File: python_variable.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (2736 lines) | stat: -rw-r--r-- 95,804 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
#include <ATen/NamedTensorUtils.h>
#include <ATen/core/PythonFallbackKernel.h>
#include <c10/core/DeviceType.h>
#include <c10/core/SafePyObject.h>
#include <c10/core/impl/GPUTrace.h>
#include <c10/core/impl/PythonDispatcherTLS.h>
#include <c10/util/DeadlockDetection.h>
#include <c10/util/irange.h>
#include <pybind11/pytypes.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Size.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/Types.h>
#include <torch/csrc/autograd/autograd.h>
#include <torch/csrc/autograd/edge.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/functions/accumulate_grad.h>
#include <torch/csrc/autograd/generated/VariableType.h>
#include <torch/csrc/autograd/python_cpp_function.h>
#include <torch/csrc/autograd/python_hook.h>
#include <torch/csrc/autograd/python_variable_indexing.h>
#include <torch/csrc/autograd/utils/error_messages.h>
#include <torch/csrc/autograd/utils/wrap_outputs.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/tensor/python_tensor.h>
#include <torch/csrc/utils/cuda_lazy_init.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/pycfunction_helpers.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/tensor_memoryformats.h>
#include <torch/csrc/utils/tensor_new.h>

#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/utils/torch_dispatch_mode.h>
#include <torch/library.h>

#include <ATen/ATen.h>

#include <c10/core/SymIntArrayRef.h>
#include <structmember.h>
#include <cstdint>
#include <iostream>
#include <memory>
#include <utility>
#include <vector>

using namespace at;
using namespace torch;
using namespace torch::autograd;

std::pair<py::object, py::dict> parseIValuesToPyArgsKwargs(
    const c10::OperatorHandle& op,
    const std::vector<c10::IValue>& arguments) {
  TORCH_CHECK(
      PyGILState_Check(),
      "GIL must be held before you call parseIValuesToPyArgsKwargs");
  const auto& schema = op.schema();
  py::dict kwargs;
  // About all the pointers:
  //
  // f(int x, int y = 0, *, int z = 0)
  //                                  ^- arguments.size()
  //                        ^- kwarg_only_start
  //          ^- positional_default_start
  //   ^- 0

  // Find the split point between kwarg-only and regular.  Since most functions
  // don't have kwarg-only arguments, it is more efficient to scan from the
  // right (but ideally, this would just be precomputed in FunctionSchema
  // itself).  (NB: minus one in the loop is because we're testing if the
  // *next* argument is kwarg-only before we advance the starting index)
  int64_t kwarg_only_start = arguments.size();
  for (; kwarg_only_start > 0; kwarg_only_start--) {
    const auto& arg = schema.arguments()[kwarg_only_start - 1];
    if (!arg.kwarg_only()) {
      break;
    }
  }

  // Find the first positional argument that isn't defaulted
  auto is_default = [&](int64_t idx) -> bool {
    const auto& arg = schema.arguments()[idx];
    if (!arg.default_value().has_value()) {
      return false;
    }
    const auto& default_ivalue = *arg.default_value();
    const auto& ivalue = arguments[idx];
    if (default_ivalue != ivalue) {
      return false;
    }
    return true;
  };

  int64_t positional_default_start = kwarg_only_start;
  for (; positional_default_start > 0; positional_default_start--) {
    if (!is_default(positional_default_start - 1)) {
      break;
    }
  }

  auto args =
      py::reinterpret_steal<py::object>(PyTuple_New(positional_default_start));

  auto schemaAwareToPyObject = [&](int64_t idx) -> py::object {
    const auto& arg = schema.arguments()[idx];
    auto match = [&](c10::TypeKind kind) {
      const auto& t = arg.real_type();
      if (t->kind() == kind)
        return true;
      if (auto opt_t = t->cast<c10::OptionalType>()) {
        if (opt_t->getElementType()->kind() == kind)
          return true;
      }
      return false;
    };
    if (arguments[idx].isNone()) {
      return py::none();
    } else if (match(c10::ScalarTypeType::Kind)) {
      auto* obj =
          getTHPDtype(static_cast<c10::ScalarType>(arguments[idx].toInt()));
      return py::reinterpret_borrow<py::object>(
          reinterpret_cast<PyObject*>(obj));
    } else if (match(c10::LayoutType::Kind)) {
      auto* obj =
          getTHPLayout(static_cast<c10::Layout>(arguments[idx].toInt()));
      return py::reinterpret_borrow<py::object>(
          reinterpret_cast<PyObject*>(obj));
    } else if (match(c10::MemoryFormatType::Kind)) {
      return py::cast(static_cast<c10::MemoryFormat>(arguments[idx].toInt()));
    } else {
      return torch::jit::toPyObject(arguments[idx]);
    }
  };

  // Populate positional arguments
  for (const auto idx : c10::irange(positional_default_start)) {
    PyTuple_SET_ITEM(
        args.ptr(), idx, schemaAwareToPyObject(idx).release().ptr());
  }

  // Populate keyword arguments
  for (const auto idx : c10::irange(kwarg_only_start, arguments.size())) {
    // But don't populate default keyword arguments
    if (is_default(idx))
      continue;
    const auto& arg = schema.arguments()[idx];
    kwargs[py::cast(arg.name())] = schemaAwareToPyObject(idx);
  }
  return std::make_pair(std::move(args), std::move(kwargs));
}

void pushPyOutToStack(
    const c10::OperatorHandle& op,
    torch::jit::Stack* stack,
    py::object out,
    const char* msg) {
  TORCH_CHECK(
      PyGILState_Check(), "GIL must be held before you call pushPyOutToStack");
  auto schema_returns = op.schema().returns();
  const auto num_returns = schema_returns.size();
  if (num_returns == 0) {
    // Check that we got a None return from Python. Anything else is an error.
    TORCH_CHECK(
        out.is(py::none()),
        "Expected ",
        msg,
        " for ",
        op.operator_name(),
        " to return None but it returned something else instead.");
  } else if (num_returns == 1) {
    torch::jit::push(
        stack, torch::jit::toIValue(out.ptr(), schema_returns[0].type()));
  } else {
    auto outs = py::cast<py::sequence>(out);
    for (const auto idx : c10::irange(outs.size())) {
      torch::jit::push(
          stack,
          torch::jit::toIValue(outs[idx].ptr(), schema_returns[idx].type()));
    }
  }
}

namespace {

template <const char* func_name, typename... Ts>
void concrete_trace_cuda(Ts... args) {
  pybind11::gil_scoped_acquire gil;
  at::impl::MaybeSetTLSOnEntryGuard guard;

  if (Py_IsInitialized()) {
    try {
      py::module mod = py::module::import("torch.utils._cuda_trace");
      py::object hook = mod.attr(func_name).attr("fire_callbacks");
      hook(args...);
    } catch (const std::exception& e) {
      LOG(ERROR) << "CUDA trace hook execution failed: " << e.what();
    }
  }
}

static constexpr char trace_cuda_event_creation_fn_name[] =
    "CUDAEventCreationCallbacks";
static constexpr char trace_cuda_event_deletion_fn_name[] =
    "CUDAEventDeletionCallbacks";
static constexpr char trace_cuda_event_record_fn_name[] =
    "CUDAEventRecordCallbacks";
static constexpr char trace_cuda_event_wait_fn_name[] =
    "CUDAEventWaitCallbacks";
static constexpr char trace_cuda_memory_allocation_fn_name[] =
    "CUDAMemoryAllocationCallbacks";
static constexpr char trace_cuda_memory_deallocation_fn_name[] =
    "CUDAMemoryDeallocationCallbacks";
static constexpr char trace_cuda_stream_creation_fn_name[] =
    "CUDAStreamCreationCallbacks";
static constexpr char trace_cuda_device_synchronization_fn_name[] =
    "CUDADeviceSynchronizationCallbacks";
static constexpr char trace_cuda_stream_synchronization_fn_name[] =
    "CUDAStreamSynchronizationCallbacks";
static constexpr char trace_cuda_event_synchronization_fn_name[] =
    "CUDAEventSynchronizationCallbacks";

struct ConcretePyInterpreterVTable final
    : public c10::impl::PyInterpreterVTable {
  std::string name() const override;

  void decref(PyObject* pyobj, bool is_tensor) const override;

  c10::intrusive_ptr<TensorImpl> detach(const TensorImpl* self) const override;

  void dispatch(const c10::OperatorHandle& op, torch::jit::Stack* stack)
      const override;
  void python_dispatcher(
      const c10::OperatorHandle& op,
      c10::DispatchKeySet,
      torch::jit::Stack* stack) const override;

  bool is_contiguous(const TensorImpl* self, at::MemoryFormat) const override;
  bool is_strides_like(const TensorImpl* self, at::MemoryFormat) const override;
  bool is_non_overlapping_and_dense(const TensorImpl* self) const override;
  c10::Device device(const TensorImpl* self) const override;
  int64_t dim(const TensorImpl* self) const override;
  c10::IntArrayRef strides(const TensorImpl* self) const override;
  c10::IntArrayRef sizes(const TensorImpl* self) const override;
  c10::SymIntArrayRef sym_sizes(const TensorImpl* self) const override;
  c10::Layout layout(const TensorImpl* self) const override;
  c10::SymInt sym_numel(const TensorImpl* self) const override;
  c10::SymIntArrayRef sym_strides(const TensorImpl* self) const override;
  c10::SymInt sym_storage_offset(const TensorImpl* self) const override;

  void trace_gpu_event_creation(uintptr_t event) const override {
    concrete_trace_cuda<trace_cuda_event_creation_fn_name>(event);
  }
  void trace_gpu_event_deletion(uintptr_t event) const override {
    concrete_trace_cuda<trace_cuda_event_deletion_fn_name>(event);
  }
  void trace_gpu_event_record(uintptr_t event, uintptr_t stream)
      const override {
    concrete_trace_cuda<trace_cuda_event_record_fn_name>(event, stream);
  }
  void trace_gpu_event_wait(uintptr_t event, uintptr_t stream) const override {
    concrete_trace_cuda<trace_cuda_event_wait_fn_name>(event, stream);
  }
  void trace_gpu_memory_allocation(uintptr_t ptr) const override {
    concrete_trace_cuda<trace_cuda_memory_allocation_fn_name>(ptr);
  }
  void trace_gpu_memory_deallocation(uintptr_t ptr) const override {
    concrete_trace_cuda<trace_cuda_memory_deallocation_fn_name>(ptr);
  }
  void trace_gpu_stream_creation(uintptr_t stream) const override {
    concrete_trace_cuda<trace_cuda_stream_creation_fn_name>(stream);
  }
  void trace_gpu_device_synchronization() const override {
    concrete_trace_cuda<trace_cuda_device_synchronization_fn_name>();
  }
  void trace_gpu_stream_synchronization(uintptr_t stream) const override {
    concrete_trace_cuda<trace_cuda_stream_synchronization_fn_name>(stream);
  }
  void trace_gpu_event_synchronization(uintptr_t event) const override {
    concrete_trace_cuda<trace_cuda_event_synchronization_fn_name>(event);
  }

  static ConcretePyInterpreterVTable* instance() {
    static ConcretePyInterpreterVTable s;
    return &s;
  }
};

