1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
|
#include <queue>
#include <ATen/Parallel.h>
#include <c10/core/Event.h>
#include <c10/util/DeadlockDetection.h>
#include <c10/util/irange.h>
#include <torch/csrc/autograd/functions/accumulate_grad.h>
#include <torch/csrc/autograd/input_buffer.h>
#include <torch/csrc/distributed/autograd/context/container.h>
#include <torch/csrc/distributed/autograd/engine/dist_engine.h>
namespace torch {
namespace distributed {
namespace autograd {
using torch::autograd::AccumulateGrad;
using torch::autograd::edge_list;
using torch::autograd::Engine;
using torch::autograd::GraphRoot;
using torch::autograd::GraphTask;
using torch::autograd::GraphTaskGuard;
using torch::autograd::InputBuffer;
using torch::autograd::Node;
using torch::autograd::NodeTask;
using torch::autograd::ReadyQueue;
using torch::autograd::validate_outputs;
using torch::autograd::variable_list;
static constexpr char* kNumBackwardPasses = "num_current_backward_passes";
static constexpr char* kNumAutogradContexts = "num_autograd_contexts";
// This hook does 3 things:
// 1. Call pre hooks of the original AccumulateGrad to modify the input grad.
// 2. Accumuate the gard to RPC context.
// 3. Call post hooks of the original AccumulateGrad.
class DistAccumulateGradCaptureHook
: public GraphTask::ExecInfo::Capture::GradCaptureHook {
public:
DistAccumulateGradCaptureHook(
std::shared_ptr<AccumulateGrad> accumulateGrad,
ContextPtr autogradContext)
: accumulateGrad_(std::move(accumulateGrad)),
autogradContext_(std::move(autogradContext)) {}
at::Tensor operator()(const at::Tensor& grad) override {
ThreadLocalDistAutogradContext contextGuard{ContextPtr(autogradContext_)};
variable_list inputGrads = {grad};
// It's intended that pre/post hooks are still called even if the grad is
// undenfined here.
for (const auto& hook : accumulateGrad_->pre_hooks()) {
inputGrads = (*hook)(inputGrads);
}
// It is possible that the grad is not defined since a separate
// invocation of the autograd engine on the same node might actually
// compute this gradient.
if (inputGrads[0].defined()) {
// There are 3 internal references to 'inputGrads[0]' at this moment:
// 1. 'inputGrads[0]' in this function.
// 2. 'graph_task->captured_vars_' on the callsite in the local engine.
// 3. 'InputBuffer& inputs' on the callsite as the inputs of the
// function node.
autogradContext_->accumulateGrad(
accumulateGrad_->variable, inputGrads[0], 3 /* num_expected_refs */);
}
const variable_list kEmptyOuput;
for (const auto& hook : accumulateGrad_->post_hooks()) {
(*hook)(kEmptyOuput, inputGrads);
}
return inputGrads[0];
}
private:
std::shared_ptr<AccumulateGrad> accumulateGrad_;
ContextPtr autogradContext_;
};
void DistEngine::globalCpuThread(
const std::shared_ptr<ReadyQueue>& ready_queue) {
while (true) {
NodeTask task = ready_queue->pop();
if (task.isShutdownTask_) {
// Need to shutdown this thread.
C10_LOG_API_USAGE_ONCE("torch.autograd.thread_shutdown");
break;
}
auto graphTask = task.base_.lock();
if (graphTask == nullptr) {
// GraphTask has expired, ignore and continue processing.
continue;
}
// Launch the execution on a JIT thread.
