1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
|
#pragma once
#include <torch/csrc/utils/python_stub.h>
#include <torch/csrc/Export.h>
#include <torch/csrc/autograd/cpp_hook.h>
#include <torch/csrc/autograd/edge.h>
#include <torch/csrc/autograd/forward_grad.h>
#include <torch/csrc/autograd/function_hook.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/core/Tensor.h>
#include <c10/util/Exception.h>
#include <cstdint>
#include <memory>
#include <mutex>
#include <stdexcept>
#include <string>
#include <utility>
#include <vector>
namespace torch {
namespace autograd {
/// `Variable` is exactly the same as `Tensor` (i.e. we have `using Variable =
/// at::Tensor`). This means you can perform all the usual mathematical and
/// other operations you can perform on `Tensor`s also on `Variable`s.
///
/// The only reason we are keeping the `Variable` class is backward
/// compatibility with external user's legacy C++ frontend code. Our intention
/// is to eliminate the `Variable` class in the near future.
using Variable = at::Tensor;
} // namespace autograd
} // namespace torch
// The following are all internal APIs and should not be shown in libtorch docs.
// Therefore, we wrap the following code with `#ifndef DOXYGEN_SHOULD_SKIP_THIS
// ... #endif`
#ifndef DOXYGEN_SHOULD_SKIP_THIS
namespace torch {
namespace autograd {
/// Check if this type is supported by the autograd engine.
/// If you change this, update the doc at the top of the
/// torch/autograd/__init__.py file and
/// "test_set_requires_grad_only_for_continuous_types" in test/test_autograd.py
static inline bool isDifferentiableType(at::ScalarType t) {
return isFloatingType(t) || isComplexType(t);
}
struct Node;
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Variable
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// A `Variable` augments a `Tensor` with the ability to interact in our
/// autograd machinery. Conceptually, `Variable`s travel along `Edge`s between
/// `Node`s in the autograd graph. A `Variable` can either be a leaf, like a
/// weight in a neural network, or an interior variable, when it is the result
/// of an operation between variables. Every `Variable` also stores another
/// `Variable` called its `grad` (gradient). If the variable is a leaf, its
/// gradient will be accumulated into this variable.
///
/// Every Tensor is a Variable, but sometimes we colloquially refer to Variables
/// that don't require gradients as Tensors (since none of the autograd
/// machinery for Variables applies). Historically, Variables and Tensors
/// were separate concepts, but now they are exactly the same (i.e. we have
/// `using Variable = at::Tensor`).
///
/// Gradient Edges
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Furthermore, `Variable`s have the notion of a `gradient_edge`, which is the
/// edge in the autograd graph that connects the variable to a particular input
/// of the gradient function that will be invoked with the variable during the
/// backward pass. More precisely, this gradient function can be one of two
/// things:
/// 1. A `grad_fn`, if the variable is in the interior of the graph. This is the
/// gradient of the function that produced the variable.
/// 2. A `grad_accumulator`, if the variable is a leaf, which accumulates a
/// scalar gradient value into its `grad` variable.
///
/// Versioning
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Another major feature of `Variable`s are *versions*. Versions are
/// incremented when an in-place mutation of a variable occurs. Versions are
/// useful when constructing `SavedVariable`s, which take a snapshot of a
/// `Variable` at a certain version. You can retrieve a `Variable`'s version
/// through its `current_version()` method.
///
/// Views
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// It is possible for a `Variable` to be a *view* of another `Variable`, in
/// which case it tracks that `Variable`'s data and autograd history. Beyond
/// construction, the interface of a view is identical to that of a regular
/// `Variable`. You can determine whether `Variable` is in fact a view by
/// probing its `is_view()` method. Note that the *view* semantics are only
/// meaningful for `Variable` relations that are relevant to autograd.
/// See NOTE [ Autograd View Variables ] for more details.
///~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
struct AutogradMeta;
struct DifferentiableViewMeta;
// Private-ish functions for manipulating variables; we don't want to put them
// on Tensor proper
namespace impl {
// WARNING: This may return a nullptr. If you require AutogradMeta to return
// a materialized structure, use materialize_autograd_meta instead.
TORCH_API AutogradMeta* get_autograd_meta(const at::TensorBase&);
// WARNING: This will return a nullptr if the Tensor is not a view.