// NOTE [PyInterpreter::decref takes an `is_tensor` arg]
// Before calling PyInterpreter::decref, we must statically know if the
// pyobj is a Tensor or not.
// - If it is a tensor, we need to be careful about PyObject resurrection
// - If it is not a tensor, we can freely decref
// One alternative to this is using PyObject_IsInstance
// to get at this information. However, we don't want to risk an incorrect
// `__instancecheck__` changing the semantics here.
void ConcretePyInterpreterVTable::decref(PyObject* pyobj, bool is_tensor)
    const {
  // Leak the pyobj if not initialized.  This can happen if we are running
  // exit handlers that are destructing tensors with residual (owned)
  // PyObjects stored in them.
  if (!Py_IsInitialized())
    return;

  pybind11::gil_scoped_acquire gil;
  // Two possibilities:
  // 1. We are decref-ing a tensor. Then we must be careful about
  // PyObject resurrection (this only applies to Tensors, see
  // THPVariable_clear).
  // 2. We are decref-ing some other Python object. We don't do
  // PyObject resurrection on non-Tensors, so we just carry on as usual
  if (is_tensor && Py_REFCNT(pyobj) > 1) {
    // It's still alive!  This can happen if a weak ref resurrected
    // the PyObject without flipping ownership.  At this point it is
    // too late to rescue the object, so just stub out the PyObject
    // so that it fails on subsequent uses.  Don't raise an error here;
    // you're probably in a destructor.
    TORCH_WARN(
        "Deallocating Tensor that still has live PyObject references.  "
        "This probably happened because you took out a weak reference to "
        "Tensor and didn't call _fix_weakref() after dereferencing it.  "
        "Subsequent accesses to this tensor via the PyObject will now fail.");
    ((THPVariable*)pyobj)->cdata = MaybeOwned<Variable>();
  }
  Py_DECREF(pyobj);
};

class PyInterpreterHolder {
 public:
  PyInterpreterHolder()
      : impl_(new c10::impl::PyInterpreter(
            ConcretePyInterpreterVTable::instance())) {}
  // NB: intentionally leaks the PyInterpreter, as there may still be
  // references to it that are live, living in objects that aren't being
  // destructed while Python is being cleaned up.
  ~PyInterpreterHolder() {
    impl_->disarm();
  }
  c10::impl::PyInterpreter* get() const noexcept {
    return impl_;
  }

 private:
  c10::impl::PyInterpreter* impl_;
};
PyInterpreterHolder self_interpreter;

c10::TensorImpl::SizesStridesPolicy parseSizesStridesPolicyArgument(
    c10::string_view arg) {
  if (arg == "strides") {
    return c10::TensorImpl::SizesStridesPolicy::CustomStrides;
  }

  if (arg == "sizes") {
    return c10::TensorImpl::SizesStridesPolicy::CustomSizes;
  }

  TORCH_CHECK_VALUE(
      false,
      "Unknown sizes_strides_policy: ",
      arg,
      "; expected 'strides' or 'sizes'");
}
} // anonymous namespace

c10::impl::PyInterpreter* getPyInterpreter() {
  return self_interpreter.get();
}

std::string ConcretePyInterpreterVTable::name() const {
  std::stringstream ss;
  ss << getPyInterpreter();
  return ss.str();
}

PyObject* THPVariableClass = nullptr;

PyObject* ParameterClass = nullptr;

static PyObject* THPVariable_NewWithVar(
    PyTypeObject* type,
    Variable _var,
    c10::impl::PyInterpreterStatus status);

// clang-tidy gets confused by static const
static const char* VOLATILE_WARNING =
    "volatile was removed and now has no effect. Use "
    "`with torch.no_grad():` instead.";

static bool check_has_torch_dispatch(PyObject* obj) {
  PyTypeObject* tp = Py_TYPE(obj);
  if (THPVariable_CheckTypeExact(tp)) {
    return false;
  }
  py::object attr = PyObject_FastGetAttrString(obj, "__torch_dispatch__");
  return (
      attr.ptr() != nullptr &&
      attr.ptr() != torch::disabled_torch_dispatch_impl());
}

// NOLINTNEXTLINE
static PyObject* device_to_py_class_[static_cast<size_t>(
    c10::DeviceType::COMPILE_TIME_MAX_DEVICE_TYPES)];

void registerPythonTensorClass(
    const std::string& device,
    PyObject* python_tensor_class) {
  c10::Device dev(device);

  TORCH_CHECK(
      dev.type() == kXLA, "Only the python class for XLA can be overriden");
  if (device_to_py_class_[static_cast<size_t>(dev.type())] != nullptr) {
    TORCH_WARN(
        "Overriding a previously registered python class for ", dev.str());
  }

  device_to_py_class_[static_cast<size_t>(dev.type())] = python_tensor_class;
}

static PyObject* getPythonTensorClass(c10::Device d) {
  return device_to_py_class_[static_cast<size_t>(d.type())];
}

void activateCUDATrace() {
  c10::impl::GPUTrace::set_trace(self_interpreter.get());
}

// TODO: Make this take Variable by const reference
PyObject* THPVariable_Wrap(at::TensorBase var) {
  if (!var.defined()) {
    Py_RETURN_NONE;
  }

  c10::optional<PyObject*> mb_obj =
      var.unsafeGetTensorImpl()->check_pyobj(self_interpreter.get());
  c10::impl::PyInterpreterStatus status;
  if (mb_obj.has_value()) {
    auto obj = *mb_obj;
    if (obj) {
      if (var.unsafeGetTensorImpl()->owns_pyobj()) {
        // C++ owns the Python object; this implies there weren't any other
        // owning references to the Python object.  Since we're making the
        // object "live" again on Python side, let's flip back the ownership
        // (Python owns C++) as it would now be unsound to deallocate the C++
        // object if all C++ references go to zero
        var.unsafeGetTensorImpl()->set_owns_pyobj(false);
        reinterpret_cast<THPVariable*>(obj)->cdata =
            MaybeOwned<Variable>::owned(std::move(var));
        // NB: incref is not necessary, because we are "stealing" the previous
        // ownership from the Variable to return it here for the wrap
        return obj;
      }
      Py_INCREF(obj);
      return obj;
    }
    // TODO: a better invariant is that if we tagged, we MUST have a valid
    // PyObject.  That's PyObject preservation
    // (https://github.com/pytorch/pytorch/pull/56017).  Prior to this PR
    // being a thing, the PyObject field will get cleared when all references
    // to the Python object are removed.
    status = c10::impl::PyInterpreterStatus::TAGGED_BY_US;
  } else {
    // Assumption: if a Tensor has been shared across threads, this induces
    // a refcount bump.  Therefore, if the use count 1, we are the sole thread
    // with access to this tensor and no race is possible.
    if (var.use_count() <= 1) {
      status = c10::impl::PyInterpreterStatus::DEFINITELY_UNINITIALIZED;
    } else {
      status = c10::impl::PyInterpreterStatus::MAYBE_UNINITIALIZED;
    }
  }

  if (C10_LIKELY(var.device().type() != c10::kXLA)) {
    return THPVariable_NewWithVar(
        (PyTypeObject*)THPVariableClass, std::move(var), status);
  }

  if (auto clazz = getPythonTensorClass(var.device())) {
    return THPVariable_NewWithVar((PyTypeObject*)clazz, std::move(var), status);
  }

  return THPVariable_NewWithVar(
      (PyTypeObject*)THPVariableClass, std::move(var), status);
}

bool isResurrectable(THPVariable* self) {
  // We want to divide this check into 2 cases.

  // 1. C++ owns PyObject (in this case, self->cdata.unsafeIsBorrowed() is
  // true). You might think that in this case, it is impossible for tp_clear to
  // be called: surely the C++ reference to the PyObject is keeping it live? And
  // you'd be right! In fact, when C++ owns the PyObject, we have an invariant
  // that the refcount on the PyObject should be precisely one (because if you
  // take out another reference to the PyObject, we're supposed to flip the
  // ownership pointer back). In reality, you can violate this invariant
  // temporarily with weak references, so we don't test for it in asserts.

  // 2. PyObject owns C++ (in this case, self->cdata.unsafeIsBorrowed() is
  // false). In this case, tp_clear can get called if the PyObject is referenced
  // from a dead cycle, and nowhere else. But if resurrection did not occur,
  // then the reference to C++ from the PyObject must be the ONLY reference to
  // the C++ object.
  if (self->cdata.unsafeIsBorrowed()) {
    return false;
  }
  auto const& tensor = THPVariable_Unpack(self);
  if (!tensor.defined() || tensor.use_count() <= 1) {
    return false;
  }
  return true;
}

// returns true if successfully rezzed; if so, cancel the
// rest of deallocation
static bool THPVariable_tryResurrect(THPVariable* self) {
  const auto& tensor = THPVariable_Unpack(self);

  if (!isResurrectable(self)) {
    return false;
  }

  // At this point, we are definitely going to resurrect the tensor. So, the
  // tensor better be defined :)
  TORCH_INTERNAL_ASSERT(tensor.defined());

  // There are other C++ owners of the tensor.  Flip ownership
  // so that C++ owns this Python object, and cancel deallocation.
  TORCH_INTERNAL_ASSERT(!tensor.unsafeGetTensorImpl()->owns_pyobj());

  tensor.unsafeGetTensorImpl()->set_owns_pyobj(true);

// Resurrect the Python object.  This is something CPython does
// internally occasionally, see
// https://github.com/python/cpython/blob/b98eba5bc2ffbe7a0ed49d540ebc4f756ae61985/Objects/object.c#L248-L259
// so we just copy the pattern here.  Note that we don't have to worry
// about saving and restoring the refcount (as the quoted code does)
// because we actually DO need to reset the refcount to one here, we
// can't assume that some other code has taken care of it.
// NB: this will overreport _Py_RefTotal but based on inspection of object.c
// there is no way to avoid this
#ifdef Py_TRACE_REFS
  _Py_AddToAllObjects(reinterpret_cast<PyObject*>(self), 1);
#endif
  Py_INCREF(self);

  // Flip THPVariable to be non-owning
  // (near use-after-free miss here: fresh MaybeOwned is created breaking
  // reference on Tensor in struct BEFORE we overwrite the old one)
  self->cdata = MaybeOwned<Variable>::borrowed(tensor);

  // NB: At this point, tensor *could* be dead (e.g., some other C++ thread
  // decrefed it.)  At this point, it is probably waiting on the GIL to
  // deallocate the Python object and will kill self, BUT NOT YET.

  return true;
}

static int THPVariable_clear(THPVariable* self) {
  // Is it OK for an object to still be live after running
  // tp_clear? Yes. When Python is breaking reference cycles, it can't assume
  // that an object will dealloc after it's cleared.  The source code explicitly
  // handles this case:
  // https://github.com/python/cpython/blob/4e661cd69164318c1f871faa476c68a04092ddc4/Modules/gcmodule.c#L1010-L1025

  // Note that we don't need to actually resurrect here. There are 2 cases:
  // 1. The PyObject is not part of a reference cycle. In this case, we don't
  // need to do anything. The GC will move on to try and break the reference
  // cycle on another object, which will eventually trigger tp_dealloc (and thus
  // resurrection).

  // 2. The PyObject is part of a reference cycle. This case should not actually
  // be possible, due to the logic in our tp_traverse
  // (THPVariable_subclass_traverse).

  // In fact, resurrecting here breaks the invariant that "C++ owns Python only
  // when PyObject's refcount would otherwise be 0". Most immediately, as we're
  // merely breaking reference cycles here, there can be other references to the
  // PyObject. *However*, if other objects in the refcycle resurrect, then we
  // will be in a state where the PyObject has multiple Python references, yet
  // C++ owns the PyObject.