at::launch([this,
graphTask,
graphRoot = task.fn_,
variables =
InputBuffer::variables(std::move(task.inputs_))]() mutable {
InputBuffer inputs(variables.size());
for (const auto i : c10::irange(variables.size())) {
inputs.add(i, std::move(variables[i]), c10::nullopt, c10::nullopt);
}
execute_graph_task_until_ready_queue_empty(
/*node_task*/ NodeTask(graphTask, graphRoot, std::move(inputs)),
/*incrementOutstandingTasks*/ false);
});
}
}
DistEngine::DistEngine()
: initializedContextIds_(),
engine_(Engine::get_default_engine()),
global_cpu_ready_queue_(std::make_shared<ReadyQueue>()),
global_cpu_thread_(
&DistEngine::globalCpuThread,
this,
global_cpu_ready_queue_) {
// Note [GPU to CPU continuations]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// Initialize a single CPU thread to execute continuations from GPU
// tasks. The multithreaded structure for the distributed engine works
// well only for CPU tasks. If we have an order of tasks like
// CPU->GPU->CPU, distributed autograd has no thread to execute the last
// CPU task on. To fix this, we introduce a global CPU thread to handle
// such situations and it will be responsible for executing these CPU
// tasks. The CPU thread has its own ready_queue which is used as the
// cpu_ready_queue for all GraphTasks for DistEngine. This ensures all GPU
// to CPU continuations are enqueued on this thread. The global CPU thread
// simply dequeues tasks from the global queue and calls
// "execute_graph_task_until_ready_queue_empty" on a JIT thread to execute the
// appropriate task.
global_cpu_thread_.detach();
}
DistEngine::~DistEngine() {
// Ensure we shutdown the CPU thread.
TORCH_ASSERT_NO_GIL_WITHOUT_PYTHON_DEP();
global_cpu_ready_queue_->pushShutdownTask();
global_cpu_thread_.join();
}
DistEngine& DistEngine::getInstance() {
// Leaky singleton to avoid module destructor race.
static DistEngine* engine = new DistEngine();
return *engine;
}
void DistEngine::validateRootsAndRetrieveEdges(
const variable_list& roots,
edge_list& rootEdges,
variable_list& grads) {
TORCH_CHECK(!roots.empty(), "No tensors provided for gradient computation.");
TORCH_INTERNAL_ASSERT(rootEdges.empty());
TORCH_INTERNAL_ASSERT(grads.empty());
// Verify roots are all scalar and require gradients.
for (const auto& root : roots) {
TORCH_CHECK(root.requires_grad(), "requires_grad not set on root");
TORCH_CHECK(
root.numel() == 1,
root.name(),
" is not a scalar, all roots need to be scalar");
TORCH_CHECK(
root.grad_fn(),
root.name(),
" does not have a valid gradient function.");
// Compute the root edges and generate the appropriate gradients.
rootEdges.push_back(torch::autograd::impl::gradient_edge(root));
grads.push_back(at::ones_like(root, LEGACY_CONTIGUOUS_MEMORY_FORMAT));
}
// Validate rootEdges and grads.
validate_outputs(
rootEdges, grads, [](const std::string& msg) { return msg; });
}
void DistEngine::computeDependencies(
const ContextPtr& autogradContext,
const edge_list& rootEdges,
const variable_list& grads,
const std::shared_ptr<Node>& graphRoot,
edge_list& outputEdges,
bool retainGraph) {
TORCH_INTERNAL_ASSERT(graphRoot, "graphRoot is null!");
// Build the graph task and graph root.
// NOTE: we don't need to build and pass a cpu_ready_queue to GraphTask
// as we use execute_graph_task_until_ready_queue_empty, which will build
// a separate ReadyQueue for each call.
auto graphTask = std::make_shared<GraphTask>(
/* keep_graph */ retainGraph,
/* create_graph */ false,
/* depth */ 0,
/* cpu_ready_queue */ global_cpu_ready_queue_,
/* exit_on_error */ true);
// Run BFS to traverse the graph locally. The roots of the graph are
// GraphRoot and all send functions for this autograd context.
std::unordered_set<Node*> seen;
std::queue<Node*> queue;
queue.push(static_cast<Node*>(graphRoot.get()));
auto sendFunctions = autogradContext->sendFunctions();
// Add all the send functions to the queue as roots.
for (const auto& mapEntry : sendFunctions) {
// Increment 'outstanding_tasks_' for GraphTask for each send_function
// since we want the local autograd engine to wait for all of them.
