1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
|
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/autograd/InferenceMode.h>
#include <torch/csrc/autograd/autograd.h>
#include <torch/csrc/autograd/edge.h>
#include <torch/csrc/autograd/engine.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/functions/accumulate_grad.h>
#include <torch/csrc/autograd/functions/tensor.h>
#include <torch/csrc/autograd/generated/Functions.h>
#include <torch/csrc/autograd/utils/error_messages.h>
#include <ATen/core/VariableHooksInterface.h>
#include <ATen/ATen.h>
#include <ATen/FuncTorchTLS.h>
#include <ATen/MemoryOverlap.h>
#include <c10/util/Exception.h>
#include <iostream>
#include <list>
#include <memory>
#include <mutex>
#include <stdexcept>
#include <string>
#include <typeinfo>
#include <vector>
namespace torch {
namespace autograd {
DifferentiableViewMeta::DifferentiableViewMeta(
at::TensorImpl* self_impl,
c10::optional<ViewInfo> backward_info,
c10::optional<ViewInfo> forward_info,
bool shared_view_info,
CreationMeta creation_meta)
: AutogradMeta(self_impl),
backward_info_(std::move(backward_info)),
forward_info_(std::move(forward_info)),
shared_view_info_(shared_view_info),
creation_meta_(creation_meta) {
is_view_ = true;
if (backward_info_.has_value()) {
self_impl->set_version_counter(
impl::version_counter(backward_info_.value().base_));
attr_version_ = self_impl->version_counter().current_version();
TORCH_INTERNAL_ASSERT(
backward_info_.value().base_.unsafeGetTensorImpl() != self_impl);
}
if (shared_view_info_) {
TORCH_INTERNAL_ASSERT(
backward_info_.has_value(),
"Shared view info require a backward view info.");
TORCH_INTERNAL_ASSERT(
!forward_info_.has_value(),
"Shared view info require forward view info to be empty")
}
}
// Chain this view info with the new view op between base and tensor
ViewInfo ViewInfo::chain(
const Variable& base,
const Variable& tensor,
std::function<Variable(const Variable&)> view_func) const {
// Set `view_func` using the root base as input.
// `view_func` is used to recover views in backward when either as_strided is
// not supported or the view function changes the metadata which is not
// recorded by as_strided See Note [View + Inplace update on base tensor] and
// [View + Inplace update on view tensor] for more details how we use this
// function in backward.
if (view_func) {
// both current_view and it's parent have a view_func
if (view_fn_) {
// Copy parent view function to gain ownership
auto prev_fn = view_fn_;
view_func = [=](const at::Tensor& root_base) {
auto temp = prev_fn(root_base);
return view_func(temp);
};
} else {
// current_view has a view_func and but it's parent doesn't have one
if (base.unsafeGetTensorImpl()->support_as_strided()) {
auto size = base.sizes().vec();
auto stride = base.strides().vec();
auto storage_offset = base.storage_offset();
view_func = [=](const at::Tensor& root_base) {
auto temp = root_base.as_strided(size, stride, storage_offset);
return view_func(temp);
};
} else {
// When base is a view but doesn't carry a view_fn in
// DifferentiableViewMeta, it's a view that doesn't support inplace
// update, e.g. unbind. In this case we should throw an error when
// inplace update happens in **forward**. One would naturally think the
// following function will be first called in backward pass. But the
// first call site is indeed in **forward** pass when we refresh
// `grad_fn` triggered by inplace update. Search Note [View + Inplace
// update for view tensor] to for the call site.
view_func = [=](const at::Tensor& root_base) {
TORCH_CHECK(
false,
"This view is the output of a function that returns multiple views."
"Such functions do not allow the output views to be modified inplace."