  // See https://github.com/pytorch/pytorch/pull/75933 for more discussion.
  if (isResurrectable((THPVariable*)self)) {
    return 0;
  }
  Py_CLEAR(self->backward_hooks);
  const auto& tensor = THPVariable_Unpack(self);
  if (tensor.defined()) {
    // Two situations to consider:
    //    PyObject -owns-> Tensor
    //        unsafeIsBorrowed() is FALSE.  We're obligated to look through
    //        Tensor to break references.  Clearing cdata must induce the
    //        destruction of the C++ Tensor.  If there were other references
    //        to C++ tensor, the Python object would have been resurrected
    //        by flipping the ownership.
    //    Tensor -owns-> PyObject
    //        unsafeIsBorrowed() is TRUE.  We're deallocating the PyObject
    //        because Tensor asked us to (it's already destructing).

    if (!self->cdata.unsafeIsBorrowed()) {
      // TODO: empirically, on OS X this assert appears to be untrue
      // In test_py_tensors_multi_async_call - ProcessGroupRpcTestWithSpawn
      // distributed/rpc/test_process_group_agent.py
      //
      //  libc++abi.dylib: terminating with uncaught exception of type
      //  c10::Error: !tensor.unsafeGetTensorImpl()->owns_pyobj()INTERNAL ASSERT
      //  FAILED at "../torch/csrc/autograd/python_variable.cpp":171, please
      //  report a bug to PyTorch. Exception raised from THPVariable_clear at
      //  ../torch/csrc/autograd/python_variable.cpp:171 (most recent call
      //  first): frame #0: c10::Error::Error(c10::SourceLocation,
      //  std::__1::basic_string<char, std::__1::char_traits<char>,
      //  std::__1::allocator<char> >) + 98 (0x1158a0442 in libc10.dylib) frame
      //  #1: c10::detail::torchCheckFail(char const*, char const*, unsigned
      //  int, char const*) + 205 (0x11589ed3d in libc10.dylib) frame #2:
      //  c10::detail::torchInternalAssertFail(char const*, char const*,
      //  unsigned int, char const*, c10::detail::CompileTimeEmptyString) + 9
      //  (0x1141e3f89 in libtorch_python.dylib) frame #3:
      //  THPVariable_clear(THPVariable*) + 412 (0x1148a547c in
      //  libtorch_python.dylib) frame #4:
      //  THPVariable_subclass_dealloc(_object*) + 453 (0x1148a5035 in
      //  libtorch_python.dylib) frame #5: (anonymous
      //  namespace)::concrete_decref_fn(c10::impl::PyInterpreter const*,
      //  _object*) + 53 (0x1148a5ea5 in libtorch_python.dylib) frame #6:
      //  c10::TensorImpl::release_resources() + 182 (0x11588c4a6 in
      //  libc10.dylib) frame #7:
      //  c10::MaybeOwned<at::Tensor>::operator=(c10::MaybeOwned<at::Tensor>&&)
      //  + 91 (0x11488c11b in libtorch_python.dylib) frame #8:
      //  THPVariable_subclass_dealloc(_object*) + 607 (0x1148a50cf in
      //  libtorch_python.dylib) <omitting python frames> frame #47: start + 1
      //  (0x7fff6ffc7cc9 in libdyld.dylib) frame #48: 0x0 + 4 (0x4 in ???)
      // TORCH_INTERNAL_ASSERT(!tensor.unsafeGetTensorImpl()->owns_pyobj());
      if (auto grad_acc =
              torch::autograd::impl::try_get_grad_accumulator(tensor)) {
        grad_acc->pre_hooks().clear();
      }
    }
  }
  TORCH_INTERNAL_ASSERT(!isResurrectable((THPVariable*)self));
  {
    // MapAllocator can take significant time to release large tensors;
    // release the GIL here to avoid impacting main thread perf.
    pybind11::gil_scoped_release no_gil;
    self->cdata = MaybeOwned<Variable>();
  }
  return 0;
}

int THPFunction_traverse(THPFunction* self, visitproc visit, void* arg) {
  TORCH_INTERNAL_ASSERT(
      false, "Tensor tp_traverse function was not overriden properly");
  return 0;
}

PyObject* THPVariable_pynew(
    PyTypeObject* type,
    PyObject* args,
    PyObject* kwargs);

static PyObject* THPVariable_fix_weakref(PyObject* self, PyObject* noargs) {
  const auto& var = THPVariable_Unpack(self);
  THPVariable_Wrap(var);
  Py_RETURN_NONE;
}

// Instantiates a subclass of self with the same data.
static PyObject* THPVariable_as_subclass(
    PyObject* _self,
    PyObject* args,
    PyObject* kwargs) {
  HANDLE_TH_ERRORS
  const auto& self = THPVariable_Unpack(_self);
  static PythonArgParser parser({
      "as_subclass(PyObject* cls)",
  });
  ParsedArgs<1> parsed_args{};
  auto r = parser.parse(_self, args, kwargs, parsed_args);
  PyObject* cls = r.pyobject(0);
  if (!PyType_Check(cls)) {
    throw torch::TypeError(
        "cls must be a type (got %s)", Py_TYPE(cls)->tp_name);
  }
  return THPVariable_NewWithVar(
      (PyTypeObject*)cls,
      self.alias(),
      c10::impl::PyInterpreterStatus::DEFINITELY_UNINITIALIZED);
  END_HANDLE_TH_ERRORS
}

static PyObject* THPVariable_make_subclass(
    PyObject* _ignored,
    PyObject* args,
    PyObject* kwargs) {
  HANDLE_TH_ERRORS
  static PythonArgParser parser({
      "_make_subclass(PyObject* cls, Tensor data, bool require_grad=False, *, c10::string_view? dispatch_sizes_strides_policy=None, bool dispatch_device=False, bool dispatch_layout=False, Device? device_for_backend_keys=None)",
  });
  ParsedArgs<7> parsed_args{};
  auto r = parser.parse(args, kwargs, parsed_args);
  PyObject* cls = r.pyobject(0);
  if (!PyType_Check(cls)) {
    throw torch::TypeError(
        "cls must be a type (got %s)", Py_TYPE(cls)->tp_name);
  }
  torch_dispatch_mode::StashTorchDispatchModeGuard td_g;
  c10::impl::DisablePythonDispatcher dpd_g;
  auto data =
      r.tensor(1).detach(); // creates a fresh Tensor (DEFINITELY_UNINITIALIZED)
  // We set `data`'s `allow_tensor_metadata_change` to true here, because we
  // want to allow the following use case for backward compatibility:
  //
  // ```python
  // rnn = torch.nn.RNN(100, 100, 2)
  // # The following calls `torch._cudnn_rnn_flatten_weight(rnn._flat_weights,
  // ...)`, # which changes storage of `rnn`'s weights in-place
  // rnn.flatten_parameters()
  // ```
  data.unsafeGetTensorImpl()->set_allow_tensor_metadata_change(true);
  data.set_requires_grad(r.toBool(2));
  const auto sizes_strides_policy = r.stringViewOptional(3);
  if (sizes_strides_policy.has_value()) {
    data.unsafeGetTensorImpl()->set_python_custom_sizes_strides(
        parseSizesStridesPolicyArgument(*sizes_strides_policy));
  }
  if (r.toBool(4)) {
    data.unsafeGetTensorImpl()->set_python_custom_device(true);
  }
  if (r.toBool(5)) {
    data.unsafeGetTensorImpl()->set_python_custom_layout(true);
  }
  if (!r.isNone(6)) {
    data.unsafeGetTensorImpl()->_change_backend_component_keys(r.device(6));
  }

  return THPVariable_NewWithVar(
      (PyTypeObject*)cls,
      std::move(data),
      c10::impl::PyInterpreterStatus::DEFINITELY_UNINITIALIZED);
  END_HANDLE_TH_ERRORS
}

static PyObject* THPVariable_make_wrapper_subclass(
    PyObject*,
    PyObject* args,
    PyObject* kwargs) {
  HANDLE_TH_ERRORS
  // NB: pin_memory doesn't actually do anything
  // TODO: strides variant?
  static PythonArgParser parser({
      "_make_wrapper_subclass(PyObject* cls, IntArrayRef size, *, IntArrayRef? strides=None, "
      "int64_t? storage_offset=None, MemoryFormat? memory_format=None, ScalarType dtype=None, "
      "Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False, "
      "c10::string_view? dispatch_sizes_strides_policy=None, bool dispatch_device=False, bool dispatch_layout=False)",
      "_make_wrapper_subclass(PyObject* cls, SymIntArrayRef size, SymIntArrayRef strides, "
      "SymInt? storage_offset=None, MemoryFormat? memory_format=None, ScalarType dtype=None, "
      "Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False, "
      "c10::string_view? dispatch_sizes_strides_policy=None, bool dispatch_device=False, bool dispatch_layout=False)",
  });
  ParsedArgs<13> parsed_args{};
  auto r = parser.parse(args, kwargs, parsed_args);
  PyObject* cls = r.pyobject(0);

  TORCH_CHECK_TYPE(
      PyType_Check(cls),
      "cls must be a type (got ",
      Py_TYPE(cls)->tp_name,
      ")");

  // This is an important safety check; without it, the default behavior will be
  // to continue on to the underlying CPU/CUDA kernel advertised by the dispatch
  // key, which will immediately segfault because the data pointer is null.  By
  // forcing users to define __torch_dispatch__ we ensure this does not happen
  // TODO: This check is not complete; because the user can disable torch
  // dispatch and then go again, triggering segfault.  TBH I'm thinking I want
  // to delete this function entirely
  py::object attr = PyObject_FastGetAttrString(cls, "__torch_dispatch__");
  TORCH_CHECK_TYPE(
      attr.ptr() != nullptr &&
          attr.ptr() != torch::disabled_torch_dispatch_impl(),
      ((PyTypeObject*)cls)->tp_name,
      " must define __torch_dispatch__");

  const auto options = TensorOptions()
                           .dtype(r.scalartype(5))
                           .device(r.device(7))
                           .layout(r.layoutOptional(6))
                           // NB: long standing issue, requires_grad is not
                           // respected here; you have to set it post facto, see
                           // https://github.com/pytorch/pytorch/issues/26428
                           // .requires_grad(r.toBool(7))
                           .pinned_memory(r.toBool(8));

  // don't bother releasing GIL here, as we are not allocating any nontrivial
  // data
  // TODO: for_blob produces non-resizable tensors, we might want this to be
  // resizable (have to define a custom allocator in that case)
  Tensor tensor;
  if (r.idx == 0) {
    tensor = at::for_blob(nullptr, r.intlist(1))
                 .strides(r.intlistOptional(2))
                 .storage_offset(r.toInt64Optional(3))
                 .context(nullptr, [](void* ctx) {})
                 .target_device(
                     options.device()) // TODO: this shouldn't be necessary if
                                       // it came from options
                 .options(options)
                 .make_tensor();

    const auto sizes_strides_policy = r.stringViewOptional(10);
    if (sizes_strides_policy.has_value()) {
      tensor.unsafeGetTensorImpl()->set_python_custom_sizes_strides(
          parseSizesStridesPolicyArgument(*sizes_strides_policy));
    }
  } else {
    AutoDispatchBelowADInplaceOrView guard{}; // TODO: Remove.
    tracer::impl::NoTracerDispatchMode tracer_guard{};

    // We shouldn't need storage
    Storage storage{Storage::use_byte_size_t{}, 0, at::DataPtr{}};

    tensor = at::detail::make_tensor<TensorImpl>(
        std::move(storage), options.computeDispatchKey(), options.dtype());

    auto sym_sizes = r.symintlist(1);
    auto sym_strides = r.symintlist(2);
    auto sym_storage_offset = r.toSymIntOptional(3);

    TensorImpl* tensor_impl = tensor.unsafeGetTensorImpl();

    tensor_impl->set_sizes_and_strides(
        sym_sizes, sym_strides, sym_storage_offset.value_or(0));

    const auto sizes_strides_policy = r.stringViewOptional(10);
    if (sizes_strides_policy.has_value()) {
      TORCH_CHECK(
          false,
          "Setting sizes_strides_policy isn't suppored for this overload")
    }
  }

  tensor.set_requires_grad(r.toBool(9));

  if (r.toBool(11)) {
    tensor.unsafeGetTensorImpl()->set_python_custom_device(true);
  }
  if (r.toBool(12)) {
    tensor.unsafeGetTensorImpl()->set_python_custom_layout(true);
  }

  return THPVariable_NewWithVar(
      (PyTypeObject*)cls,
      std::move(tensor),
      c10::impl::PyInterpreterStatus::DEFINITELY_UNINITIALIZED);
  END_HANDLE_TH_ERRORS
}

typedef PyObject* (*getter)(PyObject*, void*);
typedef int (*setter)(PyObject*, PyObject*, void*);

PyObject* THPVariable_get_python_dispatch(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  const auto& var = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(
      var.unsafeGetTensorImpl()->is_python_dispatch());
  END_HANDLE_TH_ERRORS
}

