1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
|
#include <torch/csrc/autograd/python_variable_indexing.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Export.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/utils/wrap_outputs.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/utils/python_compat.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/tensor_new.h>
#include <torch/csrc/utils/tensor_types.h>
#include <ATen/DeviceGuard.h>
#include <ATen/ExpandUtils.h>
#include <ATen/TensorIndexing.h>
#include <ATen/TracerMode.h>
#include <ATen/core/LegacyTypeDispatch.h>
#include <c10/core/TensorOptions.h>
#include <c10/util/irange.h>
#include <c10/core/Layout.h>
#include <tuple>
#include <vector>
using namespace at;
using namespace torch::autograd::utils;
namespace torch {
namespace autograd {
Py_ssize_t THPVariable_length(PyObject* self) {
HANDLE_TH_ERRORS
if (check_has_torch_function(self)) {
py::object ret = py::reinterpret_steal<py::object>(
handle_torch_function(self, "__len__"));
Py_ssize_t length = PyLong_AsSsize_t(ret.ptr());
if (PyErr_Occurred()) {
throw python_error();
}
return length;
}
const auto& self_ = THPVariable_Unpack(self);
if (self_.dim() == 0) {
return 0;
}
return (Py_ssize_t)self_.size(0);
END_HANDLE_TH_ERRORS_RET(-1)
}
// We allow indexing by integers, slices, ellipsis, None, Variables,
// and tuples of those types. We also handle bools as if they were a
// Variable[ByteTensor].
static inline int64_t count_specified_dimensions(PyObject* index) {
// Count the number of indexed dimensions (everything but ellipsis and None)
// -1 is a sentinel for __torch_function__
int64_t count = 0;
auto size =
PyTuple_GET_SIZE(index); // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
for (Py_ssize_t i = 0; i < size; i++) {
PyObject* obj = PyTuple_GET_ITEM(
index, i); // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
if (!THPVariable_CheckExact(obj) && check_has_torch_function(obj))
return -1;
if (THPVariable_Check(obj)) {
const auto& var = THPVariable_Unpack(obj);
const auto& var_scalar_type = var.scalar_type();
if (var_scalar_type == kByte || var_scalar_type == kBool) {
count += var.dim();
} else {
count++;
}
} else if (
obj != Py_None && obj != Py_Ellipsis && obj != Py_True &&
obj != Py_False) { // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
count++;
}
}
return count;
}
[[noreturn]] static inline void invalid_index(PyObject* obj) {
throw IndexError(
"only integers, slices (`:`), ellipsis (`...`), None and long or byte "
"Variables are valid indices (got %s)",
Py_TYPE(obj)->tp_name);
}
static inline Variable sequenceToVariable(
c10::TensorOptions options,
PyObject* seq) {
return torch::utils::indexing_tensor_from_data(
options, kLong, c10::nullopt, seq);
}
inline Variable valueToTensor(
c10::TensorOptions options,
PyObject* value,
const at::Device& device) {
if (THPVariable_Check(value)) {
return THPVariable_Unpack(value);
}
at::AutoDispatchBelowADInplaceOrView guard; // TODO: remove
at::tracer::impl::NoTracerDispatchMode tracer_guard;
Scalar scalar;
if (THPUtils_checkLong(value) || PyBool_Check(value)) {
scalar = Scalar(THPUtils_unpackLong(value));
} else if (PyFloat_Check(value)) {
scalar = Scalar(THPUtils_unpackDouble(value));
} else if (PyComplex_Check(value)) {
scalar = Scalar(THPUtils_unpackComplexDouble(value));
} else {
throw TypeError(
"can't assign a %s to a %s",
Py_TYPE(value)->tp_name,
torch::utils::options_to_string(options).c_str());
}
// lift_fresh is supposed to be used in situations where you are guaranteed to
// get a plain Tensor which is not true for cpu device but not for non cpu
// device
if (device == at::kCPU) {
return at::lift_fresh(
at::indexing::scalarToTensor(scalar, options, device));
} else {
return at::indexing::scalarToTensor(scalar, options, device);
}
}
static inline void checkUnpackSlice(
PyObject* index,
Py_ssize_t* start_ptr,
Py_ssize_t* stop_ptr,
Py_ssize_t* step_ptr) {
if (!THPUtils_unpackSlice(index, start_ptr, stop_ptr, step_ptr)) {
throw python_error();
}
}
static inline void recordSliceTrace(PyObject* obj) {
PySliceObject* sliceobj = (PySliceObject*)obj;
if (THPVariable_Check(sliceobj->start)) {
torch::jit::tracer::ArgumentStash::stashValue(
std::string("start"),
1,
THPVariable_Unpack(sliceobj->start),
torch::jit::IntType::get());
}