TORCH_API DifferentiableViewMeta* get_view_autograd_meta(const at::TensorBase&);
// Returns the current autograd meta, materializing it if it was previously
// none. This counts as a *mutating* operation, so do not call it on
// "read-only" operators; in particular, this is NOT thread safe
TORCH_API AutogradMeta* materialize_autograd_meta(const at::TensorBase&);
/// Set the gradient accumulator of the `Variable`. This is only applicable to
/// leaf variables. Interior variables should call `set_gradient_edge()`.
TORCH_API void set_grad_accumulator(
const Variable&,
std::weak_ptr<Node> grad_accumulator);
/// Attempts to get a pointer to the gradient accumulator of the `Variable`,
/// if it still exists. If the gradient accumulator function has been
/// destroyed, returns a `nullptr`.
TORCH_API std::shared_ptr<Node> try_get_grad_accumulator(const Variable&);
/// Gets the gradient accumulator of the `Variable` if it has one, or else
/// create one on the fly and return it.
TORCH_API std::shared_ptr<Node> grad_accumulator(const Variable&);
/// Returns the "canonical" gradient edge of this `Variable`, i.e. either the
/// gradient function if this is an interior `Variable`, or the gradient
/// accumulator otherwise. If the `Variable` is interior, the returned `Edge`
/// will store the input index of the `Node` to which this variable is
/// connected in its `input_nr` field. For leaves, the `input_nr` is always
/// zero. Note that `set_gradient_edge` and `gradient_edge` are not
/// symmetric. You must use `set_gradient_edge` to set the `grad_fn` and
/// `set_grad_accumulator` to set the accumulator.
TORCH_API Edge gradient_edge(const Variable&);
/// Set the gradient edge -- i.e. `grad_fn` and `input_nr` -- of the
/// `Variable`.
/// NOTE: This will always set the `grad_fn`, even if this is a leaf variable,
/// and never the `grad_accumulator`. For the latter, use
/// `set_grad_accumulator`. This allows late construction of an interior
/// `Variable`.
TORCH_API void set_gradient_edge(const Variable&, Edge edge);
// Autograd Graph Interaction
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Update the `grad_fn` of an existing Variable. Called after in-place
/// modifications.
///
/// For View Variables:
/// Called after in-place modifications. Modifies the grad_fn of the base
/// Variable.
TORCH_API void rebase_history(const Variable&, Edge gradient_edge);
/// Gets the raw gradient function pointer, whatever it currently is.
TORCH_API Node* grad_fn_unsafe(const Variable&);
/// Increments the version count of this `Variable`.
TORCH_API void bump_version(const Variable&);
TORCH_API void set_version_counter(
const Variable&,
const c10::VariableVersion& version_counter);
/// Retrieves this `Variable`s version counter.
TORCH_API const c10::VariableVersion& version_counter(const Variable&);
TORCH_API void set_name(const Variable&, const std::string& name);
TORCH_API void add_hook(
const at::TensorBase&,
std::shared_ptr<FunctionPreHook> hook);
TORCH_API const std::vector<std::shared_ptr<FunctionPreHook>>& hooks(
const Variable&);
TORCH_API void clear_hooks(const at::TensorBase&);
TORCH_API void create_cpp_hook(const at::TensorBase&);
} // namespace impl
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// AutogradMeta
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Each `Variable` has one unique `AutogradMeta` struct, which stores autograd
/// metadata fields that are necessary for tracking the Variable's autograd
/// history. As an optimization, a Variable may store a nullptr, in lieu of a
/// default constructed AutogradMeta.
struct TORCH_API AutogradMeta : public c10::AutogradMetaInterface {
std::string name_;
Variable grad_;
std::shared_ptr<Node> grad_fn_;
std::weak_ptr<Node> grad_accumulator_;
// This field is used to store all the forward AD gradients
// associated with this AutogradMeta (and the Tensor it corresponds to)
// There is a semantic 1:1 correspondence between AutogradMeta and
// ForwardGrad but:
// - This field is lazily populated.