// CRTP base class to implement the python bindings for a Tensor property in
// PyTorch A class that implements a property is expected to have:
// - static constexpr const char* name;
//   - This variable should hold the Python name of the property
// - static Tensor fn(const Tensor&);
//   - This function calls the relevant ATen on the tensor
template <typename T>
struct GetterBase {
  static PyObject* getter(THPVariable* self, void* /*unused*/) {
    HANDLE_TH_ERRORS
    if (check_has_torch_function((PyObject*)self)) {
      return handle_torch_function_getter(self, T::name);
    }
    return THPVariable_Wrap(T::fn(THPVariable_Unpack(self)));
    END_HANDLE_TH_ERRORS
  }
};

struct PropertyT : GetterBase<PropertyT> {
  static constexpr const char* name = "T";
  static Tensor fn(const Tensor& t) {
    return t.numpy_T();
  }
};

struct PropertyH : GetterBase<PropertyH> {
  static constexpr const char* name = "H";
  static Tensor fn(const Tensor& t) {
    return t.matrix_H();
  }
};

struct PropertymT : GetterBase<PropertymT> {
  static constexpr const char* name = "mT";
  static Tensor fn(const Tensor& t) {
    return t.mT();
  }
};

struct PropertymH : GetterBase<PropertymH> {
  static constexpr const char* name = "mH";
  static Tensor fn(const Tensor& t) {
    return t.mH();
  }
};

struct PropertyData : GetterBase<PropertyData> {
  static constexpr const char* name = "data";
  static Tensor fn(const Tensor& t) {
    return t.variable_data();
  }
};

struct PropertyGrad : GetterBase<PropertyGrad> {
  static constexpr const char* name = "grad";
  static Tensor fn(const Tensor& t) {
    return t.grad();
  }
};

struct PropertyReal : GetterBase<PropertyReal> {
  static constexpr const char* name = "real";
  static Tensor fn(const Tensor& t) {
    return at::real(t);
  }
};

struct PropertyImag : GetterBase<PropertyImag> {
  static constexpr const char* name = "imag";
  static Tensor fn(const Tensor& t) {
    return at::imag(t);
  }
};

PyObject* THPVariable_get_cdata(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "_cdata");
  }
  const auto& var = THPVariable_Unpack(self);
  return PyLong_FromVoidPtr(var.unsafeGetTensorImpl());
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_get_version(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "_version");
  }
  const auto& var = THPVariable_Unpack(self);
  return PyInt_FromLong(var._version());
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_get_grad_fn(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "grad_fn");
  }
  const auto& var = THPVariable_Unpack(self);
  if (!var.grad_fn()) {
    Py_RETURN_NONE;
  }
  return functionToPyObject(var.grad_fn());
  END_HANDLE_TH_ERRORS
}

static int THPVariable_set_grad_fn(
    THPVariable* self,
    PyObject* obj,
    void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_setter(self, "_grad_fn", obj);
  }
  THPUtils_assertRet(
      -1, obj, "Deletion of _grad_fn not allowed. Detach tensor instead!");
  THPUtils_assertRet(-1, obj == Py_None, "_grad_fn can be only set to None");
  THPVariable_Unpack(self).detach_();
  return 0;
  END_HANDLE_TH_ERRORS_RET(-1)
}

static PyObject* THPVariable_is_leaf(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "is_leaf");
  }
  return PyBool_FromLong(!THPVariable_Unpack(self).grad_fn());
  END_HANDLE_TH_ERRORS
}

int THPVariable_set_data(THPVariable* self, PyObject* data, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_setter(self, "data", data);
  }
  THPUtils_assertRet(
      -1, data, "Deleting tensor data is not allowed. Delete tensor instead!");
  if (!THPVariable_Check(data)) {
    throw torch::TypeError(
        "Variable data has to be a tensor, but got %s", Py_TYPE(data)->tp_name);
  }

  THPVariable_Unpack(self).set_data(THPVariable_Unpack(data));
  return 0;
  END_HANDLE_TH_ERRORS_RET(-1)
}

int THPVariable_set_grad(THPVariable* self, PyObject* py_grad, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_setter(self, "grad", py_grad);
  }
  const auto& var = THPVariable_Unpack(self);
  if (!py_grad || py_grad == Py_None) {
    var.mutable_grad().reset();
    return 0;
  }

  TORCH_CHECK_TYPE(
      THPVariable_Check(py_grad),
      "assigned grad expected to be a Tensor or None but got grad of type",
      THPUtils_typename(py_grad));
  THPUtils_assertRet(
      -1,
      self != (THPVariable*)py_grad,
      "can't assign Variable as its own grad");

  const auto& grad = THPVariable_Unpack(py_grad);
  bool gradIsSparse =
      (var.dtype() == grad.dtype() &&
       var.device().type() == grad.device().type() && grad.layout() == kSparse);
  THPUtils_assertRet(
      -1,
      grad.options().type_equal(var.options()) || gradIsSparse,
      "assigned grad has data of a different type");
  if (var.is_cuda()) {
    THPUtils_assertRet(
        -1,
        grad.get_device() == var.get_device(),
        "assigned grad has data located on a different device");
  }
  THPUtils_assertRet(
      -1,
      grad.sym_sizes().equals(var.sym_sizes()),
      "assigned grad has data of a different size");

  var.mutable_grad() = grad;
  return 0;
  END_HANDLE_TH_ERRORS_RET(-1)
}

PyObject* THPVariable_get_volatile(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "volatile");
  }
  const char* msg = "volatile was removed (Variable.volatile is always False)";
  auto r = PyErr_WarnEx(PyExc_UserWarning, msg, 1);
  if (r != 0)
    throw python_error();
  Py_RETURN_FALSE;
  END_HANDLE_TH_ERRORS
}

int THPVariable_set_volatile(THPVariable* self, PyObject* obj, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_setter(self, "volatile", obj);
  }
  auto r = PyErr_WarnEx(PyExc_UserWarning, VOLATILE_WARNING, 1);
  if (r != 0)
    throw python_error();
  return 0;
  END_HANDLE_TH_ERRORS_RET(-1)
}

PyObject* THPVariable_get_output_nr(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "output_nr");
  }
  const auto output_nr =
      static_cast<long>(THPVariable_Unpack(self).output_nr());
  return PyInt_FromLong(output_nr);
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_get_requires_grad(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "requires_grad");
  }
  if (THPVariable_Unpack(self).requires_grad()) {
    Py_RETURN_TRUE;
  } else {
    Py_RETURN_FALSE;
  }
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_retains_grad(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "retains_grad");
  }
  if (THPVariable_Unpack(self).retains_grad()) {
    Py_RETURN_TRUE;
  } else {
    Py_RETURN_FALSE;
  }
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_get_ndim(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "ndim");
  }
  return PyInt_FromLong(THPVariable_Unpack(self).dim());
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_get_names(PyObject* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function(self)) {
    return handle_torch_function_getter((THPVariable*)self, "names");
  }
  // The long-term plan is to return a list of (python) torch.Dimname.
  // However, for now, return a list of string.
  const auto& tensor = THPVariable_Unpack(self);
  size_t size = tensor.dim();
  THPObjectPtr tuple(PyTuple_New(size));
  if (!tuple)
    throw python_error();

  const auto dimnames = tensor.names();
  for (const auto i : c10::irange(size)) {
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    PyObject* str;
    if (dimnames[i].type() == at::NameType::WILDCARD) {
      // PyTuple_SET_ITEM steals a reference to the object. When the tuple is
      // deallocated, it'll decrement the refcount on Py_None, which is bad.
      // To avoid this, we "create" a new reference to Py_None by increasing
      // the refcount.
      // Sources:
      // - https://docs.python.org/3/c-api/tuple.html#c.PyTuple_SetItem
      // -
      // https://stackoverflow.com/questions/16400600/how-to-return-a-tuple-containing-a-none-value-from-the-c-api
      Py_INCREF(Py_None);
      str = Py_None;
    } else {
      str = THPUtils_packString(dimnames[i].symbol().toUnqualString());
      if (!str)
        throw python_error();
    }
    PyTuple_SET_ITEM(tuple.get(), i, str);
  }
  return tuple.release();
  END_HANDLE_TH_ERRORS
}

int THPVariable_set_names(PyObject* self, PyObject* names, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function(self)) {
    return handle_torch_function_setter((THPVariable*)self, "names", names);
  }
  const auto& var = THPVariable_Unpack(self);
  if (names == Py_None) {
    at::internal_set_names_inplace(var, at::nullopt);
  } else {
    THPUtils_assertRet(
        -1,
        THPUtils_checkDimnameList(names),
        "names must either be None or a tuple of dim names");
    at::internal_set_names_inplace(var, torch::parseDimnameList(names));
  }
  return 0;
  END_HANDLE_TH_ERRORS_RET(-1)
}

int THPVariable_set_requires_grad(
    THPVariable* self,
    PyObject* obj,
    void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_setter(self, "requires_grad", obj);
  }
  THPUtils_assertRet(
      -1, obj && PyBool_Check(obj), "requires_grad must be a bool");
  const auto& var = THPVariable_Unpack(self);
  auto requires_grad = (obj == Py_True);
  if (!var.is_leaf()) {
    THPUtils_setError(
        autograd::utils::requires_grad_leaf_error(obj == Py_True).c_str());
    return -1;
  }
  if (requires_grad &&
      !isDifferentiableType(at::typeMetaToScalarType((var.dtype())))) {
    THPUtils_setError(
        "only Tensors of floating point and complex dtype can require gradients");
    return -1;
  }
  var.set_requires_grad(requires_grad);
  return 0;
  END_HANDLE_TH_ERRORS_RET(-1)
}

PyObject* THPVariable_get_name(THPVariable* self, void* unused) {
  if (check_has_torch_function((PyObject*)self)) {
    HANDLE_TH_ERRORS
    return handle_torch_function_getter(self, "name");
    END_HANDLE_TH_ERRORS
  }
  const auto& tensor = THPVariable_Unpack(self);
  if (tensor.name() == "")
    Py_RETURN_NONE;
  return THPUtils_packString(tensor.name().c_str());
}

PyObject* THPVariable_get_backwards_hooks(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "_backward_hooks");
  }
  if (self->backward_hooks) {
    Py_INCREF(self->backward_hooks);
    return self->backward_hooks;
  }
  Py_RETURN_NONE;
  END_HANDLE_TH_ERRORS
}

int THPVariable_set_backwards_hooks(
    THPVariable* self,
    PyObject* obj,
    void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_setter(self, "_backward_hooks", obj);
  }
  THPUtils_assertRet(-1, obj, "Deletion of _backwards_hooks not allowed!");
  if (obj == Py_None) {
    obj = nullptr;
  }
  Py_XINCREF(obj);
  Py_XDECREF(self->backward_hooks);
  self->backward_hooks = obj;
  const auto& tensor = THPVariable_Unpack(self);
  torch::autograd::impl::clear_hooks(tensor);
  if (obj) {
    torch::autograd::impl::add_hook(
        tensor, std::make_shared<PyFunctionTensorPreHook>(obj, 0));
  }
  return 0;
  END_HANDLE_TH_ERRORS_RET(-1)
}

PyObject* THPVariable_get_base(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "_base");
  }
  const auto& tensor = THPVariable_Unpack(self);
  if (tensor.is_view()) {
    return THPVariable_Wrap(tensor._base());
  }
  Py_RETURN_NONE;
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_get_shape(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "shape");
  }
  return THPSize_NewFromSymSizes(THPVariable_Unpack(self));
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_is_cpu(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "is_cpu");
  }
  auto& self_ = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(self_.is_cpu());
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_is_cuda(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "is_cuda");
  }
  auto& self_ = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(self_.is_cuda());
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_is_ipu(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "is_ipu");
  }
  auto& self_ = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(self_.is_ipu());
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_is_xpu(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "is_xpu");
  }
  auto& self_ = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(self_.is_xpu());
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_is_sparse(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "is_sparse");
  }
  auto& self_ = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(self_.is_sparse());
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_is_sparse_csr(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "is_sparse_csr");
  }
  auto& self_ = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(self_.is_sparse_csr());
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_is_mkldnn(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "is_mkldnn");
  }
  auto& self_ = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(self_.is_mkldnn());
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_is_mps(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "is_mps");
  }
  auto& self_ = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(self_.is_mps());
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_is_ort(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "is_ort");
  }
  auto& self_ = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(self_.is_ort());
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_is_vulkan(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "is_vulkan");
  }
  auto& self_ = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(self_.is_vulkan());
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_is_quantized(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "is_quantized");
  }
  auto& self_ = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(self_.is_quantized());
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_is_meta(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "is_meta");
  }
  auto& self_ = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(self_.is_meta());
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_is_complex(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "is_complex");
  }
  auto& self_ = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(self_.is_complex());
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_is_nested(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "is_nested");
  }
  auto& self_ = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(self_.is_nested());
  END_HANDLE_TH_ERRORS
}

