge = cdata->next_edge(i);
PyObject* fn = functionToPyObject(edge.function);
if (!fn)
return nullptr;
PyTuple_SET_ITEM(fn_tuple.get(), 0, fn);
PyTuple_SET_ITEM(fn_tuple.get(), 1, THPUtils_packInt64(edge.input_nr));
PyTuple_SET_ITEM(result.get(), i, fn_tuple.release());
}
return result.release();
END_HANDLE_TH_ERRORS
}
PyObject* THPFunction_metadata(THPFunction* self, void* _unused) {
HANDLE_TH_ERRORS
auto cdata = self->cdata.lock();
// The correct way to solve this problem is to stop exposing grad_fn
// of PyFunctions as THPFunction; instead, we should use THPCppFunction
// like everyone else. But this is a BC-breaking change as it would
// mean that you no longer get the property that grad_fn is a subclass
// of the autograd function class that you defined in the custom case,
// so I didn't fix it here.
TORCH_CHECK(
cdata,
"You attempted to access the anomaly metadata of a custom autograd function "
"but the underlying PyNode has already been deallocated. The most likely "
"reason this occurred is because you assigned x.grad_fn to a local variable "
"and then let the original variable get deallocated. Don't do that! If "
"you really have no way of restructuring your code so this is the case, "
"please file an issue reporting that you are affected by this.");
auto metadata = static_cast<PyAnomalyMetadata*>(cdata->metadata())->dict();
Py_INCREF(metadata);
return metadata;
END_HANDLE_TH_ERRORS
}
typedef PyObject* (*getter)(PyObject*, void*);
typedef int (*setter)(PyObject*, PyObject*, void*);
namespace {
template <PyObject* THPFunction::*ptr>
PyObject* getObject(PyObject* obj, void* _unused) {
auto self = (THPFunction*)obj;
PyObject* value = self->*ptr;
if (!value) {
Py_RETURN_NONE;
}
Py_INCREF(value);
return value;
}
template <PyObject* THPFunction::*ptr>
int setObject(PyObject* obj, PyObject* value, void* _unused) {
auto self = (THPFunction*)obj;
if (value == Py_None) {
value = nullptr;
}
Py_XDECREF((self->*ptr));
Py_XINCREF(value);
self->*ptr = value;
return 0;
}
template <typename M, M THPFunction::*ptr, PyObject* (*Convert)(long)>
PyObject* getMember(PyObject* obj, void* _unused) {
auto self = (THPFunction*)obj;
return Convert(self->*ptr);
}
template <typename M, M autograd::Node::*ptr, PyObject* (*Convert)(long)>
PyObject* getImplMember(PyObject* obj, void* _unused) {
auto self = (THPFunction*)obj;
return Convert(self->cdata.*ptr);
}
PyObject* getRequiresGrad(PyObject* obj, void* _unused) {
Py_RETURN_TRUE;
}
} // namespace
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
static struct PyGetSetDef THPFunction_properties[] = {
{"saved_tensors",
(getter)THPFunction_saved_tensors,
nullptr,
nullptr,
nullptr},
{"saved_variables",
(getter)THPFunction_saved_variables,
nullptr,
nullptr,
nullptr},
{"_raw_saved_tensors",
(getter)THPFunction_raw_saved_tensors,
nullptr,
nullptr,
nullptr},
{"next_functions",
(getter)THPFunction_next_functions,
nullptr,
nullptr,
nullptr},
{"to_save",
&getObject<&THPFunction::to_save>,
&setObject<&THPFunction::to_save>,
nullptr,
nullptr},
{"non_differentiable",
&getObject<&THPFunction::non_differentiable>,
&setObject<&THPFunction::non_differentiable>,
nullptr,
nullptr},
{"dirty_tensors",
&getObject<&THPFunction::dirty_tensors>,
&setObject<&THPFunction::dirty_tensors>,
nullptr,
nullptr},
{"saved_for_forward",
&getObject<&THPFunction::saved_for_forward>,
&setObject<&THPFunction::saved_for_forward>,
nullptr,
nullptr},
{"needs_input_grad",
&getObject<&THPFunction::needs_input_grad>,
nullptr,
nullptr,
nullptr},
{"requires_grad", getRequiresGrad, nullptr, nullptr, nullptr},
{"metadata", (getter)THPFunction_metadata, nullptr, nullptr, nullptr},
{"materialize_grads",
nullptr,
(setter)THPFunction_set_materialize_grads,
nullptr,
nullptr},
{nullptr}};
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
static struct PyMethodDef THPFunction_methods[] = {
{(char*)"name", THPFunction_name, METH_NOARGS, nullptr},
{(char*)"maybe_clear_saved_tensors",
THPFunction_maybe_clear_saved_tensors,
METH_NOARGS,
nullptr},
{(char*)"apply", THPFunction_apply, METH_CLASS | METH_VARARGS, nullptr},
{(char*)"_register_hook_dict",
THPFunction__register_hook_dict,
METH_O,
nullptr},
{(char*)"register_hook", THPFunction_register_hook, METH_O, nullptr},
{(char*)"register_prehook", THPFunction_register_prehook, METH_O, nullptr},
{nullptr}};
PyTypeObject THPFunctionType = {
PyVarObject_HEAD_INIT(nullptr, 0) "torch._C._FunctionBase", /* tp_name */
sizeof(THPFunction), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)THPFunction_dealloc, /* tp_dealloc */
0, /* tp_vectorcall_offset */
nullptr, /* tp_getattr */
nullptr, /* tp_setattr */
nullptr, /* tp_reserved */
nullptr, /* tp_repr */
nullptr, /* tp_as_number */
nullptr, /* tp_as_sequence */
nullptr, /* tp_as_mapping */
nullptr, /* tp_hash */
nullptr, /* tp_call */
nullptr, /* tp_str */
nullptr, /* tp_getattro */
nullptr, /* tp_setattro */
nullptr, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
Py_TPFLAGS_HAVE_GC, /* tp_flags */
nullptr, /* tp_doc */
(traverseproc)THPFunction_traverse, /* tp_traverse */
(inquiry)THPFunction_clear, /* tp_clear */
nullptr, /* tp_richcompare */
0, /* tp_weaklistoffset */
nullptr, /* tp_iter */
nullptr, /* tp_iternext */
THPFunction_methods, /* tp_methods */
nullptr, /* tp_members */
THPFunction_properties, /* tp_getset */
nullptr, /* tp_base */
nullptr, /* tp_dict */
nullptr, /* tp_descr_get */
nullptr, /* tp_descr_set */
0, /* tp_dictoffset */
nullptr, /* tp_init */
nullptr, /* tp_alloc */
THPFunction_new /* tp_new */
};
bool THPFunction_initModule(PyObject* module) {
if (PyType_Ready(&THPFunctionType) < 0)
return false;
Py_INCREF(&THPFunctionType);
PyModule_AddObject(module, "_FunctionBase", (PyObject*)&THPFunctionType);
return true;
}
|