// - This field is a shared_ptr but it must never be
// shared by multiple Tensors. See Note [ Using ForwardGrad ]
// Any transition from not_initialized to initialized
// must be protected by mutex_
std::shared_ptr<ForwardGrad> fw_grad_;
std::vector<std::shared_ptr<FunctionPreHook>> hooks_;
std::shared_ptr<hooks_list> cpp_hooks_list_;
// Only meaningful on leaf variables (must be false otherwise)
bool requires_grad_;
// Only meaningful on non-leaf variables (must be -1 otherwise)
// The value of retains_grad_ indicates the index of it in cpp_hooks_list_
// A value of -1 indicates that the tensor does not retain grad
int64_t retains_grad_;
bool is_view_;
// The "output number" of this variable; e.g., if this variable
// was the second output of a function, then output_nr == 1.
// We use this to make sure we can setup the backwards trace
// correctly when this variable is passed to another function.
uint32_t output_nr_;
// Mutex to ensure that concurrent read operations that modify internal
// state are still thread-safe. Used by grad_fn(), grad_accumulator(),
// fw_grad() and set_fw_grad()
// This is mutable because we need to be able to acquire this from const
// version of this class for the functions above
mutable std::mutex mutex_;
/// Sets the `requires_grad` property of `Variable`. This should be true for
/// leaf variables that want to accumulate gradients, and false for all other
/// variables.
void set_requires_grad(bool requires_grad, at::TensorImpl* self_impl)
override {
TORCH_CHECK(
!requires_grad ||
isDifferentiableType(at::typeMetaToScalarType(self_impl->dtype())),
"Only Tensors of floating point and complex dtype can require gradients");
requires_grad_ = requires_grad;
}
bool requires_grad() const override {
return requires_grad_ || grad_fn_;
}
/// Accesses the gradient `Variable` of this `Variable`.
Variable& mutable_grad() override {
return grad_;
}
const Variable& grad() const override {
return grad_;
}
const Variable& fw_grad(uint64_t level, const at::TensorBase& self)
const override;
void set_fw_grad(
const at::TensorBase& new_grad,
const at::TensorBase& self,
uint64_t level,
bool is_inplace_op) override;
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
AutogradMeta(
at::TensorImpl* self_impl = nullptr,
bool requires_grad = false,
Edge gradient_edge = Edge()) {
grad_fn_ = std::move(gradient_edge.function);
requires_grad_ = false;
retains_grad_ = -1;
is_view_ = false;
output_nr_ = gradient_edge.input_nr;
// set_requires_grad also checks error conditions.
if (requires_grad) {
TORCH_INTERNAL_ASSERT(self_impl);
// NOLINTNEXTLINE(clang-analyzer-optin.cplusplus.VirtualCall)
set_requires_grad(requires_grad, self_impl);
}
TORCH_CHECK(
!grad_fn_ || !requires_grad_,
"requires_grad should be false if grad_fn is set");
}
~AutogradMeta() override {
// If AutogradMeta is being destroyed, it means that there is no other
// reference to its corresponding Tensor. It implies that no other thread
// can be using this object and so there is no need to lock mutex_ here to
// guard the check if fw_grad_ is populated.
if (fw_grad_) {
// See note [ Using ForwardGrad ]
fw_grad_->clear();
}
}
};
struct TORCH_API ViewInfo {
/// The base `Variable`
/// If this ViewInfo represents a forward (respectively backward) AD gradient,
/// then this Tensor cannot be a forward (respectively backward) view.
Variable base_;
/// By default we use as_strided to recover views which is more efficient.
/// view_fn is only saved when as_strided is not supported.
/// If view_fn has value, we use it to recover views in backward.
std::function<Variable(const Variable&)> view_fn_;
/// Accessors for the view function
bool has_view_fn() const {
return view_fn_ != nullptr;
}
std::function<Variable(const Variable&)> view_fn() const {
TORCH_CHECK(
has_view_fn(), "Can only access the view function if it exists.");
return view_fn_;
}
/// The chain function can be used to build a new ViewInfo for a
/// differentiable view function. It will return a new view info that
/// accurately represents how "tensor" is a view of this instance's "base_".
/// The "base" and "tensor" are respectively the input and output of the
/// differentiable view function that happened. They are required to properly
/// set the optional view_fn_ when it is not provided. The "view_func", if
/// provided, should be a function that allows to re-do the view between
/// "base" and "tensor".