"You should replace the inplace operation by an out-of-place one");
return root_base;
};
}
}
} else if (view_fn_) {
// if current_view doesn't have a view_func but it's parent has one
// Copy parent view function to gain ownership
auto prev_view_fn = view_fn_;
auto size = tensor.sizes().vec();
auto stride = tensor.strides().vec();
auto storage_offset = tensor.storage_offset();
view_func = [=](const at::Tensor& root_base) {
auto temp = prev_view_fn(root_base);
return temp.as_strided(size, stride, storage_offset);
};
}
return ViewInfo(base_, view_func);
}
namespace {
at::Tensor singleton_undefined_tensor;
struct ConcreteAutogradMetaFactory : public c10::impl::AutogradMetaFactory {
std::unique_ptr<c10::AutogradMetaInterface> make() const override {
return std::make_unique<AutogradMeta>();
}
const at::Tensor& undefined_tensor() const override {
return singleton_undefined_tensor;
}
};
ConcreteAutogradMetaFactory meta_factory;
static c10::impl::AutogradMetaFactoryRegisterer meta_factory_registerer(
&meta_factory);
} // namespace
namespace impl {
AutogradMeta* materialize_autograd_meta(const at::TensorBase& self) {
TORCH_CHECK(
self.defined(),
"cannot call materialize_autograd_meta() on undefined tensor");
auto p = self.unsafeGetTensorImpl();
if (!p->autograd_meta()) {
p->set_autograd_meta(std::make_unique<AutogradMeta>());
}
return get_autograd_meta(self);
}
void update_cpp_hooks_on_new_gradfn(
const at::TensorBase& self,
const std::shared_ptr<torch::autograd::Node>& new_fn) {
// This function is called whenever the grad_fn of the tensor is
// changed. We assume here that new_fn does not yet have hooks of
// its own
//
// This function does two things:
const auto& meta = impl::get_autograd_meta(self);
TORCH_INTERNAL_ASSERT(meta);
TORCH_INTERNAL_ASSERT(new_fn);
if (!self.retains_grad()) {
// (1) reset the list when grad_fn is updated, so new hooks don't
// get erroneously registered to the old grad_fn.
// Note that the old cpp_hooks_list_ is still kept alive by the
// old grad_fn so hooks registered to the older version of the tensor
// will continue to be active.
meta->cpp_hooks_list_ = nullptr;
return;
}
// (2) If there is a retains_grad hook registered, move that from the
// old cpp_hooks_list_ to the new one
auto idx = meta->retains_grad_;
auto new_list = std::make_shared<hooks_list>();
new_list->push_back(std::move((*meta->cpp_hooks_list_)[idx]));
(*meta->cpp_hooks_list_)[idx] = nullptr;
meta->cpp_hooks_list_ = new_list;
// Since this is a new list, 0 is the index of the retains_grad hook
meta->retains_grad_ = 0;
std::unique_ptr<FunctionPreHook> hook_ptr(
new CppFunctionPreHook(meta->cpp_hooks_list_, self.output_nr()));
new_fn->add_pre_hook(std::move(hook_ptr));
}
void rebase_history(const Variable& self, Edge gradient_edge) {
TORCH_INTERNAL_ASSERT(gradient_edge.function != nullptr);
auto diff_view_meta = get_view_autograd_meta(self);
if (diff_view_meta && diff_view_meta->has_bw_view()) {
// See NOTE [ View + Inplace detection ]
auto creation_meta = diff_view_meta->get_creation_meta();
// Do not use handle_view_on_rebase here as check_inplace should have been
// called before this and either throw an error
TORCH_INTERNAL_ASSERT(creation_meta == CreationMeta::DEFAULT);
TORCH_INTERNAL_ASSERT(gradient_edge.input_nr == 0);
TORCH_INTERNAL_ASSERT(gradient_edge.function);
TORCH_CHECK(
gradient_edge.function->num_inputs() == 1,
"Functions which modify views in-place must return a single Variable");
auto view_info = diff_view_meta->get_backward_view();
diff_view_meta->output_nr_ = gradient_edge.input_nr;
auto copy_slices = std::make_shared<CopySlices>(
view_info.base_,
at::TensorGeometry(self),
view_info.view_fn_,
std::move(gradient_edge.function));
set_gradient_edge(view_info.base_, {std::move(copy_slices), 0});
self.grad_fn(); // trigger an update to the view's grad_fn
return;
}
set_gradient_edge(self, std::move(gradient_edge));
// Pass both self and its grad_fn to avoid calling into grad_fn reentrantly
torch::autograd::impl::update_cpp_hooks_on_new_gradfn(self, self.grad_fn());
}
void create_cpp_hook(const at::TensorBase& self) {