if (THPVariable_Check(sliceobj->stop)) {
torch::jit::tracer::ArgumentStash::stashValue(
std::string("end"),
1,
THPVariable_Unpack(sliceobj->stop),
torch::jit::IntType::get());
}
if (THPVariable_Check(sliceobj->step)) {
torch::jit::tracer::ArgumentStash::stashValue(
std::string("step"),
1,
THPVariable_Unpack(sliceobj->step),
torch::jit::IntType::get());
}
}
static inline void recordSelectTrace(const Tensor& index_tensor) {
torch::jit::tracer::ArgumentStash::stashValue(
std::string("index"), 1, index_tensor, torch::jit::IntType::get());
}
static inline Variable applySlicing(
const Variable& self,
PyObject* index,
variable_list& outIndices,
bool is_tracing,
const at::Device& self_device,
const c10::optional<IntArrayRef>& self_sizes,
int64_t specified_dims) {
int64_t size =
PyTuple_GET_SIZE(index); // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
int64_t dim = 0;
// See NOTE [nested tensor size for indexing]
if (self_sizes.has_value()) {
TORCH_CHECK_INDEX(
specified_dims <= (int64_t)self_sizes->size(),
"too many indices for tensor of dimension ",
(int)self_sizes->size());
}
Variable result = self;
for (const auto i : c10::irange(size)) {
PyObject* obj = PyTuple_GET_ITEM(
index, i); // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
// NOTE [nested tensor size for indexing]
// nested tensor does not have a size (yet) so for now we represent its size
// as null may need to be changed after we reach a better solution for
// nested tensor size
c10::optional<IntArrayRef> result_sizes = result.is_nested()
? c10::optional<IntArrayRef>(c10::nullopt)
: c10::optional<IntArrayRef>(result.sizes());
result = at::indexing::handleDimInMultiDimIndexing(
/*prev_dim_result=*/result,
/*original_tensor=*/self,
/*index=*/([&]() {
if (THPUtils_checkLong(obj)) {
if (is_tracing && THPVariable_Check(obj)) {
recordSelectTrace(THPVariable_Unpack(obj));
}
return at::indexing::TensorIndex(THPUtils_unpackLong(obj));
} else if (PySlice_Check(obj)) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Py_ssize_t start, stop, step;
checkUnpackSlice(obj, &start, &stop, &step);
if (is_tracing) {
recordSliceTrace(obj);
}
return at::indexing::TensorIndex(
at::indexing::Slice(start, stop, step));
} else if (obj == Py_Ellipsis) {
return at::indexing::TensorIndex(at::indexing::Ellipsis);
} else if (obj == Py_None) {
return at::indexing::TensorIndex(at::indexing::None);
} else if (PyBool_Check(obj)) {
return at::indexing::TensorIndex(obj == Py_True);
} else if (THPVariable_Check(obj)) {
Tensor tensor = THPVariable_Unpack(obj);
if (is_tracing) {
auto scalar_type = tensor.scalar_type();
if (tensor.dim() == 0 &&
at::isIntegralType(scalar_type, /*includeBool=*/false) &&
scalar_type != at::kByte) {
recordSelectTrace(tensor);
}
}
return at::indexing::TensorIndex(std::move(tensor));
} else if (PySequence_Check(obj)) {
return at::indexing::TensorIndex(
sequenceToVariable(self.options(), obj));
} else {
auto idx = THPObjectPtr(PyNumber_Index(obj));
if (!idx) {
PyErr_Clear();
invalid_index(obj);
}
if (is_tracing && THPVariable_Check(idx)) {
recordSelectTrace(THPVariable_Unpack(idx));
}
return at::indexing::TensorIndex(THPUtils_unpackLong(idx));
}
})(),
/*dim_ptr=*/&dim,
/*specified_dims_ptr=*/&specified_dims,
/*real_dim=*/i,
/*outIndices=*/outIndices,
// See NOTE [ Setting `disable_slice_optimization` when calling C++
// tensor indexing functions from Python ]
/*disable_slice_optimization=*/is_tracing,
/*original_tensor_device=*/self_device,
/*prev_dim_result_sizes=*/result_sizes);
}
return result;
}
static inline bool treatSequenceAsTuple(PyObject* index) {
if (PyTuple_Check(index)) {
return true;
}
if (THPVariable_Check(index)) {
return false;
}
if (!PySequence_Check(index)) {
return false;
}
// This uses a heuristics from NumPy for determining whether to treat
// non-tuple sequences as if they were a tuple. From the NumPy code comments:
//
// "At this point, we're left with a non-tuple, non-array, sequence:
// typically, a list. We use some somewhat-arbitrary heuristics from here
// onwards to decided whether to treat that list as a single index, or a
// list of indices. Backwards compatibility only takes effect for short
// sequences - otherwise we treat it like any other scalar."
auto n = PySequence_Size(index);
if (n < 0) {
// Negative size indicates a Python error in the PySequence_Size call.
