File: comm.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (508 lines) | stat: -rw-r--r-- 16,953 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
#include <torch/csrc/cuda/comm.h>

#include <torch/csrc/cuda/device_set.h>
#include <torch/csrc/utils/tensor_flatten.h>

#ifdef USE_NCCL
#include <torch/csrc/cuda/nccl.h>
#endif

#include <ATen/ATen.h>
#include <ATen/WrapDimUtils.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/util/Optional.h>
#include <c10/util/irange.h>
#include <torch/csrc/autograd/variable.h>

#include <cstddef>
#include <vector>

namespace torch {
namespace cuda {
using namespace at;
using namespace torch::autograd;

// Some operations can be performed more efficiently if we're handling tensors
// of a single type only. Adding this logic directly in the loop makes it a bit
// ugly, so here's a helper for it.
struct unique_type_checker {
  void show(size_t type_id) {
    if (!unique) {
      return;
    }
    if (!type_id_) {
      type_id_ = type_id;
    }

    unique = type_id_.value() == type_id;
  }

  c10::optional<size_t> type_id_;
  bool unique = true;
};

// ***************** Broadcast *******************
//
// Broadcast a source tensor (CPU or CUDA) to a list of CUDA devices, or CUDA
// tensors on one or more devices.

// no checks
static inline std::vector<Tensor>& _broadcast_out_impl(
    const Tensor& tensor,
    std::vector<Tensor>& out_tensors) {
#ifdef USE_NCCL
  std::vector<Tensor> nccl_list;
  nccl_list.reserve(out_tensors.size() + 1);
  nccl_list.push_back(tensor);
  for (auto& out_tensor : out_tensors) {
    nccl_list.push_back(out_tensor);
  }
  if (nccl::is_available(nccl_list)) {
    nccl::broadcast(nccl_list);
  } else {
#else
  {
#endif
    for (auto& out_tensor : out_tensors) {
      out_tensor.copy_(tensor, /*non_blocking=*/true);
    }
  }
  return out_tensors;
}

std::vector<Tensor>& broadcast_out(
    const Tensor& tensor,
    std::vector<Tensor>& out_tensors) {
  for (const auto i : c10::irange(out_tensors.size())) {
    TORCH_CHECK(
        out_tensors[i].is_cuda(),
        "Expected all output tensors to be CUDA tensors, but output tensor at index ",
        i,
        " has device '",
        out_tensors[i].device(),
        "'");
    TORCH_CHECK(
        out_tensors[i].sizes() == tensor.sizes(),
        "Expected all output tensors to have same shape as the source tensor ",
        tensor.sizes(),
        ", but output tensor at index ",
        i,
        " has shape ",
        out_tensors[i].sizes());
  }
  return _broadcast_out_impl(tensor, out_tensors);
}

std::vector<Tensor> broadcast(const Tensor& tensor, IntArrayRef devices) {
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<Tensor> diff_device_dst_tensors;
  diff_device_dst_tensors.reserve(devices.size());
  for (auto device : devices) {
    TORCH_CHECK(
        device >= 0, "Expected non-negative device index, but got ", device);
    if (device != tensor.get_device()) {
      diff_device_dst_tensors.push_back(at::empty(
          tensor.sizes(),
          tensor.options().device(
              at::Device(DeviceType::CUDA, device)))); // preserve memory format
    }
  }
  _broadcast_out_impl(tensor, diff_device_dst_tensors);
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<Tensor> dst_tensors;
  dst_tensors.reserve(devices.size());
  auto it = diff_device_dst_tensors.begin();
  for (auto device : devices) {
    // NOLINTNEXTLINE(bugprone-branch-clone)
    if (device != tensor.get_device()) {
      dst_tensors.push_back(*it++);
    } else {
      dst_tensors.push_back(tensor);
    }
  }
  TORCH_INTERNAL_ASSERT(it == diff_device_dst_tensors.end());
  return dst_tensors;
}