auto& list = materialize_autograd_meta(self)->cpp_hooks_list_;
// NOLINTNEXTLINE(modernize-make-shared)
list.reset(new hooks_list());
std::unique_ptr<FunctionPreHook> hook_ptr(
new CppFunctionPreHook(list, self.output_nr()));
clear_hooks(self);
add_hook(self, std::make_shared<CppFunctionPreHook>(list, 0));
const auto& fn = self.grad_fn();
if (fn) {
fn->add_pre_hook(std::move(hook_ptr));
}
}
void set_grad_accumulator(
const Variable& self,
std::weak_ptr<Node> grad_accumulator) {
materialize_autograd_meta(self)->grad_accumulator_ =
std::move(grad_accumulator);
}
std::shared_ptr<Node> try_get_grad_accumulator(const Variable& self) {
if (get_autograd_meta(self)) {
return get_autograd_meta(self)->grad_accumulator_.lock();
} else {
return nullptr;
}
}
std::shared_ptr<Node> grad_accumulator(const Variable& self) {
auto autograd_meta = get_autograd_meta(self);
if (!autograd_meta) {
return nullptr;
}
if (autograd_meta->grad_fn_) {
throw std::logic_error(
"grad_accumulator() should be only called on leaf Variables");
}
if (!autograd_meta->requires_grad_) {
return nullptr;
}
std::lock_guard<std::mutex> lock(autograd_meta->mutex_);
auto result = autograd_meta->grad_accumulator_.lock();
if (result)
return result;
c10::raw::intrusive_ptr::incref(self.unsafeGetTensorImpl());
auto intrusive_from_this =
c10::intrusive_ptr<at::TensorImpl>::reclaim(self.unsafeGetTensorImpl());
result = std::make_shared<AccumulateGrad>(
Variable(std::move(intrusive_from_this)));
autograd_meta->grad_accumulator_ = result;
return result;
}
Edge gradient_edge(const Variable& self) {
// If grad_fn is null (as is the case for a leaf node), we instead
// interpret the gradient function to be a gradient accumulator, which will
// accumulate its inputs into the grad property of the variable. These
// nodes get suppressed in some situations, see "suppress gradient
// accumulation" below. Note that only variables which have `requires_grad =
// True` can have gradient accumulators.
if (const auto& gradient = self.grad_fn()) {
return Edge(gradient, self.output_nr());
} else {
return Edge(grad_accumulator(self), 0);
}
}
void set_gradient_edge(const Variable& self, Edge edge) {
auto* meta = materialize_autograd_meta(self);
meta->grad_fn_ = std::move(edge.function);
meta->output_nr_ = edge.input_nr;
// For views, make sure this new grad_fn_ is not overwritten unless it is
// necessary in the VariableHooks::grad_fn below. This logic is only relevant
// for custom autograd Functions for which multiple operations can happen on a
// given Tensor before its gradient edge is set when exiting the custom
// Function.
auto diff_view_meta = get_view_autograd_meta(self);
if (diff_view_meta && diff_view_meta->has_bw_view()) {
diff_view_meta->set_attr_version(self._version());
}
}
Node* grad_fn_unsafe(const Variable& self) {
if (get_autograd_meta(self)) {
return get_autograd_meta(self)->grad_fn_.get();
} else {
return nullptr;
}
}
// Versions
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
void set_version_counter(
const Variable& self,
const c10::VariableVersion& version_counter) {
TORCH_CHECK(
self.defined(), "cannot call set_version_counter() on undefined tensor");
self.unsafeGetTensorImpl()->set_version_counter(version_counter);
}
void bump_version(const Variable& self) {
TORCH_CHECK(self.defined(), "cannot call bump_version() on undefined tensor");
self.unsafeGetTensorImpl()->bump_version();
}
const c10::VariableVersion& version_counter(const Variable& self) {
TORCH_CHECK(
self.defined(), "cannot call version_counter() on undefined tensor");
return self.unsafeGetTensorImpl()->version_counter();
}
// Hooks
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
void add_hook(
const at::TensorBase& self,
std::shared_ptr<FunctionPreHook> hook) {
materialize_autograd_meta(self)->hooks_.push_back(std::move(hook));
}
namespace {
std::vector<std::shared_ptr<FunctionPreHook>> empty_singleton;
}
// TODO: Return an ArrayRef instead (and delete the singleton while you're at
// it
const std::vector<std::shared_ptr<FunctionPreHook>>& hooks(
const Variable& self) {
if (get_autograd_meta(self)) {