PyErr_Clear();
return false;
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
if (n >= 32) {
return false;
}
for (Py_ssize_t i = 0; i < n; i++) {
auto obj = THPObjectPtr{PySequence_GetItem(index, i)};
if (!obj.get()) {
PyErr_Clear();
return false;
}
if (THPVariable_Check(obj.get()) || PySequence_Check(obj.get()) ||
PySlice_Check(obj.get())) {
return true;
}
if (obj.get() == Py_Ellipsis || obj.get() == Py_None) {
return true;
}
}
return false;
}
static inline THPObjectPtr wrapTuple(PyObject* index) {
THPObjectPtr res;
if (treatSequenceAsTuple(index)) {
res = PySequence_Tuple(index);
} else {
res = PyTuple_Pack(
1, index); // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
}
if (!res)
throw python_error();
return res;
}
// NOTE: Here is the dispatch structure for `THPVariable_getitem`:
//
// 1. Python 1-D getter calls C++ `at::indexing::get_item` after
// converting Python index to C++ TensorIndex.
//
// 2. Python N-D getter calls C++ `at::indexing::handleDimInMultiDimIndexing`
// for each dim, after converting Python index to C++ TensorIndex. If advanced
// indexing is needed, it calls C++ `at::indexing::dispatch_index`.
PyObject* THPVariable_getitem(PyObject* self, PyObject* index) {
HANDLE_TH_ERRORS
if (!THPVariable_CheckExact(self) && check_has_torch_function(self)) {
return handle_torch_function_indexing(self, index);
}
const auto& self_ = THPVariable_Unpack(self);
OptionalDeviceGuard device_guard(device_of(self_));
// handle simple types: none, ellipsis
if (index == Py_None) {
return THPVariable_Wrap(at::indexing::get_item(
self_, {at::indexing::TensorIndex(at::indexing::None)}));
} else if (index == Py_Ellipsis) {
return THPVariable_Wrap(at::indexing::get_item(
self_, {at::indexing::TensorIndex(at::indexing::Ellipsis)}));
}
bool is_tracing = torch::jit::tracer::isTracing();
// handle simple types: integers, slices, bool
if (THPUtils_checkLong(index)) {
if (is_tracing && THPVariable_Check(index)) {
recordSelectTrace(THPVariable_Unpack(index));
}
return THPVariable_Wrap(at::indexing::get_item(
self_, {at::indexing::TensorIndex(THPUtils_unpackLong(index))}));
} else if (PySlice_Check(index)) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Py_ssize_t start, stop, step;
checkUnpackSlice(index, &start, &stop, &step);
if (is_tracing) {
recordSliceTrace(index);
}
return THPVariable_Wrap(at::indexing::get_item(
self_,
{at::indexing::TensorIndex(at::indexing::Slice(start, stop, step))}));
} else if (index == Py_False || index == Py_True) {
return THPVariable_Wrap(([&]() {
pybind11::gil_scoped_release no_gil;
return at::indexing::get_item(
self_, {at::indexing::TensorIndex(index == Py_True)});
})());
}
// wrap index in a tuple if it's not already one
THPObjectPtr holder = wrapTuple(index);
variable_list variableIndices;
int64_t specified_dims = count_specified_dimensions(holder.get());
if (specified_dims == -1) {
return handle_torch_function_indexing(self, holder.get());
}
// See NOTE [nested tensor size for indexing]
c10::optional<IntArrayRef> self_sizes = c10::nullopt;
if (!self_.is_nested())
self_sizes = self_.sizes();
Variable sliced = applySlicing(
self_,
holder.get(),
variableIndices,
/*is_tracing=*/is_tracing,
self_.device(),
self_sizes,
specified_dims);
if (variableIndices.empty()) {
if (sliced.is_same(self_)) {
// ensure we return a shallow copy for things like x[...]
sliced = at::alias(sliced);
}
return THPVariable_Wrap(std::move(sliced));
}
// indexing by tensors ("advanced" indexing)
return THPVariable_Wrap(([&]() {
pybind11::gil_scoped_release no_gil;
return at::indexing::dispatch_index(sliced, std::move(variableIndices));
})());
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
void dispatch_set_item(
const Tensor& self,
ArrayRef<at::indexing::TensorIndex> indices,
const Tensor& value,
bool disable_slice_optimization = false) {
pybind11::gil_scoped_release no_gil;
at::indexing::set_item(self, indices, value, disable_slice_optimization);
}
// NOTE: Here is the dispatch structure for `THPVariable_setitem`:
//
// 1. Python 1-D setter calls C++ `at::indexing::set_item` after
// converting Python index to C++ TensorIndex.
