1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
#include <torch/csrc/distributed/autograd/context/context.h>
#include <functional>
#include <c10/core/StreamGuard.h>
#include <c10/util/Exception.h>
#include <torch/csrc/autograd/functions/accumulate_grad.h>
namespace torch {
namespace distributed {
namespace autograd {
using torch::autograd::AccumulateGrad;
DistAutogradContext::DistAutogradContext(int64_t contextId)
: contextId_(contextId),
impl_(c10::impl::VirtualGuardImpl{
at::hasCUDA() ? c10::DeviceType::CUDA : c10::DeviceType::CPU}) {}
int64_t DistAutogradContext::contextId() const {
return contextId_;
}
std::unordered_set<rpc::worker_id_t> DistAutogradContext::getKnownWorkerIds()
const {
std::lock_guard<std::mutex> guard(lock_);
return knownWorkerIds_;
};
void DistAutogradContext::addKnownWorkerId(const rpc::worker_id_t workerId) {
std::lock_guard<std::mutex> guard(lock_);
knownWorkerIds_.insert(workerId);
}
void DistAutogradContext::addSendFunction(
const std::shared_ptr<SendRpcBackward>& func,
int64_t autograd_message_id) {
TORCH_INTERNAL_ASSERT(func != nullptr);
std::lock_guard<std::mutex> guard(lock_);
TORCH_INTERNAL_ASSERT(
sendAutogradFunctions_.find(autograd_message_id) ==
sendAutogradFunctions_.end());
sendAutogradFunctions_.emplace(autograd_message_id, func);
}
void DistAutogradContext::addRecvFunction(
std::shared_ptr<RecvRpcBackward>& func,
int64_t autograd_message_id) {
TORCH_INTERNAL_ASSERT(func != nullptr);
std::lock_guard<std::mutex> guard(lock_);
TORCH_INTERNAL_ASSERT(
recvAutogradFunctions_.find(autograd_message_id) ==
recvAutogradFunctions_.end());
recvAutogradFunctions_.emplace(autograd_message_id, func);
}
std::unordered_map<int64_t, std::shared_ptr<SendRpcBackward>>
DistAutogradContext::sendFunctions() const {
std::lock_guard<std::mutex> guard(lock_);
return sendAutogradFunctions_;
}
std::unordered_map<int64_t, std::shared_ptr<RecvRpcBackward>>
DistAutogradContext::recvFunctions() const {
std::lock_guard<std::mutex> guard(lock_);
return recvAutogradFunctions_;
}
void DistAutogradContext::accumulateGrad(
const torch::autograd::Variable& variable,
const torch::Tensor& grad,
size_t num_expected_refs) {
TORCH_INTERNAL_ASSERT(grad.defined());
TORCH_INTERNAL_ASSERT(variable.requires_grad());
std::lock_guard<std::mutex> guard(lock_);
auto it = accumulatedGrads_.find(variable);
at::Tensor old_grad;
if (it != accumulatedGrads_.end()) {
// Accumulate multiple grads on the same variable.
old_grad = it->value();
}
// Gradients are computed using the forward streams. Local autograd
// engine uses AccumulateGrad function to retrieve and apply forward
// stream during the backward computation. In distributed autograd,
// we directly call AccumulateGrad::accumulateGrad, and skip the
// CUDA stream restoration from autograd function. Hence, we manually
// call it here to get the streams correct.
auto forward_stream =
torch::autograd::impl::grad_accumulator(variable)->stream(
grad.device().type());
c10::OptionalStreamGuard stream_guard(forward_stream);
// No higher order gradients supported in distributed autograd.
AutoGradMode grad_mode(false);
at::Tensor new_grad = AccumulateGrad::callHooks(variable, grad);
// TODO: Need to bump 'num_expected_refs' here when we support post_hooks for
// distributed autograd as part of
// https://github.com/pytorch/pytorch/issues/33482
AccumulateGrad::accumulateGrad(
variable,
old_grad,
new_grad,
// Add +1 here since we can't std::move(grad) when call
// AccumulateGrad::callHooks, since it is a const ref, and that incurs a
// refcount bump for the new_grad.
num_expected_refs + 1,
[this, &variable](at::Tensor&& grad_update) {
auto device = grad_update.device();
accumulatedGrads_.insert(variable, std::move(grad_update));
recordGradEvent(device);
});
}
std::shared_ptr<torch::autograd::GraphTask> DistAutogradContext::
retrieveGraphTask() {
std::lock_guard<std::mutex> guard(lock_);
TORCH_INTERNAL_ASSERT(graphTask_);
return graphTask_;
}
void DistAutogradContext::setGraphTask(
std::shared_ptr<torch::autograd::GraphTask> graphTask) {
std::lock_guard<std::mutex> guard(lock_);
TORCH_INTERNAL_ASSERT(
!graphTask_,
"Cannot set GraphTask multiple times for the same autograd context");
graphTask_ = std::move(graphTask);
}
void DistAutogradContext::resetGraphTask() {
std::lock_guard<std::mutex> guard(lock_);
graphTask_ = nullptr;
}
void DistAutogradContext::addOutstandingRpc(
const c10::intrusive_ptr<rpc::JitFuture>& jitFuture) {
jitFuture->addCallback([this](rpc::JitFuture& future) {
if (future.hasError()) {
// If we have an error, let the local autograd engine know about it.