ViewInfo chain(
const Variable& base,
const Variable& tensor,
std::function<Variable(const Variable&)> view_func = nullptr) const;
ViewInfo(Variable base, std::function<Variable(const Variable&)> view_fn)
: base_(std::move(base)), view_fn_(std::move(view_fn)) {
TORCH_CHECK(base_.defined(), "base is undefined");
}
};
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// DifferentiableViewMeta
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// NOTE [ Autograd View Variables ]
///
/// Many operations return Variable that shares storage with an input Variable.
/// The returned Variable is called a **view** Variable on the input **base**
/// Variable.
///
/// In PyTorch, we have two types of views: differentiable views, and
/// non-differentiable views. In either type, to support proper version
/// checking, the base and view Variables must always share the same
/// version_counter.
///
///
/// Differentiable Views
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// This class allows to track both forward and backward AD differentiable
/// views. These views can have different base as non-differentiable view for
/// forward and backward mode AD are not the same.
///
/// Most function are either both forward and backward differentiable views (for
/// example: view, select, narrow, transpose, etc) or both not forward and not
/// backward differentiable views (for example: indices, values, eq, lt, etc).
/// But there are also functions that are forward but not backward
/// differentiable views (only detach for now) or functions that are backward
/// but not forward differentiable view (only make_dual and unpack dual for
/// now).
///
/// A concrete example of two views with different bases is as follow:
///
/// # Have:
/// # dual is a dual Tensor that is neither a forward or backward view
/// detached_dual = dual.detach()
/// view = detached_dual.view_as(dual)
/// # The forward base of view is dual
/// # The backward base of view is detached_dual
///
/// - Backward Mode View
/// Differentiable views are the view variables where you want gradients to flow
/// back to the base variables. Out-of-place operations on views are quite
/// straightforward, but in-place ones are very tricky. Even if the base
/// variable may not require grad when we create the view, we still need to
/// track the view relation because future in-place ops may require back-proping
/// through it. For example, we need to support
///
/// (1) in-place operation on view, e.g.,
///
/// # Have:
/// # base.requires_grad = False
/// # var.requires_grad = True
/// base[1] = var # i.e., base[1].copy_(var)
/// torch.autograd.grad(base.sum(), var) <- should return an all ones
/// tensor
///
/// (2) in-place operation on base after view is created, e.g.,
///
/// # Have:
/// # base.requires_grad = False
/// # var.requires_grad = True
/// view = base[1]
/// base.copy_(var)
/// torch.autograd.grad(view.sum(), var) <- should return a tensor with
/// var[1] filled with all ones and
/// zeros everywhere else
///
/// - Forward Mode View
/// Forward differentiable views follow the same semantic as backward ones but
/// show up differently as they are computed along with the forward evaluation.
/// The hard examples above are thus very similar
///
/// (1) in-place operation on view, e.g.,
///
/// # Have:
/// # base is a regular Tensor
/// # var is a dual Tensor whose tangent is all ones
/// base[1] = var # i.e., base[1].copy_(var)
/// # Now, base is a dual Tensor
/// _, fw_grad = fwAD.unpack_dual(base) <- fw_grad should be a tensor with
/// fw_grad[1] filled with all ones
/// and zeros everywhere else
///
/// (2) in-place operation on base after view is created, e.g.,
///
/// # Have:
/// # base is a regular Tensor
/// # var is a dual Tensor whose tangent is all ones
/// view = base[1]
/// base.copy_(var)
/// _, fw_grad = fwAD.unpack_dual(view) <- fw_grad should be an all ones
/// tensor
///
/// See Note [Forward Grad View/inplace] for more details on how we handle these
/// hard cases.
///
///
/// DifferentiableViewMeta is created to support gradient tracking of
/// such **in-place** operations. In particular,
/// + if an in-place op is done on base, the grad_fn field of the view may
/// become stale. So accesses should always go through grad_fn(), which
/// reconstructs an updated grad_fn if the version_counter has incremented.
/// All other fields are always valid.
/// + if an in-place op is done on view, in rebase_history() of view, which is
/// called after every in-place op in VariableType.cpp, the grad_fn of base
/// is updated.