//
// 2. Python N-D setter calls C++ `at::indexing::handleDimInMultiDimIndexing`
// for each dim, after converting Python index to C++ TensorIndex. If advanced
// indexing is needed, it calls C++ `at::indexing::dispatch_index_put_`.
int THPVariable_setitem(PyObject* self, PyObject* index, PyObject* py_value) {
HANDLE_TH_ERRORS
if (py_value == nullptr) {
throw TypeError("Tensor does not support deleting items");
}
if ((!THPVariable_CheckExact(self) && check_has_torch_function(self)) ||
(!THPVariable_CheckExact(py_value) &&
check_has_torch_function(py_value))) {
py::object ret = py::reinterpret_steal<py::object>(
handle_torch_function_indexing(self, index, py_value));
return 0;
}
const auto& self_ = THPVariable_Unpack(self);
if (self_.layout() == kSparse || self_.layout() == kSparseCsr ||
self_.layout() == kSparseCsc || self_.layout() == kSparseBsr ||
self_.layout() == kSparseBsc) {
throw TypeError("Cannot assign to a sparse tensor");
}
OptionalDeviceGuard device_guard(device_of(self_));
at::Device self_device = self_.device();
Variable value;
// TODO: This qint special case looks very suspicious...
if (isQIntType(self_.scalar_type())) {
value =
valueToTensor(device(kCPU).dtype(kFloat), py_value, at::Device(kCPU));
} else if (self_device.is_cuda()) {
value = valueToTensor(self_.options(), py_value, at::Device(kCPU));
} else {
value = valueToTensor(self_.options(), py_value, self_device);
}
// handle simple types: ellipsis, none, bool
if (index == Py_False) { // NOLINT(cppcoreguidelines-pro-type-cstyle-cast)
// do nothing for false (technically we should check the size, but we don't
// have real 0-sized shapes.
return 0;
} else if (index == Py_Ellipsis) {
dispatch_set_item(
self_, {at::indexing::TensorIndex(at::indexing::Ellipsis)}, value);
return 0;
} else if (index == Py_None) {
dispatch_set_item(
self_, {at::indexing::TensorIndex(at::indexing::None)}, value);
return 0;
} else if (index == Py_True) {
dispatch_set_item(self_, {at::indexing::TensorIndex(true)}, value);
return 0;
}
bool is_tracing = torch::jit::tracer::isTracing();
// handle simple types: integers, slices
if (THPUtils_checkLong(index)) {
if (is_tracing && THPVariable_Check(index)) {
recordSelectTrace(THPVariable_Unpack(index));
}
dispatch_set_item(
self_, {at::indexing::TensorIndex(THPUtils_unpackLong(index))}, value);
return 0;
} else if (PySlice_Check(index)) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
Py_ssize_t start, stop, step;
checkUnpackSlice(index, &start, &stop, &step);
if (is_tracing) {
recordSliceTrace(index);
}
// See NOTE [ Setting `disable_slice_optimization` when calling C++ tensor
// indexing functions from Python ]
dispatch_set_item(
self_,
{at::indexing::TensorIndex(at::indexing::Slice(start, stop, step))},
value,
/*disable_slice_optimization=*/is_tracing);
return 0;
}
// wrap index in a tuple if it's not already one
THPObjectPtr holder = wrapTuple(index);
variable_list variableIndices;
int64_t specified_dims = count_specified_dimensions(holder.get());
if (specified_dims == -1) {
py::object val = py::reinterpret_steal<py::object>(
handle_torch_function_indexing(self, index, py_value));
return 0;
}
Variable sliced = applySlicing(
self_,
holder.get(),
variableIndices,
/*is_tracing=*/is_tracing,
self_device,
self_.sizes(),
specified_dims);
if (variableIndices.empty()) {
pybind11::gil_scoped_release no_gil;
at::indexing::copy_to(sliced, value);
return 0;
}
{
pybind11::gil_scoped_release no_gil;
IntArrayRef valueSizes = value.sizes();
IntArrayRef slicedValueSizes = at::indexing::slicePrefix1sSize(valueSizes);
torch::autograd::Variable valuesSliced;
if (!valueSizes.equals(slicedValueSizes)) {
valuesSliced = value.view(slicedValueSizes);
} else {
valuesSliced = value;
}
at::indexing::dispatch_index_put_(
sliced, std::move(variableIndices), valuesSliced);
return 0;
}
END_HANDLE_TH_ERRORS_RET(-1)
}
} // namespace autograd
} // namespace torch
|