// NOTE [ Version Counter in comm.*_coalesced ]
//
// broadcast_coalesced
// ~~~~~~~~~~~~~~~~~~~
//
// In broadcast_coalesced, multiple variables may be coalesced into a single
// large one, broadcast to other devices, and the get split according to the
// original shapes.
//
// When splitting, the view operations will make all Variables broadcast
// together to share a single version counter, because they are all views of the
// large Variable. However, that large Variable is immediately discarded and all
// these Variables do not share storage at all.
//
// For example, when two buffers are broadcast together in `DataParallel` and
// one of them is modified in-place during `forward` but the other is needed in
// backward, autograd engine will complain.
//
// We thus re-wrap these Variables after broadcasting (i.e., effectively doing
// what is equivalent to .data in Python), and give them individual version
// counters.
//
// NB: Just calling detach() on the variables is not sufficient
//
// NB: For `device[0]` in broadcast_coalesced, the input Variables are always
//     returned as-is, so **do not** re-wrap them.
//
// reduce_add_coalesced
// ~~~~~~~~~~~~~~~~~~~~
//
// Similarly for reduce_add_coalesced, when the output are newly created
// Variables.
tensor_list2d broadcast_coalesced(
    TensorList tensors,
    IntArrayRef devices,
    size_t buffer_size) {
  TORCH_CHECK(
      std::all_of(
          tensors.begin(),
          tensors.end(),
          [&](const at::Tensor& t) { return t.get_device() == devices[0]; }),
      "All tensors must be on devices[0]: ",
      devices[0]);
#ifdef USE_NCCL
  buffer_size = std::min(torch::cuda::nccl::get_max_count(), buffer_size);
#endif

  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  tensor_list2d outputs(devices.size());
  outputs[0] = tensors.vec();
  for (auto& o : outputs)
    o.reserve(tensors.size());

  unique_type_checker type_checker;
  at::cuda::CUDAGuard device_guard(devices[0]);
  for (auto& chunk : utils::take_tensors(tensors, buffer_size)) {
    auto type_id = chunk.type_id();
    type_checker.show(type_id);
    std::vector<at::Tensor> results;
    if (chunk.options().is_sparse()) {
      auto flat_tuple = utils::flatten_sparse_tensors(chunk.tensors);
      auto broadcast_indices = broadcast(flat_tuple.first, devices);
      auto broadcast_values = broadcast(flat_tuple.second, devices);
      results.reserve(devices.size());
      for (size_t i = 1, num_devices = devices.size(); i < num_devices; ++i) {
        device_guard.set_index(devices[i]);
        auto& device_outputs = outputs[i];
        auto& inds = broadcast_indices[i];
        auto& vals = broadcast_values[i];
        for (const auto& var :
             utils::unflatten_sparse_tensors(inds, vals, chunk.tensors)) {
          // See NOTE [ Version Counter in comm.*_coalesced ]
          device_outputs.push_back(make_variable(var.tensor_data(), false));
        }
      }
    } else {
      auto results =
          broadcast(utils::flatten_dense_tensors(chunk.tensors), devices);
      for (size_t i = 1, num_devices = devices.size(); i < num_devices; ++i) {
        device_guard.set_index(devices[i]);
        auto& device_outputs = outputs[i];
        for (auto& var :
             utils::unflatten_dense_tensors(results[i], chunk.tensors)) {
          // See NOTE [ Version Counter in comm.*_coalesced ]
          device_outputs.push_back(make_variable(var.tensor_data(), false));
        }
      }
    }
  }

  // If we only saw a single tensor type, then we can skip expensive reordering
  if (!type_checker.unique) {
    for (auto& o : outputs)
      utils::reorder_tensors_like(o, tensors);
  }
  return outputs;
}

// ***************** Scatter *******************
//
// Scatter a source tensor (CPU or CUDA) to a list of CUDA tensors on one or
// more devices.

std::vector<at::Tensor>& scatter_out(
    const at::Tensor& tensor,
    std::vector<at::Tensor>& out_tensors,
    int64_t dim,
    const c10::optional<std::vector<c10::optional<at::cuda::CUDAStream>>>&
        streams) {
  TORCH_CHECK(
      !out_tensors.empty(),
      "Expected at least one output tensor to scatter to");
  dim = at::maybe_wrap_dim(dim, tensor);
  int64_t total_size = 0;
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<int64_t> chunk_sizes;
  chunk_sizes.reserve(out_tensors.size());
  for (const auto i : c10::irange(out_tensors.size())) {
    TORCH_CHECK(
        out_tensors[i].is_cuda(),
        "Expected all output tensors to be CUDA tensors, but output tensor at index ",
        i,
        " has device '",
        out_tensors[i].device(),
        "'");
    auto out_sizes = out_tensors[i].sizes().vec();
    // NOLINTNEXTLINE(clang-diagnostic-sign-compare)
    bool same_ndim = out_sizes.size() == tensor.dim();
    if (same_ndim) {
      total_size += out_sizes[dim];
      chunk_sizes.push_back(out_sizes[dim]);
      out_sizes[dim] = tensor.size(dim);
    }
    TORCH_CHECK(
        same_ndim && out_sizes == tensor.sizes(),
        "Output tensor at index ",
        i,
        " has incorrect shape: ",
        out_tensors[i].sizes(),
        ". Expected same "
        "shape except for scatter dim ",
        dim,
        " as the source tensor: ",
        at::IntArrayRef(tensor.sizes()));
  }
  TORCH_CHECK(
      total_size == tensor.size(dim),
      "Total size for output tensors along scatter dim ",
      dim,
      " does not match "
      "the source tensor size at dim ",
      dim,
      ". Expected ",
      tensor.size(dim),
      ", but got total size ",
      total_size);