return get_autograd_meta(self)->hooks_;
} else {
return empty_singleton;
}
}
void clear_hooks(const at::TensorBase& self) {
// This is a little goofy, but usually this should be a no oop
materialize_autograd_meta(self)->hooks_.clear();
}
void set_name(const Variable& self, const std::string& name) {
materialize_autograd_meta(self)->name_ = name;
}
// Miscellaneous
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
AutogradMeta* get_autograd_meta(const at::TensorBase& self) {
// NB: could return nullptr
TORCH_CHECK(
self.defined(), "cannot call get_autograd_meta() on undefined tensor");
return static_cast<AutogradMeta*>(
self.unsafeGetTensorImpl()->autograd_meta());
}
DifferentiableViewMeta* get_view_autograd_meta(const at::TensorBase& self) {
// NB: return nullptr if self is not a view
AutogradMeta* meta = get_autograd_meta(self);
if (meta && meta->is_view_) {
return static_cast<DifferentiableViewMeta*>(meta);
} else {
return nullptr;
}
}
} // namespace impl
using at::Tensor;
struct VariableHooks final : at::impl::VariableHooksInterface {
at::TensorBase tensor_data(const at::TensorBase&) const override;
at::TensorBase variable_data(const at::TensorBase&) const override;
const std::shared_ptr<torch::autograd::Node>& grad_fn(
const at::TensorBase&) const override;
unsigned _register_hook(
const at::TensorBase&,
std::function<at::TensorBase(const at::TensorBase&)> hook) const override;
void remove_hook(const at::TensorBase&, unsigned pos) const override;
bool is_view(const at::TensorBase&) const override;
const at::TensorBase& base(const at::TensorBase&) const override;
const std::string& name(const at::TensorBase&) const override;
bool is_leaf(const at::TensorBase&) const override;
int64_t output_nr(const at::TensorBase&) const override;
void set_data(const at::TensorBase& self, const at::TensorBase& new_data)
const override;
at::TensorBase data(const at::TensorBase& self) const override;
int64_t _version(const at::TensorBase& self) const override;
void retain_grad(const at::TensorBase& self) const override;
bool retains_grad(const at::TensorBase& self) const override;
void _backward(
const Tensor& self,
at::TensorList inputs,
const c10::optional<Tensor>& gradient,
c10::optional<bool> keep_graph,
bool create_graph) const override;
void requires_grad_(const at::TensorBase& self, bool _requires_grad)
const override;
};
VariableHooks variableHooks;
at::impl::VariableHooksRegisterer registerVariableHooks(&variableHooks);
at::TensorBase VariableHooks::variable_data(const at::TensorBase& self) const {
TORCH_CHECK(
self.defined(), "cannot call variable_data() on undefined tensor");
auto self_impl_copy = self.unsafeGetTensorImpl()->shallow_copy_and_detach(
/*version_counter=*/0,
/*allow_tensor_metadata_change=*/false);
self_impl_copy->set_autograd_meta(nullptr);
return at::Tensor(self_impl_copy);
}
at::TensorBase VariableHooks::tensor_data(const at::TensorBase& self) const {
TORCH_CHECK(self.defined(), "cannot call tensor_data() on undefined tensor");
auto self_impl_copy = self.unsafeGetTensorImpl()->shallow_copy_and_detach(
/*version_counter=*/self.unsafeGetTensorImpl()->version_counter(),
/*allow_tensor_metadata_change=*/
self.unsafeGetTensorImpl()->allow_tensor_metadata_change());
return at::Tensor(self_impl_copy);
}
bool VariableHooks::is_leaf(const at::TensorBase& self) const {
if (impl::get_autograd_meta(self)) {
return impl::get_autograd_meta(self)->grad_fn_ == nullptr;
} else {
return true;
}
}
int64_t VariableHooks::output_nr(const at::TensorBase& self) const {
if (impl::get_autograd_meta(self)) {
return impl::get_autograd_meta(self)->output_nr_;
} else {
return 0;
}
}
void VariableHooks::set_data(
const at::TensorBase& self_base,
const at::TensorBase& new_data_base) const {
at::OptionalTensorRef self_ref(self_base);
const Tensor& self = *self_ref;
at::OptionalTensorRef new_data_ref(new_data_base);
const Tensor& new_data = *new_data_ref;
// `var.set_data(new_data)` shallow-copies all non-autograd TensorImpl fields
// from `new_data` to `var`. It requires that `new_data` and `var` have
// compatible tensor type.