PyObject* THPVariable_has_symbolic_sizes_strides(
    THPVariable* self,
    void* unused) {
  HANDLE_TH_ERRORS
  auto& self_ = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(
      self_.unsafeGetTensorImpl()->has_symbolic_sizes_strides());
  END_HANDLE_TH_ERRORS
}

static PyObject* THPVariable_dtype(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "dtype");
  }
  auto& self_ = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(torch::getTHPDtype(self_.scalar_type()));
  END_HANDLE_TH_ERRORS
}

static PyObject* THPVariable_layout(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "layout");
  }
  auto& self_ = THPVariable_Unpack(self);
  return torch::autograd::utils::wrap(torch::getTHPLayout(self_.layout()));
  END_HANDLE_TH_ERRORS
}

static PyObject* THPVariable_device(THPVariable* self, void* unused) {
  HANDLE_TH_ERRORS
  if (check_has_torch_function((PyObject*)self)) {
    return handle_torch_function_getter(self, "device");
  }
  return THPDevice_New(THPVariable_Unpack(self).device());
  END_HANDLE_TH_ERRORS
}

int THPVariable_set_real(PyObject* self, PyObject* real, void* unused) {
  HANDLE_TH_ERRORS
  auto& self_ = THPVariable_Unpack(self);
  auto self_real = at::real(self_);
  auto real_ = valueToTensor(self_real.options(), real, self_real.device());
  {
    pybind11::gil_scoped_release no_gil;
    self_real.copy_(real_);
    return 0;
  }
  END_HANDLE_TH_ERRORS_RET(-1)
}

int THPVariable_set_imag(PyObject* self, PyObject* imag, void* unused) {
  HANDLE_TH_ERRORS
  auto& self_ = THPVariable_Unpack(self);
  auto self_imag = at::imag(self_);
  auto imag_ = valueToTensor(self_imag.options(), imag, self_imag.device());
  {
    pybind11::gil_scoped_release no_gil;
    self_imag.copy_(imag_);
    return 0;
  }
  END_HANDLE_TH_ERRORS_RET(-1)
}

// properties are registered here because we are currently only able to bind
// them manually. TODO: make declarable in native_functions
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
static struct PyGetSetDef THPVariable_properties[] = {
    {"_python_dispatch",
     (getter)THPVariable_get_python_dispatch,
     nullptr,
     nullptr,
     nullptr},
    {"T", (getter)PropertyT::getter, nullptr, nullptr, nullptr},
    {"H", (getter)PropertyH::getter, nullptr, nullptr, nullptr},
    {"mT", (getter)PropertymT::getter, nullptr, nullptr, nullptr},
    {"mH", (getter)PropertymH::getter, nullptr, nullptr, nullptr},
    {"_cdata", (getter)THPVariable_get_cdata, nullptr, nullptr, nullptr},
    {"_version", (getter)THPVariable_get_version, nullptr, nullptr, nullptr},
    {"grad_fn", (getter)THPVariable_get_grad_fn, nullptr, nullptr, nullptr},
    {"_grad_fn",
     (getter)THPVariable_get_grad_fn,
     (setter)THPVariable_set_grad_fn,
     nullptr,
     nullptr},
    {"is_leaf", (getter)THPVariable_is_leaf, nullptr, nullptr, nullptr},
    {"retains_grad",
     (getter)THPVariable_retains_grad,
     nullptr,
     nullptr,
     nullptr},
    {"data",
     (getter)PropertyData::getter,
     (setter)THPVariable_set_data,
     nullptr,
     nullptr},
    {"_grad",
     (getter)PropertyGrad::getter,
     (setter)THPVariable_set_grad,
     nullptr,
     nullptr}, // Allows the python class to override .grad
    {"grad",
     (getter)PropertyGrad::getter,
     (setter)THPVariable_set_grad,
     nullptr,
     nullptr},
    {"_base", (getter)THPVariable_get_base, nullptr, nullptr, nullptr},
    {"volatile",
     (getter)THPVariable_get_volatile,
     (setter)THPVariable_set_volatile,
     nullptr,
     nullptr},
    {"output_nr", (getter)THPVariable_get_output_nr, nullptr, nullptr, nullptr},
    {"requires_grad",
     (getter)THPVariable_get_requires_grad,
     (setter)THPVariable_set_requires_grad,
     nullptr,
     nullptr},
    {"_backward_hooks",
     (getter)THPVariable_get_backwards_hooks,
     (setter)THPVariable_set_backwards_hooks,
     nullptr,
     nullptr},
    {"name", (getter)THPVariable_get_name, nullptr, nullptr, nullptr},
    {"shape", (getter)THPVariable_get_shape, nullptr, nullptr, nullptr},
    {"is_cuda", (getter)THPVariable_is_cuda, nullptr, nullptr, nullptr},
    {"is_cpu", (getter)THPVariable_is_cpu, nullptr, nullptr, nullptr},
    {"is_xpu", (getter)THPVariable_is_xpu, nullptr, nullptr, nullptr},
    {"is_ipu", (getter)THPVariable_is_ipu, nullptr, nullptr, nullptr},
    {"is_sparse", (getter)THPVariable_is_sparse, nullptr, nullptr, nullptr},
    {"is_sparse_csr",
     (getter)THPVariable_is_sparse_csr,
     nullptr,
     nullptr,
     nullptr},
    {"is_mkldnn", (getter)THPVariable_is_mkldnn, nullptr, nullptr, nullptr},
    {"is_mps", (getter)THPVariable_is_mps, nullptr, nullptr, nullptr},
    {"is_ort", (getter)THPVariable_is_ort, nullptr, nullptr, nullptr},
    {"is_vulkan", (getter)THPVariable_is_vulkan, nullptr, nullptr, nullptr},
    {"is_complex", (getter)THPVariable_is_complex, nullptr, nullptr, nullptr},
    {"is_quantized",
     (getter)THPVariable_is_quantized,
     nullptr,
     nullptr,
     nullptr},
    {"is_meta", (getter)THPVariable_is_meta, nullptr, nullptr, nullptr},
    {"is_nested", (getter)THPVariable_is_nested, nullptr, nullptr, nullptr},
    {"_has_symbolic_sizes_strides",
     (getter)THPVariable_has_symbolic_sizes_strides,
     nullptr,
     nullptr,
     nullptr},
    {"dtype", (getter)THPVariable_dtype, nullptr, nullptr, nullptr},
    {"layout", (getter)THPVariable_layout, nullptr, nullptr, nullptr},
    {"device", (getter)THPVariable_device, nullptr, nullptr, nullptr},
    {"ndim", (getter)THPVariable_get_ndim, nullptr, nullptr, nullptr},
    {"names",
     (getter)THPVariable_get_names,
     (setter)THPVariable_set_names,
     nullptr,
     nullptr},
    {"real",
     (getter)PropertyReal::getter,
     (setter)THPVariable_set_real,
     nullptr,
     nullptr},
    {"imag",
     (getter)PropertyImag::getter,
     (setter)THPVariable_set_imag,
     nullptr,
     nullptr},
    {nullptr}};

static PyMappingMethods THPVariable_as_mapping = {
    THPVariable_length,
    THPVariable_getitem,
    THPVariable_setitem,
};

// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
static PyMethodDef extra_methods[] = {
    {"as_subclass",
     castPyCFunctionWithKeywords(THPVariable_as_subclass),
     METH_VARARGS | METH_KEYWORDS,
     nullptr},
    {"_make_subclass",
     castPyCFunctionWithKeywords(THPVariable_make_subclass),
     METH_STATIC | METH_VARARGS | METH_KEYWORDS,
     nullptr},
    {"_make_wrapper_subclass",
     castPyCFunctionWithKeywords(THPVariable_make_wrapper_subclass),
     METH_STATIC | METH_VARARGS | METH_KEYWORDS,
     nullptr},
    {"_fix_weakref", THPVariable_fix_weakref, METH_NOARGS, nullptr},
    {nullptr}};

/* From https://github.com/python/cpython/blob/v3.7.0/Modules/xxsubtype.c
   If compiled as a shared library instead, some compilers don't allow addresses
   of Python objects defined in other libraries to be used in static
   initializers here.  The DEFERRED_ADDRESS macro is used to tag the slots where
   such addresses appear; the module init function must fill in the tagged slots
   at runtime.  The argument is for documentation -- the macro ignores it.
*/
#define DEFERRED_ADDRESS(ADDR) nullptr

struct THPVariableMeta {
  PyHeapTypeObject base;
};

int THPVariableMetaType_init(PyObject* cls, PyObject* args, PyObject* kwargs);

PyTypeObject THPVariableMetaType = {
    PyVarObject_HEAD_INIT(
        DEFERRED_ADDRESS(&PyType_Type),
        0) "torch._C._TensorMeta", /* tp_name */
    sizeof(THPVariableMeta), /* tp_basicsize */
    0, /* tp_itemsize */
    nullptr, /* tp_dealloc */
    0, /* tp_vectorcall_offset */
    nullptr, /* tp_getattr */
    nullptr, /* tp_setattr */
    nullptr, /* tp_reserved */
    nullptr, /* tp_repr */
    nullptr, /* tp_as_number */
    nullptr, /* tp_as_sequence */
    nullptr, /* tp_as_mapping */
    nullptr, /* tp_hash  */
    nullptr, /* tp_call */
    nullptr, /* tp_str */
    nullptr, /* tp_getattro */
    nullptr, /* tp_setattro */
    nullptr, /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
    nullptr, /* tp_doc */
    nullptr, /* tp_traverse */
    nullptr, /* tp_clear */
    nullptr, /* tp_richcompare */
    0, /* tp_weaklistoffset */
    nullptr, /* tp_iter */
    nullptr, /* tp_iternext */
    nullptr, /* tp_methods */
    nullptr, /* tp_members */
    nullptr, /* tp_getset */
    DEFERRED_ADDRESS(&PyType_Type), /* tp_base */
    nullptr, /* tp_dict */
    nullptr, /* tp_descr_get */
    nullptr, /* tp_descr_set */
    0, /* tp_dictoffset */
    THPVariableMetaType_init, /* tp_init */
    nullptr, /* tp_alloc */
    nullptr, /* tp_new */
};

PyTypeObject THPVariableType = {
    PyVarObject_HEAD_INIT(
        &THPVariableMetaType,
        0) "torch._C._TensorBase", /* tp_name */
    sizeof(THPVariable), /* tp_basicsize */
    0, /* tp_itemsize */
    // This is unspecified, because it is illegal to create a THPVariableType
    // directly.  Subclasses will have their tp_dealloc set appropriately
    // by the metaclass
    nullptr, /* tp_dealloc */
    0, /* tp_vectorcall_offset */
    nullptr, /* tp_getattr */
    nullptr, /* tp_setattr */
    nullptr, /* tp_reserved */
    nullptr, /* tp_repr */
    nullptr, /* tp_as_number */
    nullptr, /* tp_as_sequence */
    &THPVariable_as_mapping, /* tp_as_mapping */
    nullptr, /* tp_hash  */
    nullptr, /* tp_call */
    nullptr, /* tp_str */
    nullptr, /* tp_getattro */
    nullptr, /* tp_setattro */
    nullptr, /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
        Py_TPFLAGS_HAVE_GC, /* tp_flags */
    nullptr, /* tp_doc */
    // Also set by metaclass
    (traverseproc)THPFunction_traverse, /* tp_traverse */
    (inquiry)THPVariable_clear, /* tp_clear */
    nullptr, /* tp_richcompare */
    0, /* tp_weaklistoffset */
    nullptr, /* tp_iter */
    nullptr, /* tp_iternext */
    nullptr, /* tp_methods */
    nullptr, /* tp_members */
    THPVariable_properties, /* tp_getset */
    nullptr, /* tp_base */
    nullptr, /* tp_dict */
    nullptr, /* tp_descr_get */
    nullptr, /* tp_descr_set */
    0, /* tp_dictoffset */
    nullptr, /* tp_init */
    nullptr, /* tp_alloc */
    // Although new is provided here, it is illegal to call this with cls ==
    // THPVariableMeta.  Instead, subclass it first and then construct it
    THPVariable_pynew, /* tp_new */
};