  auto chunks =
      tensor.split_with_sizes(/*split_sizes=*/chunk_sizes, /*dim=*/dim);
  at::cuda::OptionalCUDAStreamGuard cuda_guard;
  for (const auto i : c10::irange(chunks.size())) {
    if (i < (streams ? streams->size() : 0U) && (*streams)[i]) {
      const auto device_index =
          static_cast<int16_t>(out_tensors[i].get_device());
      TORCH_CHECK(
          (*streams)[i]->device_index() == device_index,
          "Expected the device associated with the stream at index ",
          i,
          " (was ",
          (*streams)[i]->device_index(),
          ") ",
          "to match the device supplied at that index ",
          "(expected ",
          device_index,
          ")");
      cuda_guard.reset_stream(*(*streams)[i]);
    }
    // NB: We don't detect the case where `out_tensor` is already the correct
    //     view of `tensor` since that would be nontrivial and involve checking
    //     ptr, offset, and strides. So `scatter_out(src, src.chunk(...))` does
    //     more copying than `scatter(src)`.
    out_tensors[i].copy_(chunks[i], /*non_blocking=*/true);
  }
  return out_tensors;
}

std::vector<at::Tensor> scatter(
    const at::Tensor& tensor,
    at::IntArrayRef devices,
    const c10::optional<std::vector<int64_t>>& chunk_sizes,
    int64_t dim,
    const c10::optional<std::vector<c10::optional<at::cuda::CUDAStream>>>&
        streams) {
  TORCH_CHECK(!devices.empty(), "Expected at least one device to scatter to");
  if (chunk_sizes.has_value()) {
    TORCH_CHECK(
        chunk_sizes->size() == devices.size(),
        "Expected devices and chunk_sizes to be of same length, but got "
        "len(devices) = ",
        devices.size(),
        " and len(chunk_sizes) = ",
        chunk_sizes->size());
  }
  dim = at::maybe_wrap_dim(dim, tensor);
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<at::Tensor> chunks = chunk_sizes
      ? tensor.split_with_sizes(/*split_sizes=*/*chunk_sizes, /*dim=*/dim)
      : tensor.chunk(/*chunks=*/devices.size(), /*dim=*/dim);
  at::cuda::OptionalCUDAStreamGuard cuda_guard;
  for (const auto i : c10::irange(chunks.size())) {
    const auto device_index = static_cast<int16_t>(devices[i]);
    if (device_index != tensor.get_device()) {
      if (i < (streams ? streams->size() : 0U) && (*streams)[i]) {
        TORCH_CHECK(
            (*streams)[i]->device_index() == device_index,
            "Expected the device associated with the stream at index ",
            i,
            " (was ",
            (*streams)[i]->device_index(),
            ") ",
            "to match the device supplied at that index ",
            "(expected ",
            device_index,
            ")");
        cuda_guard.reset_stream(*(*streams)[i]);
      }
      TORCH_CHECK(
          device_index >= 0,
          "Expected non-negative device index, but got ",
          device_index);
      chunks[i] = chunks[i].to(
          {DeviceType::CUDA, device_index},
          /*non_blocking=*/true,
          /*copy=*/false,
          /*memory_format=*/at::MemoryFormat::Preserve);
    }
  }
  return chunks;
}

// ***************** Gather *******************
//
// Gather a list of CUDA tensors on one or more devices to a target tensor or
// device, either CPU or CUDA.