TORCH_CHECK(
_has_compatible_shallow_copy_type(self, new_data),
"Attempted to call `variable.set_data(tensor)`, but `variable` and `tensor` have incompatible tensor type.");
TORCH_CHECK(
!self.requires_grad() ||
isDifferentiableType(at::typeMetaToScalarType(new_data.dtype())),
"data set to a tensor that requires gradients must be floating point or complex dtype");
// Resets gradient accumulator if metadata is out of date
AutogradMeta* autograd_meta = impl::get_autograd_meta(self);
if (autograd_meta) {
std::lock_guard<std::mutex> lock(autograd_meta->mutex_);
auto prior_accumulator = autograd_meta->grad_accumulator_.lock();
if (prior_accumulator) {
const auto prior_device = prior_accumulator->input_metadata(0).device();
const auto new_device = new_data.device();
if (!new_data.options().type_equal(self.options()) ||
prior_device != new_device) {
autograd_meta->grad_accumulator_.reset();
}
}
}
// Version counter is not shared when we replace a `Variable`'s tensor data
// by calling `set_data(...)`. The original version of the `Variable` is
// always preserved. See NOTE [ Version Counter Sharing ] for details.
//
// `var.set_data(new_data)` always ignores `var`'s
// `allow_tensor_metadata_change_`, because users need this API as an escape
// hatch for changing a tensor's metadata regardless of its
// `allow_tensor_metadata_change_` value, and the users are responsible for
// ensuring this is the behavior they want.
self.unsafeGetTensorImpl()->shallow_copy_from(new_data.getIntrusivePtr());
}
at::TensorBase VariableHooks::data(const at::TensorBase& self) const {
return self.variable_data();
}
int64_t VariableHooks::_version(const at::TensorBase& self) const {
return self.unsafeGetTensorImpl()->version_counter().current_version();
}
void VariableHooks::retain_grad(const at::TensorBase& self) const {
TORCH_CHECK(
self.requires_grad(),
"can't retain_grad on Tensor that has requires_grad=False");
// temporary hack to improve functorch UX.
const auto& functorch_tls = at::functorch::functorchTLSAccessor();
if (functorch_tls) {
functorch_tls->checkSupportsRetainGrad();
}
if (self.is_leaf()) { // no-op for leaves
return;
}
if (impl::get_autograd_meta(self)->retains_grad_ != -1) {
return;
}
c10::weak_intrusive_ptr<c10::TensorImpl> weak_self(self.getIntrusivePtr());
auto retain_grad_hook = [weak_self](const at::Tensor& grad) {
if (weak_self.expired()) {
return;
} else {
auto var = weak_self.lock();
if (!var->grad().defined()) {
if (grad.is_sparse()) {
var->mutable_grad() = grad.clone();
} else {
var->mutable_grad() = grad.clone(at::MemoryFormat::Contiguous);
}
} else {
var->mutable_grad() = var->grad() + grad;
}
}
};
auto idx = at::OptionalTensorRef(self)->register_hook(retain_grad_hook);
impl::get_autograd_meta(self)->retains_grad_ = idx;
}
bool VariableHooks::retains_grad(const at::TensorBase& self) const {
if (impl::get_autograd_meta(self)) {
return impl::get_autograd_meta(self)->retains_grad_ != -1;
} else {
return false;
}
}
void VariableHooks::_backward(
const Tensor& self,
at::TensorList inputs,
const c10::optional<Tensor>& gradient,
c10::optional<bool> keep_graph,
bool create_graph) const {
// TODO torch::autograd::backward should take the c10::optional<Tensor>
// gradient directly instead of us having to unwrap it to Tensor _gradient
// here.