std::unique_lock<std::mutex> lock(lock_);
if (graphTask_) {
graphTask_->set_exception_without_signal(nullptr);
lock.unlock();
if (!graphTask_->future_completed_.exchange(true)) {
graphTask_->future_result_->setErrorIfNeeded(future.exception_ptr());
}
} else {
LOG(WARNING) << "Ignoring error since GraphTask is no longer valid: "
<< future.tryRetrieveErrorMessage();
}
}
});
std::lock_guard<std::mutex> guard(lock_);
outStandingRpcs_.push_back(jitFuture);
}
void DistAutogradContext::clearOutstandingRpcs() {
std::unique_lock<std::mutex> lock(lock_);
outStandingRpcs_.clear();
}
void DistAutogradContext::recordGradEvent(c10::Device device) {
if (device.is_cuda()) {
auto iter = gradReadyEvents_.find(device);
if (iter == gradReadyEvents_.end()) {
c10::Event event(device.type());
event.record(impl_.getStream(event.device()));
gradReadyEvents_.emplace(
std::piecewise_construct,
std::forward_as_tuple(device),
std::forward_as_tuple(std::move(event)));
} else {
iter->second.record(impl_.getStream(device));
}
}
}
c10::intrusive_ptr<c10::ivalue::Future> DistAutogradContext::
clearAndWaitForOutstandingRpcsAsync() {
std::unique_lock<std::mutex> lock(lock_);
auto outStandingRpcs = std::move(outStandingRpcs_);
lock.unlock();
struct State {
explicit State(int32_t count)
: future(
c10::make_intrusive<c10::ivalue::Future>(c10::NoneType::get())),
remaining(count) {}
c10::intrusive_ptr<c10::ivalue::Future> future;
std::atomic<int32_t> remaining;
std::atomic<bool> alreadySentError{false};
};
auto state = std::make_shared<State>(outStandingRpcs.size());
if (outStandingRpcs.empty()) {
state->future->markCompleted(c10::IValue());
} else {
for (auto& rpc : outStandingRpcs) {
rpc->addCallback([state](rpc::JitFuture& future) {
if (future.hasError()) {
// If there's an error, we want to setError() on the future,
// unless another error has already been sent - use a CAS to
// guard.
//
// Don't decrement num remaining here! (We don't need to, since
// memory handling is separate). If we simply don't decrement on
// errors, reaching 0 means that there were no errors - and hence,
// we can just markCompleted() without any other checking there.
bool expectedAlreadySent = false;
if (state->alreadySentError.compare_exchange_strong(
expectedAlreadySent, true)) {
state->future->setError(future.exception_ptr());
}
return;
}
if (--state->remaining == 0) {
state->future->markCompleted(c10::IValue());
}
});
}
}
return state->future;
}
std::shared_ptr<SendRpcBackward> DistAutogradContext::retrieveSendFunction(
int64_t autograd_message_id) {
std::lock_guard<std::mutex> guard(lock_);
auto it = sendAutogradFunctions_.find(autograd_message_id);
TORCH_CHECK(
it != sendAutogradFunctions_.end(),
"Could not find send function for autograd message id: ",
autograd_message_id);
return it->second;
}
const c10::Dict<torch::Tensor, torch::Tensor> DistAutogradContext::
getGradients() const {
std::lock_guard<std::mutex> guard(lock_);
// block current streams before accessing gradients to make sure that
// gradient computations are finished before use.
for (auto& entry : gradReadyEvents_) {
auto& event = entry.second;
event.block(impl_.getStream(event.device()));
}
return accumulatedGrads_;
}
void DistAutogradContext::runGradCallbackForVariable(
const torch::autograd::Variable& variable,
GradCallback&& cb) {
torch::Tensor grad;
{
std::lock_guard<std::mutex> guard(lock_);
auto it = accumulatedGrads_.find(variable);
TORCH_INTERNAL_ASSERT(
it != accumulatedGrads_.end(),
"The grad for the variable should exist in dist_autograd context.");
grad = it->value();
}
if (cb(grad)) {
std::lock_guard<std::mutex> guard(lock_);
auto device = grad.device();
// Needs to update the grad in the map.
accumulatedGrads_.insert_or_assign(variable, std::move(grad));
recordGradEvent(device);
}
}
namespace {
thread_local ContextPtr tl_context_ptr;
} // namespace
ThreadLocalDistAutogradContext::ThreadLocalDistAutogradContext(
ContextPtr&& new_context)
: prev_context_ptr_(std::move(tl_context_ptr)) {
tl_context_ptr = std::move(new_context);
}
ThreadLocalDistAutogradContext::~ThreadLocalDistAutogradContext() {
tl_context_ptr = std::move(prev_context_ptr_);
}
// static
ContextPtr ThreadLocalDistAutogradContext::getContextPtr() {
return tl_context_ptr;
}
} // namespace autograd
} // namespace distributed
} // namespace torch
|