/// + if a single autograd Node returns multiple differentiable views, if any
/// output is modified by an inplace operation, the autograd engine will
/// make an equivalent graph (corresponding to the view operations) without
/// using equivalent graph, where each output is treated as if it were
/// produced by a distinct view operation. This discards the original (e.g.,
/// user provided) grad_fn. If the provided grad_fn does more than the
/// backward of the view, then the DifferentiableViewMeta must be created
/// with creation_meta= CreationMeta::MULTI_OUTPUT_NODE to prevent the
/// engine from ignoring the provided grad_fn.
///
/// Interaction with GradMode:
/// The particular case that we consider here is:
///
/// # Have:
/// # base.requires_grad = True or False
/// with torch.no_grad():
/// view = base[1]
/// base.requires_grad_()
/// view.copy_(var)
/// torch.autograd.grad(base.sum(), var) <- what should it return?
///
/// Given that this particular code example is ambiguous and can easily be
/// replace by either moving both inside the no_grad block or both outside, we
/// explicitly forbid it. For now, it is deprecated by a warning. This is
/// achieved by setting creation_meta=CreationMeta::NO_GRAD_MODE for all
/// differentiable views created in no_grad mode.
///
/// See Note [View + Inplace update for base tensor]
/// and Note [View + Inplace update for view tensor] for the details how
/// autograd handles inplace update with view ops.
///
/// Non-Differentiable Views
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// In certain cases, although function outputs share storage with inputs, they
/// will **never** require gradient history tracking. Instead of registering the
/// view relation via DifferentiableViewMeta in autograd, the views will be
/// using usual AutogradMeta and just share the version counters with the base
/// Variables.
/// Such views include:
/// 1. Views created from .detach()
/// 2. Views that are non-differentiable by its nature.
/// E.g., `sparse_tensor.indices()` is a integral view on a (possibly)
/// floating point tensor.
/// See top of `derivatives.yaml` on how to specify that outputs of a
/// function are non-differentiable.
/// These are called non-differentiable views as the gradients do not flow
/// through the view relation.
///
/// Relevant logic for both differentiable and non-differentiable views is
/// implemented in make_variable_(non_)differentiable_view below, and
/// wrap_output of gen_variable_type.py.
/// NOTE [ View + Inplace detection ]
///
/// We want to detect views followed by inplace as they are often forbidden to
/// ensure correctness of the computed gradients. But since we want to only
/// notify the user when both happen, we tag the DifferentiableViewMeta when the
/// view is created via the `make_variable_*_view()` functions. This tag is then
/// checked by the `check_inplace()` function from `VariableTypeUtils.h` that
/// should be called before every inplace operation and to detect cases where
/// other views are modified and this one is rebased by side effect, we also
/// check in the `VariableHooks::grad_fn()`.
/// Flag that gives more information about when this view was created:
/// - IN_CUSTOM_FUNCTION should be set when the view is created inside a custom
/// autograd Function is returned.
/// - NO_GRAD_MODE should be set when a view in created when GradMode is
/// disabled
/// - MULTI_OUTPUT_NODE should be set when a Node created by codegen code
/// returns
/// multiple differentiable views
/// - Inference_MODE should be set when a view of normal tensor is created in
/// InferenceMode.
/// - DEFAULT is for all other cases
enum class CreationMeta : uint8_t {
DEFAULT,
IN_CUSTOM_FUNCTION,
MULTI_OUTPUT_NODE,
NO_GRAD_MODE,
INFERENCE_MODE
};
/// Handles correctly propagating CreationMeta when a new view is created from a
/// previous view. In general, we don't want the new view to be _less_
/// restrictive than the previous view (it's okay to be _more_ restrictive). A
/// CreationMeta value of DEFAULT is currently the least restrictive, as the
/// behavior for all other CreationMeta values is to error out for in-place ops.
/// A CreationMeta value of INFERENCE_MODE is currently the most restrictive, so
/// it takes precedence in propagation. If this changes, the logic here will
/// need to be updated to properly handle the new semantics.
inline CreationMeta propagate_creation_meta(
CreationMeta prev_view_creation_meta,
CreationMeta new_view_creation_meta) {
return (new_view_creation_meta == CreationMeta::DEFAULT)
? prev_view_creation_meta
: (prev_view_creation_meta == CreationMeta::INFERENCE_MODE
? prev_view_creation_meta
: new_view_creation_meta);
}
/// Unified function to handle error checking when rebase happens
/// indirect=true means that the caller is not doing the inplace, but the
/// inplace happened somewhere else.