Tensor _gradient = gradient.has_value() ? *gradient : Tensor();
std::vector<torch::autograd::Variable> input_vars(
inputs.begin(), inputs.end());
torch::autograd::backward(
{self}, {_gradient}, keep_graph, create_graph, input_vars);
}
void VariableHooks::requires_grad_(
const at::TensorBase& self,
bool _requires_grad) const {
if (!self.is_leaf() && !_requires_grad) {
throw std::runtime_error(
autograd::utils::requires_grad_leaf_error(_requires_grad));
}
self.set_requires_grad(_requires_grad);
}
// Backward View Variables
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
bool VariableHooks::is_view(const at::TensorBase& self) const {
auto diff_view_meta = torch::autograd::impl::get_view_autograd_meta(self);
if (diff_view_meta) {
return diff_view_meta->has_bw_view();
} else {
return false;
}
}
const at::TensorBase& VariableHooks::base(const at::TensorBase& self) const {
auto diff_view_meta = torch::autograd::impl::get_view_autograd_meta(self);
if (diff_view_meta) {
TORCH_CHECK(
diff_view_meta->has_bw_view(),
"Can't get base of non-backward view Tensor");
return diff_view_meta->get_backward_view().base_;
} else {
throw std::runtime_error("Can't get base of non-view Tensor");
}
}
namespace {
std::string singleton_string;
}
const std::string& VariableHooks::name(const at::TensorBase& self) const {
TORCH_CHECK(
self.defined(), "cannot call variable_data() on undefined tensor");
if (torch::autograd::impl::get_autograd_meta(self)) {
return torch::autograd::impl::get_autograd_meta(self)->name_;
} else {
return singleton_string;
}
}
namespace {
std::shared_ptr<torch::autograd::Node> singleton_shared_ptr;
}
const std::shared_ptr<torch::autograd::Node>& VariableHooks::grad_fn(
const at::TensorBase& self) const {
auto diff_view_meta = torch::autograd::impl::get_view_autograd_meta(self);
if (diff_view_meta && diff_view_meta->has_bw_view()) {
// See NOTE [ View + Inplace detection ]
std::lock_guard<std::mutex> lock(diff_view_meta->mutex_);
auto view_info = diff_view_meta->get_backward_view();
if (!diff_view_meta->grad_fn_ && !view_info.base_.requires_grad()) {
return diff_view_meta->grad_fn_;
}
auto current_version = self._version();
if (diff_view_meta->get_attr_version() != current_version) {
// This is an indirect rebase_history due to another view or the base
// being modified inplace
handle_view_on_rebase(diff_view_meta, /* indirect */ true);
TORCH_INTERNAL_ASSERT(diff_view_meta->output_nr_ == 0);
// Note [View + Inplace update for view tensor]
// An inplace update happened on Tensor `self` (which is a view).
// For example:
// view_1 = view_op_1(diff_view_meta->base_)
// view_2 = view_op_2(view_1)
// ...
// self = view_op_n(view_n-1)
// self = inplace_op(self)
//
// For CPU/CUDA backends, we employ one AsStridedBackward0 Node to
// represent the chain of view backward ops for effienciency.
//
// However in XLA backend we don't have full support of
// AsStridedBackward0, we instead run a full forward pass with a tensor
// that requires gradient to get proper grad_fn setup, then save it to
// DifferentiableViewMeta for future use. This is fairly cheap for XLA
// lazy tensor approach (but would be really expensive for CPU/CUDA). XLA
// Tensor only run thorugh VariableType dispatch and lower the forward
// pass to a XLA HLO graph, then we take grad_fn and never materialize the
// tensor content. So we only construct the graph but not execute it,
// which is a fairly cheap operation to do.
//
// See Note [View + Inplace update for base tensor] for what we do to base
// tensor when an in-place operation happens.
//
// TODO: Potentially the following logic can be replaced by special logic
// in VariableType_x.cpp
// that would provide a way to recreate the grad_fn chain.