PyObject* THPVariable_pynew(
    PyTypeObject* type,
    PyObject* args,
    PyObject* kwargs) {
  HANDLE_TH_ERRORS
  TORCH_CHECK(
      type != &THPVariableType,
      "Cannot directly construct _TensorBase; subclass it and then construct that");
  jit::tracer::warn("torch.Tensor", jit::tracer::WARN_CONSTRUCTOR);
  auto tensor = torch::utils::base_tensor_ctor(args, kwargs);
  // WARNING: tensor is NOT guaranteed to be a fresh tensor; e.g., if it was
  // given a raw pointer that will refcount bump
  return THPVariable_NewWithVar(
      type,
      std::move(tensor),
      c10::impl::PyInterpreterStatus::MAYBE_UNINITIALIZED);
  END_HANDLE_TH_ERRORS
}

static void clear_slots(PyTypeObject* type, PyObject* self) {
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  Py_ssize_t i, n;
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  PyMemberDef* mp;

  n = Py_SIZE(type);
  mp = type->tp_members;
  for (i = 0; i < n; i++, mp++) {
    if (mp->type == T_OBJECT_EX && !(mp->flags & READONLY)) {
      char* addr = (char*)self + mp->offset;
      PyObject* obj = *(PyObject**)addr;
      if (obj != nullptr) {
        *(PyObject**)addr = nullptr;
        Py_DECREF(obj);
      }
    }
  }
}

// NB: this is not the tp_dealloc on THPVariable; instead, its the dealloc
// on subclasses.  It's never valid to construct a THPVariable so it's not
// necessary to implement the dealloc for that case
void THPVariable_subclass_dealloc(PyObject* self) {
  if (THPVariable_tryResurrect((THPVariable*)self))
    return;

  // This is like a crappy version of subtype_dealloc.
  // Unfortunately, we cannot directly delegate to
  // subtype_dealloc as it will start walking the parent
  // chain *starting with* the type of self, which will cause
  // us to go back to our custom dealloc.
  //
  // We have to replicate the subtype_dealloc logic to ensure
  // that finalizers are handled correctly
  PyTypeObject* type = Py_TYPE(self);
  TORCH_INTERNAL_ASSERT(type->tp_flags & Py_TPFLAGS_HEAPTYPE);
  TORCH_INTERNAL_ASSERT(PyType_IS_GC(type), "GC types not implemented");

  PyObject_GC_UnTrack(self);
  // TODO: consider using trash can

  bool has_finalizer = type->tp_finalize || type->tp_del;

  if (type->tp_finalize) {
    PyObject_GC_Track(self);
    if (PyObject_CallFinalizerFromDealloc(self) < 0) {
      /* Resurrected */
      return;
    }
    PyObject_GC_UnTrack(self);
  }

  // base test is unnecessary as THPVariable does not set this
  if (type->tp_weaklistoffset) {
    PyObject_ClearWeakRefs(self);
  }

  if (type->tp_del) {
    PyObject_GC_Track(self);
    type->tp_del(self);
    if (self->ob_refcnt > 0) {
      /* Resurrected */
      return;
    }
    PyObject_GC_UnTrack(self);
  }

  if (has_finalizer) {
    /* New weakrefs could be created during the finalizer call.
       If this occurs, clear them out without calling their
       finalizers since they might rely on part of the object
       being finalized that has already been destroyed. */
    if (type->tp_weaklistoffset) {
      /* Modeled after GET_WEAKREFS_LISTPTR() */
      PyWeakReference** list =
          (PyWeakReference**)PyObject_GET_WEAKREFS_LISTPTR(self);
      while (*list)
        _PyWeakref_ClearRef(*list);
    }
  }

  // Clear all slots until we get to base class THPVariableType
  {
    PyTypeObject* base = type;
    while (base != &THPVariableType) {
      if (Py_SIZE(base)) {
        clear_slots(base, self);
      }
      base = base->tp_base;
      TORCH_INTERNAL_ASSERT(base);
    }
  }

  // All Python defined classes have __dict__
  if (C10_LIKELY(type->tp_dictoffset)) {
    PyObject** dictptr = _PyObject_GetDictPtr(self);
    if (dictptr != nullptr) {
      PyObject* dict = *dictptr;
      if (dict != nullptr) {
        Py_DECREF(dict);
        *dictptr = nullptr;
      }
    }
  }

  // subtype_dealloc allows for this but we don't
  TORCH_INTERNAL_ASSERT(Py_TYPE(self) == type);

  // Finally clear out the base THPVariable
  THPVariable_clear((THPVariable*)self);
  ((THPVariable*)self)->cdata.~MaybeOwned<Variable>();
  Py_TYPE(self)->tp_free(self);

  // Python defined subclasses should always be on the heap
  TORCH_INTERNAL_ASSERT(type->tp_flags & Py_TPFLAGS_HEAPTYPE);
  Py_DECREF(type);
}

// Creates a new Python object for a Variable.  The status parameter
// specifies what the interpreter tag status on the object is; for
// example, if you ran check_pyobj, the return optional of this object
// tells you if the tensor was already tagged or not so you can pass
// TAGGED_BY_US or MAYBE_UNINITIALIZED; in other cases, you know where
// var came from and can directly assert that it's DEFINITELY_UNINITIALIZED.
// It's ALWAYS safe (albeit slower) to call this with MAYBE_UNINITIALIZED.
static PyObject* THPVariable_NewWithVar(
    PyTypeObject* type,
    Variable _var,
    c10::impl::PyInterpreterStatus status) {
  // This function overwrite the Tensor's pyobj field without extra checks
  // Make sure it is not set otherwise we would leak memory
  auto mb_obj = _var.unsafeGetTensorImpl()->check_pyobj(self_interpreter.get());
  TORCH_CHECK(
      !mb_obj.has_value() || !mb_obj.value(),
      "Creating a new Tensor subclass ",
      type->tp_name,
      " but the raw Tensor object is already associated to a python object ",
      "of type ",
      mb_obj.value()->ob_type->tp_name);

  // Make sure that the reinterpret into a THPVariable* will be valid
  TORCH_CHECK(
      PyType_IsSubtype(type, &THPVariableType),
      "Creating a Tensor subclass from a class ",
      "that does not inherit from Tensor is not possible. Make sure your class inherits from Tensor.");

  PyObject* obj = type->tp_alloc(type, 0);
  if (obj) {
    auto v = (THPVariable*)obj;
    // TODO: named constructor to avoid default initialization
    new (&v->cdata) MaybeOwned<Variable>();
    v->cdata = MaybeOwned<Variable>::owned(std::move(_var));
    const auto& var = THPVariable_Unpack(v);
    var.unsafeGetTensorImpl()->init_pyobj(self_interpreter.get(), obj, status);
    if (check_has_torch_dispatch(obj)) {
      var.unsafeGetTensorImpl()->set_python_dispatch(true);
    }
  }
  return obj;
}

/// NOTE [ PyObject Traversal ]
///
/// PyObjects that are wrapping c++ objects can lead to non-trivial traverse
/// logic and it can be tricky to know what to traverse and when. This note
/// tries to clarify what is the danger here and a simple algorithm to choose
/// how to write the tp_traverse and tp_clear functions. If you're not already
/// familiar with how the CPython GC works, you should read this in-depth
/// description: https://devguide.python.org/garbage_collector/
///
/// The complexity for us comes from the fact that some c++ shared_ptr objects
/// own references to python objects and are also owned both by other python
/// objects and c++ objects. This means that to allow the GC to collect all
/// cycles, we need to properly implement the traverse/clear methods that take
/// into account these C++ ownership links.
///
/// The main danger here comes from the fact that, while all python-related code
/// is thread safe wrt the GC execution (thanks to the GIL), other threads might
/// be using our C++ objects arbitrarily which can lead to shared_ptr ref count
/// going up or down in between the different traverse/clear invocations. The
/// one constraint we add here that is not explicitly mentioned in the GC
/// description above is that for a given GC run (meaning while the GIL is
/// held), the traverse/clear pair should never report different ownership
/// relations: if traverse visited a given PyObject, then the clear within that
/// same GC run must still be the sole owner and clear that PyObject.
///
/// A more mechanical algorithm to know what to traverse/clear is as follows:
///   - Any field on this PyObject that contains a strong reference to another
///   PyObject
///     must be visited and cleared. An example of that is the "backward_hooks"
///     field of the THPVariable.
///   - Any field that contains a C++ object that is uniquely owned by this
///   PyObject (either
///     a unique_ptr or a shared_ptr with use_count==1) should have all the
///     PyObject it owns visited and cleared. An example would be here the
///     tensor hooks.
///   - If that uniquely owned C++ object also uniquely owns other C++ objects,
///   these should be
///     visited and cleared as well if they contain any PyObject.
///
/// Caveat: to avoid slow runtime, we limit the depth of this exploration of C++
/// objects in practice and we do not, for example, go through the whole
/// autograd graph, even if it is uniquely owned. This is a known place where
/// users can create noncollectable cycles as described in:
/// https://github.com/pytorch/pytorch/issues/7343
///

static int traverse_slots(
    PyTypeObject* type,
    PyObject* self,
    visitproc visit,
    void* arg) {
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  Py_ssize_t i, n;
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  PyMemberDef* mp;

  n = Py_SIZE(type);
  mp = type->tp_members;
  for (i = 0; i < n; i++, mp++) {
    if (mp->type == T_OBJECT_EX) {
      char* addr = (char*)self + mp->offset;
      PyObject* obj = *(PyObject**)addr;
      if (obj != nullptr) {
        int err = visit(obj, arg);
        if (err)
          return err;
      }
    }
  }
  return 0;
}

static int THPVariable_subclass_traverse(
    PyObject* self,
    visitproc visit,
    void* arg) {
  // If the tensor is eligible to be resurrected, don't traverse it; instead
  // treat all of its references as a root (as they WOULD be a root since we
  // can treat the inbound C++ references as root owners).
  //
  // This works because unlike conventional GCs, Python's GC operates in two
  // phases: first it uses traverse to discover roots, and then it uses traverse
  // to do reachability.  Bypassing traverse during root discovery forces Python
  // to treat self as a root for everything it refers to.  For a full
  // explanation of the algorithm see
  // https://devguide.python.org/garbage_collector/
  //
  // NB: if we don't hold an owning reference to the underlying Tensor, it is
  // possible that the underlying Tensor has already gone dead.  In that case,
  // it's not safe to access it.  But it's also safe to traverse, because if
  // the underlying Tensor *is* live, then root discovery will determine that
  // self is live, and nothing will get GC'ed anyway (resurrection cannot happen
  // if the C++ objects owns the PyObject)
  THPVariable* var = reinterpret_cast<THPVariable*>(self);
  if (isResurrectable(var)) {
    return 0;
  }

  // Crappy version of subtype_traverse; same deal as
  // THPVariable_subclass_dealloc

  PyTypeObject* type = Py_TYPE(self);
  // Traverse slots until we get to base class THPVariableType
  {
    PyTypeObject* base = type;
    while (base != &THPVariableType) {
      if (Py_SIZE(base)) {
        int err = traverse_slots(base, self, visit, arg);
        if (err)
          return err;
      }
      base = base->tp_base;
      TORCH_INTERNAL_ASSERT(base);
    }
  }

  // All Python defined classes have __dict__
  if (C10_LIKELY(type->tp_dictoffset)) {
    PyObject** dictptr = _PyObject_GetDictPtr(self);
    if (dictptr && *dictptr)
      Py_VISIT(*dictptr);
  }

  TORCH_INTERNAL_ASSERT(type->tp_flags & Py_TPFLAGS_HEAPTYPE);
  Py_VISIT(type);