TORCH_API void handle_view_on_rebase(
DifferentiableViewMeta* diff_view_meta,
bool indirect = false);
struct TORCH_API DifferentiableViewMeta : public AutogradMeta {
private:
/// Informations about the views
c10::optional<ViewInfo> backward_info_;
c10::optional<ViewInfo> forward_info_;
// Optimization to reduce the number of ViewInfo we create.
// In the (very common) case where backward_info_ == forward_info_, we only
// populate backward_info_ (that should be used as both the forward and
// backward view information) and set shared_view_info_ = true. Invariants:
// - If shared_view_info_ is false, there is no special constraints on
// backward_info_ and forward_info_
// - If shared_view_info_ is true, we must have:
// - backward_info_.has_value() == true
// - forward_info_.has_value() == false
bool shared_view_info_;
/// The two following fields are extra information that we track to ensure
/// that any operation on this backward view is valid.
/// The value of the version_counter at the time grad_fn was created. The
/// grad_fn field is stale if attr_version_ !=
/// version_counter.current_version().
uint32_t attr_version_;
CreationMeta creation_meta_;
public:
/// requires_grad is a backward AD field so we only use the view specific
/// logic for backward differentiable views
bool requires_grad() const override {
return requires_grad_ || grad_fn_ ||
(has_bw_view() && get_backward_view().base_.requires_grad());
}
bool shared_view_info() const {
return shared_view_info_;
}
bool has_bw_view() const {
return backward_info_.has_value();
}
const ViewInfo& get_backward_view() const {
TORCH_CHECK(
has_bw_view(), "backward view info can only exist for backward views.");
return backward_info_.value();
}
uint32_t get_attr_version() const {
TORCH_CHECK(
has_bw_view(), "attr_version can only exist for backward views.");
return attr_version_;
}
void set_attr_version(uint32_t new_attr_version) {
TORCH_CHECK(
has_bw_view(), "attr_version can only exist for backward views.");
attr_version_ = new_attr_version;
}
CreationMeta get_creation_meta() const {
TORCH_CHECK(
has_bw_view(), "creation_meta can only exist for backward views.");
return creation_meta_;
}
void set_creation_meta(CreationMeta new_creation_meta) {
TORCH_CHECK(
has_bw_view(), "creation_meta can only exist for backward views.");
creation_meta_ = new_creation_meta;
}
bool has_fw_view() const {
return shared_view_info_ || forward_info_.has_value();
}
const ViewInfo& get_forward_view() const {
TORCH_CHECK(
has_fw_view(), "forward view info can only exist for forward views.");
TORCH_CHECK(
!shared_view_info_ || has_bw_view(),
"forward view info can only exist for forward views.");
return shared_view_info_ ? backward_info_.value() : forward_info_.value();
}
DifferentiableViewMeta(
at::TensorImpl* self_impl,
c10::optional<ViewInfo> backward_info,
c10::optional<ViewInfo> forward_info,
bool shared_view_info,
CreationMeta creation_meta = CreationMeta::DEFAULT);
};
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Variable Implementation
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Factory Functions
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Creates a `Variable` that is a *view* of another (*base*) variable.
/// The `gradient_edge` is an optional (gradient_function, input_number) pair.
/// `is_differentiable` is a bool that specifies whether this view is
/// differentiable, i.e., whether the relation should be tracked by autograd.
/// See NOTE [ Autograd View Variables ] for details.
/// NOTE: `allow_tensor_metadata_change` is set to true by default, because
/// there are a lot of call sites to these factory functions that need to change
/// the variable's size or storage afterwards, and they don't expect the
/// original tensor (where the variable is created from) to be updated. Setting
/// `allow_tensor_metadata_change_` to false by default would unnecessarily
/// prevent those changes from happening and is undesirable.
// See NOTE [ Autograd View Variables ] for details.