if (view_info.has_view_fn()) {
auto view_fn = view_info.view_fn();
Tensor diff_view;
{
// We can reach this path with grad_mode disabled, e.g. engine
AutoGradMode grad_mode(true);
diff_view = view_fn(view_info.base_);
}
diff_view_meta->grad_fn_ = diff_view.grad_fn();
} else {
auto fn =
std::make_shared<torch::autograd::generated::AsStridedBackward0>();
fn->self_geometry = at::TensorGeometry(view_info.base_);
fn->size = self.sym_sizes().vec();
fn->stride = self.sym_strides().vec();
fn->storage_offset = self.sym_storage_offset();
fn->set_next_edges(
torch::autograd::collect_next_edges(view_info.base_));
fn->add_input_metadata(
view_info.base_.options(),
self.sym_sizes(), // Note: sizes(), not base_.sizes(), is
// intentional
self.unsafeGetTensorImpl()->is_python_dispatch());
diff_view_meta->grad_fn_ = std::move(fn);
}
diff_view_meta->set_attr_version(current_version);
torch::autograd::impl::update_cpp_hooks_on_new_gradfn(
self, diff_view_meta->grad_fn_);
}
return diff_view_meta->grad_fn_;
}
if (torch::autograd::impl::get_autograd_meta(self)) {
return torch::autograd::impl::get_autograd_meta(self)->grad_fn_;
} else {
return singleton_shared_ptr;
}
}
void VariableHooks::remove_hook(const at::TensorBase& self, unsigned pos)
const {
auto& list =
torch::autograd::impl::materialize_autograd_meta(self)->cpp_hooks_list_;
TORCH_CHECK(
list && pos < list->size(), "Invalid index, no hook at position ", pos);
// Hook will be ignored
(*list)[pos] = nullptr;
}
unsigned VariableHooks::_register_hook(
const at::TensorBase& self,
std::function<at::TensorBase(const at::TensorBase&)> hook) const {
TORCH_CHECK(
self.requires_grad(),
"cannot register a hook on a variable that "
"doesn't require gradient");
// NB: materialize_autograd_meta unnecessary due to requires grad check
auto& list = torch::autograd::impl::get_autograd_meta(self)->cpp_hooks_list_;
if (!list) {
torch::autograd::impl::create_cpp_hook(self);
}
unsigned idx = list->size();
list->push_back(hook);
return idx;
}
void handle_view_on_rebase(
DifferentiableViewMeta* diff_view_meta,
bool indirect) {
/// See NOTE [ View + Inplace detection ] for justification of the logic below
auto creation_meta = diff_view_meta->get_creation_meta();
if (creation_meta != CreationMeta::DEFAULT) {
auto grad_fn = diff_view_meta->grad_fn_.get();
std::string msg;
std::string modified_obj;
// Create the header for the error message.
if (indirect) {
modified_obj = "its base or another view of its base has been";
} else {
modified_obj = "is being";
}
if (grad_fn) {
msg = c10::str(
"Output ",
diff_view_meta->output_nr_,
" of ",
grad_fn->name(),
" is a view and ",
modified_obj,
" modified inplace.");
} else if (creation_meta == CreationMeta::INFERENCE_MODE) {
msg = c10::str(
"A view was created in inference mode and ",
modified_obj,
" modified inplace in normal mode.");
} else {
msg = c10::str(
"A view was created in no_grad mode and ",
modified_obj,
" modified inplace with grad mode enabled.");
}
if (creation_meta == CreationMeta::MULTI_OUTPUT_NODE) {
msg = c10::str(
msg,
" This view is the output of a function that returns multiple views. Such functions do not"
" allow the output views to be modified inplace. You should replace the inplace operation by an"
" out-of-place one.");
} else if (creation_meta == CreationMeta::NO_GRAD_MODE) {
TORCH_INTERNAL_ASSERT(!grad_fn);
msg = c10::str(
msg,
" Given that this use case is ambiguous and error-prone, it is forbidden."
" You can clarify your code by moving both the view and the inplace either both"
" inside the no_grad block (if you don't want the inplace to be tracked) or both outside (if you want"
" the inplace to be tracked).");
} else if (creation_meta == CreationMeta::INFERENCE_MODE) {
TORCH_INTERNAL_ASSERT(!grad_fn);
msg = c10::str(
msg,
" Given that this use case is ambiguous and error-prone, it is forbidden."
" You can clarify your code by moving both the view and the inplace either both"
" inside the inference_mode block (if you don't want the inplace to be tracked) or both outside (if you want"
" the inplace to be tracked).");
TORCH_CHECK(false, msg);
} else if (creation_meta == CreationMeta::IN_CUSTOM_FUNCTION) {
msg = c10::str(
msg,
" This view was created inside a custom Function (or because an input was returned as-is) and the"
" autograd logic to handle view+inplace would override the custom backward associated with the custom"
" Function, leading to incorrect gradients. This behavior is forbidden. You can fix this by"
" cloning the output of the custom Function.");
} else {
TORCH_INTERNAL_ASSERT(false, "Invalid CreationMeta state");
}
TORCH_CHECK(false, msg);
}
}
} // namespace autograd
} // namespace torch
|