  // Finally traverse THPVariable special stuff
  Py_VISIT(var->backward_hooks);
  if (!var->cdata.unsafeIsBorrowed()) {
    const auto& tensor = THPVariable_Unpack(var);
    if (tensor.defined()) {
      // WARNING: The grad_fn traversal logic is very subtle, if you change
      // this, be very careful not to re-introduce this bug:
      // https://gist.github.com/zou3519/7ac92b84dd7d206dcc6eae55fee8372c

      // We ensure that we follow NOTE [ PyObject Traversal ] he by checking
      // that this python object is the sole owner of the underlying Tensor and
      // that this Tensor is the sole owner of its grad_fn. In this case, the
      // only way to get a new reference to the grad_fn is by using this python
      // object, which requires the GIL to be accessed. Note that this is only
      // valid as long as user don't share non-owning references across
      // different threads (which is crazy and should never be done).

      if (tensor.use_count() == 1) {
        auto autograd_meta = torch::autograd::impl::get_autograd_meta(tensor);
        if (autograd_meta) {
          // Do NOT call grad_fn() here as that might trigger a recompute
          const auto& grad_fn = autograd_meta->grad_fn_;
          if (grad_fn && grad_fn.use_count() == 1) {
            // All Node can have a pyobj (stored in "pyobj_")
            Py_VISIT(grad_fn->pyobj());
            // PyNode are special as they also have an "obj" field
            if (auto py_node_fn = dynamic_cast<PyNode*>(grad_fn.get())) {
              Py_VISIT(py_node_fn->obj);
            }
          }
        }
      }

      for (const auto& hook : torch::autograd::impl::hooks(tensor)) {
        if (auto pyhook = dynamic_cast<PyFunctionTensorPreHook*>(hook.get())) {
          Py_VISIT(pyhook->dict);
        }
      }
    }
  }

  return 0;
}

int THPVariableMetaType_init(PyObject* cls, PyObject* args, PyObject* kwargs) {
  if (PyType_Type.tp_init(cls, args, kwargs) < 0) {
    return -1;
  }
  ((PyTypeObject*)cls)->tp_dealloc = (destructor)THPVariable_subclass_dealloc;
  ((PyTypeObject*)cls)->tp_traverse =
      (traverseproc)THPVariable_subclass_traverse;
  return 0;
}

namespace torch {
namespace autograd {

// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
extern PyMethodDef variable_methods[];
extern void initTorchFunctions(PyObject* module);

void initTensorImplConversion(PyObject* module) {
  auto m = py::handle(module).cast<py::module>();
  m.def("_wrap_tensor_impl", [](void* ptr) {
    auto p = c10::intrusive_ptr<c10::TensorImpl, at::UndefinedTensorImpl>::
        unsafe_reclaim_from_nonowning(static_cast<c10::TensorImpl*>(ptr));
    TORCH_CHECK(p.defined(), "Can't wrap undefined tensor");
    auto tensor = at::Tensor::wrap_tensor_impl(std::move(p));
    // NOLINTNEXTLINE(performance-move-const-arg)
    return py::cast(std::move(tensor));
  });
  // set on the module level to avoid mixing pybind and plain CPython extensions
  m.def("_tensor_impl_raw_handle", [](torch::autograd::Variable* t) -> void* {
    // We return a raw non-owning pointer here, we rely on surrounding
    // code to keep the original tensor alive
    return t->getIntrusivePtr().get();
  });
}
} // namespace autograd
} // namespace torch

bool THPVariable_initModule(PyObject* module) {
  THPVariableMetaType.tp_base = &PyType_Type;
  if (PyType_Ready(&THPVariableMetaType) < 0)
    return false;
  Py_INCREF(&THPVariableMetaType);
  PyModule_AddObject(module, "_TensorMeta", (PyObject*)&THPVariableMetaType);

  static std::vector<PyMethodDef> methods;
  THPUtils_addPyMethodDefs(methods, torch::autograd::variable_methods);
  THPUtils_addPyMethodDefs(methods, extra_methods);
  THPVariableType.tp_methods = methods.data();
  if (PyType_Ready(&THPVariableType) < 0)
    return false;
  Py_INCREF(&THPVariableType);
  PyModule_AddObject(module, "_TensorBase", (PyObject*)&THPVariableType);
  torch::autograd::initTorchFunctions(module);
  torch::autograd::initTensorImplConversion(module);
  return true;
}

namespace {

bool isPythonTensor(const Tensor& tensor) {
  return tensor.unsafeGetTensorImpl()->key_set().has(c10::DispatchKey::Python);
}

py::object torchDispatchFromTensorImpl(
    const c10::TensorImpl* self,
    const char* func_name,
    PyObject* torch_api_function,
    const char* module_name,
    // WARNING: MUST NOT BE TENSOR ARGS
    c10::SmallVector<py::object, 1> extra_args = {}) {
  if (torch_api_function == nullptr) {
    throw python_error();
  }
  TORCH_CHECK(
      PyGILState_Check(),
      "GIL must be held before you call parseIValuesToPyArgsKwargs");

  std::vector<py::handle> overloaded_args;
  // TODO: there should be a shorter way to spell this
  // TODO: fix the constness of target
  Tensor self_t = Tensor(
      c10::intrusive_ptr<c10::TensorImpl, c10::UndefinedTensorImpl>::
          unsafe_reclaim_from_nonowning(const_cast<c10::TensorImpl*>(self)));
  auto self_p = py::reinterpret_steal<py::object>(THPVariable_Wrap(self_t));
  // NB: this may not be a python tensor if you got here from a mode!
  // TORCH_INTERNAL_ASSERT(isPythonTensor(self_t));
  append_overloaded_tensor(&overloaded_args, self_p.ptr());
  auto args =
      py::reinterpret_steal<py::object>(PyTuple_New(1 + extra_args.size()));
  PyTuple_SET_ITEM(args.ptr(), 0, self_p.release().ptr());
  int64_t i = 1;
  for (auto& a : extra_args) {
    if (a.ptr() == nullptr)
      throw python_error();
    PyTuple_SET_ITEM(args.ptr(), i, std::move(a).release().ptr());
    i++;
  }

  py::dict kwargs;

  return py::reinterpret_steal<py::object>(
      handle_torch_function_no_python_arg_parser(
          overloaded_args,
          args.ptr(),
          kwargs.ptr(),
          func_name,
          torch_api_function,
          module_name,
          TorchFunctionName::TorchDispatch));
}

py::handle getTorchApiFunction(const c10::OperatorHandle& op) {
  return op.getPythonOp(getPyInterpreter(), [&]() -> PyObject* {
    // Parse the name into namespace and name (no overload_name)
    // TODO: put this into the library
    const auto& schema = op.schema();
    const auto& qualified_name = op.operator_name().name;
    const auto& overload_name = schema.overload_name();
    auto pos = qualified_name.find("::");
    TORCH_INTERNAL_ASSERT(pos != std::string::npos, qualified_name);
    // Make me some null terminated strings
    std::string ns_str = qualified_name.substr(0, pos);
    const char* ns = ns_str.c_str();
    const char* func_name = qualified_name.c_str() + pos + strlen("::");

    py::handle torch_api_function =
        py::module::import("torch").attr("ops").attr(ns).attr(func_name);
    if (overload_name == "") {
      return torch_api_function.attr("default").ptr();
    } else {
      return torch_api_function.attr(overload_name.c_str()).ptr();
    }
  });
}

void ConcretePyInterpreterVTable::dispatch(
    const c10::OperatorHandle& op,
    torch::jit::Stack* stack) const {
  const auto& schema = op.schema();
  const auto num_arguments = schema.arguments().size();
  auto arguments = torch::jit::pop(*stack, num_arguments);

  // The plan: convert all the arguments back into PyObjects,
  // extracting out the tensor handles, then call
  // handle_torch_function_no_python_arg_parser
  // NB: at the point arguments are pushed to the stack, ALL defaults
  // are already present

  py::gil_scoped_acquire g;

  std::vector<py::handle> overloaded_args;
  py::handle torch_api_function_overload = getTorchApiFunction(op);

  // Find overloaded tensors
  for (const auto idx : c10::irange(arguments.size())) {
    const auto& ivalue = arguments[idx];
    if (ivalue.isTensor()) {
      const auto& tensor = ivalue.toTensor();
      if (isPythonTensor(tensor)) {
        append_overloaded_tensor(&overloaded_args, py::cast(tensor).ptr());
      }
    } else if (ivalue.isList()) {
      const auto& list = ivalue.toListRef();
      for (const auto jdx : c10::irange(list.size())) {
        const auto& nv = list[jdx];
        if (nv.isTensor()) {
          const auto& tensor = nv.toTensor();
          if (isPythonTensor(tensor)) {
            append_overloaded_tensor(&overloaded_args, py::cast(tensor).ptr());
          }
        }
      }
    }
  }

  auto args_kwargs = parseIValuesToPyArgsKwargs(op, arguments);
  auto args = std::move(args_kwargs.first);
  auto kwargs = std::move(args_kwargs.second);

  PyObject* obj = handle_torch_function_no_python_arg_parser(
      overloaded_args,
      args.ptr(),
      kwargs.ptr(),
      nullptr,
      torch_api_function_overload.ptr(),
      nullptr,
      TorchFunctionName::TorchDispatch);
  pushPyOutToStack(
      op, stack, py::reinterpret_steal<py::object>(obj), "__torch_dispatch__");
}

void ConcretePyInterpreterVTable::python_dispatcher(
    const c10::OperatorHandle& op,
    c10::DispatchKeySet ks,
    torch::jit::Stack* stack) const {
  py::gil_scoped_acquire g;
  py::handle torch_api_function_overload = getTorchApiFunction(op);

  c10::DispatchKey k = ks.highestPriorityTypeId();
  auto handler = torch_api_function_overload.attr(toString(k));
  if (handler.ptr() == nullptr) {
    throw python_error();
  }
  if (py::isinstance<c10::DispatchKey>(handler)) {
    // NB: not redispatch, as that will permanently remove the python
    // dispatcher for subsequent redispatches
    op.callBoxedForDispatchKey(py::cast<c10::DispatchKey>(handler), *stack);
    return;
  }

  const auto& schema = op.schema();
  const auto num_arguments = schema.arguments().size();
  auto arguments = torch::jit::pop(*stack, num_arguments);

  auto args_kwargs = parseIValuesToPyArgsKwargs(op, arguments);
  auto args = std::move(args_kwargs.first);
  auto kwargs = std::move(args_kwargs.second);

  py::object obj = py::reinterpret_steal<py::object>(
      PyObject_Call(handler.ptr(), args.ptr(), kwargs.ptr()));

  if (obj.ptr() == nullptr) {
    throw python_error();
  }

  pushPyOutToStack(op, stack, std::move(obj), "Python dispatcher");
}

c10::intrusive_ptr<TensorImpl> ConcretePyInterpreterVTable::detach(
    const c10::TensorImpl* self) const {
  pybind11::gil_scoped_acquire gil;
  at::impl::MaybeSetTLSOnEntryGuard guard;

  auto out = torchDispatchFromTensorImpl(
      self,
      "detach",
      py::module::import("torch")
          .attr("ops")
          .attr("aten")
          .attr("detach")
          .attr("default")
          .ptr(),
      "torch.ops.aten");

  TORCH_CHECK(
      THPVariable_Check(out.ptr()),
      "detach returned invalid type ",
      py::detail::get_fully_qualified_tp_name(Py_TYPE(out.ptr())),
      ", expected Tensor");
  const Tensor& res_t = THPVariable_Unpack(out.ptr());
  return res_t.getIntrusivePtr();
}

bool ConcretePyInterpreterVTable::is_contiguous(
    const c10::TensorImpl* self,
    at::MemoryFormat memory_format) const {
  pybind11::gil_scoped_acquire gil;
  at::impl::MaybeSetTLSOnEntryGuard guard;

  py::object out;
  if (memory_format == at::MemoryFormat::Contiguous) {
    // For backwards compatibility
    out = torchDispatchFromTensorImpl(
        self,
        "is_contiguous",
        py::module::import("torch")
            .attr("ops")
            .attr("aten")
            .attr("is_contiguous")
            .attr("default")
            .ptr(),
        "torch.ops.aten");
  } else {
    out = torchDispatchFromTensorImpl(
        self,
        "is_contiguous",
        py::module::import("torch")
            .attr("ops")
            .attr("aten")
            .attr("is_contiguous")
            .attr("memory_format")
            .ptr(),
        "torch.ops.aten",
        {py::cast(memory_format)});
  }

  if (out.is(py::none())) {
    return self->is_contiguous_default(memory_format);
  }