// no checks
static inline at::Tensor& _gather_out_impl(
    at::TensorList tensors,
    at::Tensor& out_tensor,
    int64_t dim) {
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<int64_t> chunk_sizes;
  chunk_sizes.reserve(tensors.size());
  for (auto& tensor : tensors) {
    chunk_sizes.push_back(tensor.size(dim));
  }
  auto chunks =
      out_tensor.split_with_sizes(/*split_sizes=*/chunk_sizes, /*dim=*/dim);
  for (const auto i : c10::irange(tensors.size())) {
    chunks[i].copy_(tensors[i], /*non_blocking=*/out_tensor.is_cuda());
  }
  return out_tensor;
}

at::Tensor& gather_out(
    at::TensorList tensors,
    at::Tensor& out_tensor,
    int64_t dim) {
  TORCH_CHECK(!tensors.empty(), "Expected at least one tensor to gather from");
  int64_t total_size = 0;
  auto& first = tensors.front();
  const auto first_size = first.sizes();
  dim = at::maybe_wrap_dim(dim, first);
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<int64_t> expected_size(first_size.begin(), first_size.end());
  for (const auto i : c10::irange(tensors.size())) {
    const auto& tensor = tensors[i];
    TORCH_CHECK(
        tensor.is_cuda(),
        "Expected all input tensors to be CUDA tensors, but "
        "tensor at index ",
        i,
        " has device '",
        tensor.device(),
        "'");
    TORCH_CHECK(
        tensor.ndimension() == static_cast<int64_t>(expected_size.size()),
        "Expected all input tensors to have the same number of dimensions, but ",
        "tensor at index ",
        i,
        "has ",
        tensor.ndimension(),
        " dimensions, (expected ",
        expected_size.size(),
        ")");
    expected_size[dim] = tensor.size(dim);
    for (const auto dimension : c10::irange(expected_size.size())) {
      TORCH_CHECK(
          expected_size[dimension] == tensor.size(dimension),
          "Input tensor at index ",
          i,
          " has invalid shape ",
          tensor.sizes(),
          ", but expected ",
          at::IntArrayRef(expected_size));
    }
    total_size += tensor.size(dim);
  }
  expected_size[dim] = total_size;
  TORCH_CHECK(
      out_tensor.sizes() == expected_size,
      "Expected out tensor to have shape ",
      at::IntArrayRef(expected_size),
      ", but got ",
      out_tensor.sizes())

  return _gather_out_impl(tensors, out_tensor, dim);
}

at::Tensor gather(
    at::TensorList tensors,
    int64_t dim,
    c10::optional<int32_t> destination_index) {
  TORCH_CHECK(!tensors.empty(), "Expected at least one tensor to gather from");
  int64_t total_size = 0;
  auto& first = tensors.front();
  const auto first_size = first.sizes();
  dim = at::maybe_wrap_dim(dim, first);
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<int64_t> expected_size(first_size.begin(), first_size.end());
  auto memory_format = first.suggest_memory_format();
  for (const auto i : c10::irange(tensors.size())) {
    const auto& tensor = tensors[i];
    TORCH_CHECK(
        tensor.is_cuda(),
        "Expected all input tensors to be CUDA tensors, but "
        "tensor at index ",
        i,
        " has device ",
        tensor.device());
    TORCH_CHECK(
        tensor.ndimension() == static_cast<int64_t>(expected_size.size()),
        "Expected all input tensors to have the same number of dimensions, but ",
        "tensor at index ",
        i,
        "has ",
        tensor.ndimension(),
        " dimensions, (expected ",
        expected_size.size(),
        ")");
    expected_size[dim] = tensor.size(dim);
    for (const auto dimension : c10::irange(expected_size.size())) {
      TORCH_CHECK(
          expected_size[dimension] == tensor.size(dimension),
          "Input tensor at index ",
          i,
          " has invalid shape ",
          tensor.sizes(),
          ", but expected ",
          at::IntArrayRef(expected_size));
    }
    total_size += tensor.size(dim);
    if (memory_format != MemoryFormat::Contiguous &&
        tensor.suggest_memory_format() != memory_format) {
      memory_format = MemoryFormat::Contiguous;
    }
  }
  expected_size[dim] = total_size;
  at::Device device(DeviceType::CPU);
  if (!destination_index || *destination_index != -1) {
    device = at::Device(
        DeviceType::CUDA, destination_index ? *destination_index : -1);
  }

  at::Tensor result =
      at::empty(expected_size, first.options().device(device), memory_format);
  return _gather_out_impl(tensors, result, dim);
}

} // namespace cuda
} // namespace torch