// Differentiable view. Track history with DifferentiableViewMeta.
inline Variable make_variable_differentiable_view(
const at::Tensor& data,
c10::optional<ViewInfo> backward_info,
c10::optional<ViewInfo> forward_info,
bool shared_view_info,
CreationMeta creation_meta,
bool allow_tensor_metadata_change = true) {
if (data.defined()) {
TORCH_CHECK(
data.getIntrusivePtr()->autograd_meta() == nullptr,
"Attempted to make a tensor into a differentiable view, but the "
"tensor already had autograd metadata associated with it. If you are "
"using a __torch_dispatch__ mode, the most common cause for this "
"problem is that you used torch.overrides.enable_reentrant_dispatch() "
"improperly; tensors created within the extent of reentrant dispatch "
"MUST NOT be directly returned from __torch_dispatch__; instead, they "
"must be wrapped into fresh tensors that serve as the output. If you "
"are not using wrappers, you probably don't need reentrant dispatch. "
"If this doesn't seem applicable, please file a bug to PyTorch.");
at::TensorImpl* data_impl = data.unsafeGetTensorImpl();
data_impl->set_allow_tensor_metadata_change(allow_tensor_metadata_change);
data_impl->set_autograd_meta(std::make_unique<DifferentiableViewMeta>(
data_impl,
std::move(backward_info),
std::move(forward_info),
shared_view_info,
creation_meta));
return data;
}
return Variable();
}
// See NOTE [ Autograd View Variables ] for details.
// Non-differentiable view. Just share version counter.
inline Variable make_variable_non_differentiable_view(
Variable base,
const at::Tensor& data,
bool allow_tensor_metadata_change = true) {
if (data.defined()) {
// Currently all of non-differentiable view ops(detach/_indices/_values)
// share the same TensorImpl as their base Tensor. Thus a new TensorImpl
// allocation here is required.
auto data_impl_copy = data.getIntrusivePtr()->shallow_copy_and_detach(
/*version_counter=*/impl::version_counter(base),
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
data_impl_copy->set_autograd_meta(nullptr);
return Variable(data_impl_copy);
}
return Variable();
}
/// Creates a `Variable` from the given `Tensor`, copying its underlying
/// `TensorImpl`. `requires_grad` should be set only for leaves, and determines
/// whether the `Variable` will accumulate gradients. NOTE: `data` must *not* be
/// a `Variable` already. Its dynamic type *must* be `Tensor`.
///
/// TODO: Eliminate this function as much as possible, as it can be expressed
/// more clearly as detach() or a no-op in most call sites (especially when
/// there is only one use of the variable).
inline Variable make_variable(
at::Tensor data,
bool requires_grad = false,
bool allow_tensor_metadata_change = true) {
if (data.defined()) {
if (data.getIntrusivePtr().use_count() == 1 &&
data.getIntrusivePtr()->unique_version()) {
auto data_impl = data.unsafeReleaseIntrusivePtr();
data_impl->set_allow_tensor_metadata_change(allow_tensor_metadata_change);
// NOLINTNEXTLINE(bugprone-branch-clone)
if (requires_grad) {
data_impl->set_autograd_meta(
std::make_unique<AutogradMeta>(data_impl.get(), requires_grad));
} else {
data_impl->set_autograd_meta(nullptr);
}
return Variable(std::move(data_impl));
} else {
auto data_impl_copy = data.getIntrusivePtr()->shallow_copy_and_detach(
/*version_counter=*/0,
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
// NOLINTNEXTLINE(bugprone-branch-clone)
if (requires_grad) {
data_impl_copy->set_autograd_meta(std::make_unique<AutogradMeta>(
data_impl_copy.get(), requires_grad));
} else {
data_impl_copy->set_autograd_meta(nullptr);
}
return Variable(data_impl_copy);
}
}
return Variable();
}
/// Creates a `Variable` from the given `Tensor`, copying its underlying
/// `TensorImpl`. `gradient_edge` should be a (function, input_nr) pair
/// specifying the function in the autograd graph, and what particular input of
/// that function, this variable is connected to.
inline Variable make_variable(
at::Tensor data,
Edge gradient_edge,
bool allow_tensor_metadata_change = true) {
if (data.defined()) {
auto data_impl_copy = data.getIntrusivePtr()->shallow_copy_and_detach(
/*version_counter=*/0,
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
data_impl_copy->set_autograd_meta(std::make_unique<AutogradMeta>(
data_impl_copy.get(), false, std::move(gradient_edge)));
return Variable(data_impl_copy);
}
return Variable();
}
} // namespace autograd
} // namespace torch
#endif /* DOXYGEN_SHOULD_SKIP_THIS */
|