  TORCH_CHECK(
      PyBool_Check(out.ptr()),
      "is_contiguous returned invalid type ",
      py::detail::get_fully_qualified_tp_name(Py_TYPE(out.ptr())),
      ", expected bool");

  return PyObject_IsTrue(out.ptr());
}

bool ConcretePyInterpreterVTable::is_strides_like(
    const c10::TensorImpl* self,
    at::MemoryFormat memory_format) const {
  pybind11::gil_scoped_acquire gil;
  at::impl::MaybeSetTLSOnEntryGuard guard;

  auto out = torchDispatchFromTensorImpl(
      self,
      "is_strides_like",
      py::module::import("torch")
          .attr("ops")
          .attr("aten")
          // NB: intentionally suffixed with _format to avoid
          // triggering matches against "_like" suffix
          .attr("is_strides_like_format")
          .attr("default")
          .ptr(),
      "torch.ops.aten",
      {py::cast(memory_format)});

  if (out.is(py::none())) {
    return self->is_strides_like_default(memory_format);
  }

  TORCH_CHECK(
      PyBool_Check(out.ptr()),
      "is_strides_like_format returned invalid type ",
      py::detail::get_fully_qualified_tp_name(Py_TYPE(out.ptr())),
      ", expected bool");

  return PyObject_IsTrue(out.ptr());
}

bool ConcretePyInterpreterVTable::is_non_overlapping_and_dense(
    const c10::TensorImpl* self) const {
  pybind11::gil_scoped_acquire gil;
  at::impl::MaybeSetTLSOnEntryGuard guard;

  auto out = torchDispatchFromTensorImpl(
      self,
      "is_non_overlapping_and_dense",
      py::module::import("torch")
          .attr("ops")
          .attr("aten")
          .attr("is_non_overlapping_and_dense")
          .attr("default")
          .ptr(),
      "torch.ops.aten");

  if (out.is(py::none())) {
    return self->is_non_overlapping_and_dense_default();
  }

  TORCH_CHECK(
      PyBool_Check(out.ptr()),
      "is_non_overlapping_and_dense returned invalid type ",
      py::detail::get_fully_qualified_tp_name(Py_TYPE(out.ptr())),
      ", expected bool");

  return PyObject_IsTrue(out.ptr());
}

int64_t ConcretePyInterpreterVTable::dim(const c10::TensorImpl* self) const {
  pybind11::gil_scoped_acquire gil;
  at::impl::MaybeSetTLSOnEntryGuard guard;

  auto out = torchDispatchFromTensorImpl(
      self,
      "dim",
      py::module::import("torch")
          .attr("ops")
          .attr("aten")
          .attr("dim")
          .attr("default")
          .ptr(),
      "torch.ops.aten");

  TORCH_CHECK(
      PyLong_Check(out.ptr()),
      "dim returned invalid type ",
      py::detail::get_fully_qualified_tp_name(Py_TYPE(out.ptr())),
      ", expected int");

  return THPUtils_unpackLong(out.ptr());
}

c10::Device ConcretePyInterpreterVTable::device(
    const c10::TensorImpl* self) const {
  pybind11::gil_scoped_acquire gil;
  at::impl::MaybeSetTLSOnEntryGuard guard;

  auto out = torchDispatchFromTensorImpl(
      self,
      "device",
      py::module::import("torch")
          .attr("ops")
          .attr("prim")
          .attr("device")
          .attr("default")
          .ptr(),
      "torch.ops.prim");

  return toDevice(out.ptr());
}

c10::IntArrayRef ConcretePyInterpreterVTable::strides(
    const c10::TensorImpl* self) const {
  pybind11::gil_scoped_acquire gil;
  at::impl::MaybeSetTLSOnEntryGuard guard;

  auto out = torchDispatchFromTensorImpl(
      self,
      "stride",
      py::module::import("torch")
          .attr("ops")
          .attr("aten")
          .attr("stride")
          .attr("default")
          .ptr(),
      "torch.ops.aten");

  if (out.is(py::none())) {
    TORCH_CHECK(
        !self->has_symbolic_sizes_strides(),
        "Cannot call strides on a tensor with symbolic shapes/strides");
    return self->strides_default();
  }

  py::object values = py::reinterpret_steal<py::object>(out.ptr());

  c10::optional<PyObject*> mb_obj = self->check_pyobj(getPyInterpreter());
  TORCH_CHECK(
      mb_obj.has_value(), "Tensor subclass's PyInterpreter has no value");
  PyObject* subclass = *mb_obj;
  Py_INCREF(subclass);
  py::object sub = py::reinterpret_steal<py::object>(subclass);

  py::object os = py::module_::import("torch").attr("overrides");
  py::function get_buffer =
      py::reinterpret_borrow<py::function>(os.attr("get_buffer"));
  auto buffer = get_buffer(sub, values, "stride");
  auto result = THPUtils_unpackLongs(buffer.ptr());
  int64_t* start = (int64_t*)result[0];
  int64_t len = result[1];

  return c10::IntArrayRef(start, len);
}

static std::vector<int64_t> values_from_buffer(
    const c10::TensorImpl* self,
    py::handle values) {
  c10::TensorImpl* ptr = const_cast<c10::TensorImpl*>(self);
  c10::optional<PyObject*> mb_obj = ptr->check_pyobj(getPyInterpreter());
  TORCH_CHECK(
      mb_obj.has_value(), "Tensor subclass's PyInterpreter has no value");

  py::object os = py::module_::import("torch").attr("overrides");
  py::function get_buffer =
      py::reinterpret_borrow<py::function>(os.attr("get_buffer"));
  auto buffer = get_buffer(py::handle(*mb_obj), values, "size");
  auto result = THPUtils_unpackLongs(buffer.ptr());
  return result;
}

c10::IntArrayRef ConcretePyInterpreterVTable::sizes(
    const c10::TensorImpl* self) const {
  pybind11::gil_scoped_acquire gil;
  at::impl::MaybeSetTLSOnEntryGuard guard;

  auto out = torchDispatchFromTensorImpl(
      self,
      "size",
      py::module::import("torch")
          .attr("ops")
          .attr("aten")
          .attr("size")
          .attr("default")
          .ptr(),
      "torch.ops.aten");

  if (out.is(py::none())) {
    TORCH_CHECK(
        !self->has_symbolic_sizes_strides(),
        "Cannot call sizes on a tensor with symbolic shapes/strides");
    return self->sizes_default();
  }

  py::object values = py::reinterpret_steal<py::object>(out.ptr());
  auto result = values_from_buffer(self, values);
  int64_t* start = (int64_t*)result[0];
  int64_t len = result[1];

  return c10::IntArrayRef(start, len);
}

c10::SymIntArrayRef ConcretePyInterpreterVTable::sym_sizes(
    const c10::TensorImpl* self) const {
  pybind11::gil_scoped_acquire gil;
  at::impl::MaybeSetTLSOnEntryGuard guard;
  HANDLE_TH_ERRORS
  auto out = torchDispatchFromTensorImpl(
      self,
      "sym_size",
      py::module::import("torch")
          .attr("ops")
          .attr("aten")
          .attr("sym_size")
          .attr("default")
          .ptr(),
      "torch.ops.aten");

  if (out.is(py::none())) {
    return self->sym_sizes_default();
  }
  // We need to squeeze SymIntNodes and ints into `SymInts`
  // since it's a format `sym_sizes()` are stored in
  TORCH_CHECK(
      py::isinstance<py::tuple>(out) || py::isinstance<py::list>(out),
      "Symshape must be a list or a tuple");
  py::list symints;
  for (auto it = out.begin(); it != out.end(); it++) {
    auto elm = *it;
    auto si = py::cast<c10::SymInt>(elm);
    // TODO: the buffer will need to be made owning later
    symints.append(si.as_int_unchecked());
  }

  auto result = values_from_buffer(self, symints);
  c10::SymInt* start = (c10::SymInt*)result[0];
  int64_t len = result[1];

  return c10::SymIntArrayRef(start, len);
  END_HANDLE_TH_ERRORS_PYBIND
}

c10::Layout ConcretePyInterpreterVTable::layout(
    const c10::TensorImpl* self) const {
  pybind11::gil_scoped_acquire gil;
  at::impl::MaybeSetTLSOnEntryGuard guard;
  auto out = torchDispatchFromTensorImpl(
      self,
      "layout",
      py::module::import("torch")
          .attr("ops")
          .attr("prim")
          .attr("layout")
          .attr("default")
          .ptr(),
      "torch.ops.prim");

  TORCH_CHECK(
      THPLayout_Check(out.ptr()),
      "layout returned invalid type ",
      py::detail::get_fully_qualified_tp_name(Py_TYPE(out.ptr())),
      ", expected Layout");

  return toLayout(out.ptr());
}

c10::SymInt ConcretePyInterpreterVTable::sym_numel(
    const c10::TensorImpl* self) const {
  pybind11::gil_scoped_acquire gil;
  at::impl::MaybeSetTLSOnEntryGuard guard;
  auto out = torchDispatchFromTensorImpl(
      self,
      "sym_numel",
      py::module::import("torch")
          .attr("ops")
          .attr("aten")
          .attr("sym_numel")
          .attr("default")
          .ptr(),
      "torch.ops.aten");

  if (out.is(py::none())) {
    TORCH_CHECK(
        !self->has_symbolic_sizes_strides(),
        "Cannot call numel on a tensor with symbolic shapes/strides");
    return self->sym_numel_default();
  }
  return torch::is_symint_node(out)
      ? out.cast<c10::SymIntNodeImpl*>()->toSymInt()
      : c10::SymInt{py::cast<int64_t>(out)};
}

c10::SymInt ConcretePyInterpreterVTable::sym_storage_offset(
    const c10::TensorImpl* self) const {
  pybind11::gil_scoped_acquire gil;
  at::impl::MaybeSetTLSOnEntryGuard guard;
  auto out = torchDispatchFromTensorImpl(
      self,
      "sym_storage_offset",
      py::module::import("torch")
          .attr("ops")
          .attr("aten")
          .attr("sym_storage_offset")
          .attr("default")
          .ptr(),
      "torch.ops.aten");

  if (out.is(py::none())) {
    return self->sym_storage_offset_default();
  }
  return torch::is_symint_node(out)
      ? out.cast<c10::SymIntNodeImpl*>()->toSymInt()
      : c10::SymInt{py::cast<int64_t>(out)};
}

c10::SymIntArrayRef ConcretePyInterpreterVTable::sym_strides(
    const c10::TensorImpl* self) const {
  pybind11::gil_scoped_acquire gil;
  at::impl::MaybeSetTLSOnEntryGuard guard;
  HANDLE_TH_ERRORS
  auto out = torchDispatchFromTensorImpl(
      self,
      "sym_stride",
      py::module::import("torch")
          .attr("ops")
          .attr("aten")
          .attr("sym_stride")
          .attr("default")
          .ptr(),
      "torch.ops.aten");

  if (out.is(py::none())) {
    return self->sym_strides_default();
  }
  // We need to squeeze SymIntNodes and ints into `SymInts`
  // since it's a format `sym_strides()` are stored in
  TORCH_CHECK(
      py::isinstance<py::tuple>(out) || py::isinstance<py::list>(out),
      "Symshape must be a list or a tuple");
  py::list symints;
  for (auto it = out.begin(); it != out.end(); it++) {
    auto elm = *it;
    auto si = torch::is_symint_node(elm)
        ? elm.cast<c10::SymIntNodeImpl*>()->toSymInt()
        : c10::SymInt{py::cast<int64_t>(elm)};
    symints.append(si.as_int_unchecked());
  }

  auto result = values_from_buffer(self, symints);
  c10::SymInt* start = (c10::SymInt*)result[0];
  int64_t len = result[1];

  return c10::SymIntArrayRef(start, len);
  END_HANDLE_TH_ERRORS_PYBIND
}

} // anonymous namespace