graphTask->outstanding_tasks_++;
queue.push(mapEntry.second.get());
}
bool might_use_cuda = at::globalContext().hasCUDA();
bool will_use_cuda = false;
edge_list recvBackwardEdges;
// Traverse the graph.
auto& dependencies = graphTask->dependencies_;
while (!queue.empty()) {
auto fn = queue.front();
queue.pop();
if (might_use_cuda && !will_use_cuda) {
will_use_cuda = fn->stream(c10::DeviceType::CUDA).has_value();
}
for (const auto& edge : fn->next_edges()) {
if (auto nextFn = edge.function.get()) {
dependencies[nextFn] += 1;
const bool wasInserted = seen.insert(nextFn).second;
if (wasInserted) {
// Seeing this function for the first time.
queue.push(nextFn);
if (nextFn->next_edges().empty()) {
TORCH_INTERNAL_ASSERT(
dynamic_cast<AccumulateGrad*>(nextFn) ||
dynamic_cast<RecvRpcBackward*>(nextFn));
// We have found a leaf node which should be either AccumulateGrad
// or RecvRpcBackward. Record the function
// to ensure we don't execute it and instead accumulate the grads on
// the autograd context. These functions would be passed in as the
// 'outputs' parameter of the vanilla autograd engine.
// We don't accumulate any grads in the context for RecvRpcBackward.
// RecvRpcBackward is added as an output edge to indicate it is a
// leaf node and this helps in properly computing dependencies for
// the local autograd graph. Putting RecvRpcBackward in
// 'outputEdges' means that this function needs to be executed
// (inline with our assumption for FAST mode that all send/recv
// functions are valid in the backward pass), and as a result all of
// its ancestors need to be executed as well.
if (dynamic_cast<RecvRpcBackward*>(nextFn)) {
recvBackwardEdges.emplace_back(edge);
}
outputEdges.emplace_back(edge);
}
}
}
}
}
if (will_use_cuda) {
// Collects current streams for devices where this process has a context,
// so graphTask::exec_post_processing can sync them with leaf_streams.
graphTask->stash_current_streams();
}
// Now lets compute which functions need to be executed. The algorithm is as
// follows:
// 1. Create a dummy GraphRoot which points to all 'send' functions for this
// context and the original graphRoot. Run 'init_to_execute' with the
// outputEdges and the dummy GraphRoot. This ensures we mark
// appropriate functions as needed if they are reachable only from a
// specific 'send' function locally and not necessarily from the provided
// roots.
// 2. For all edges in 'outputEdges' which point to 'RecvRpcBackward', mark
// those functions as needed for execution. The reason for this is that
// 'init_to_execute', will mark these as not needed. But 'RecvRpcBackward'
// is unique in the sense that we use it as a leaf node in graph to compute
// needed execution accurately, but unlike AccumulateGrad, we do need to
// execute this function.
if (!outputEdges.empty()) {
// Compute 'needed execution' starting from all 'send' functions and the
// original graphRoot.
edge_list edges;
// Create some dummy edges (input_nr not important for init_to_execute).
for (const auto& mapEntry : sendFunctions) {
edges.emplace_back(mapEntry.second, 0);
}
// Add the original graphRoot as an edge.
edges.emplace_back(graphRoot, 0);
// Create a dummy GraphRoot and run init_to_execute with it.
GraphRoot dummyRoot(edges, {});
graphTask->init_to_execute(
dummyRoot, outputEdges, /*accumulate_grad=*/false, /*min_topo_nr=*/0);
for (auto& mapEntry : graphTask->exec_info_) {
auto& execInfo = mapEntry.second;
if (!execInfo.captures_) {
continue;
}
auto fn = mapEntry.first;
// There may be nodes other than 'AccumulateGrad', e.g. RecvRPCBackward,
// to be captured.
if (auto accumulateGradFn = dynamic_cast<AccumulateGrad*>(fn)) {
for (auto& capture : *execInfo.captures_) {
capture.hooks_.push_back(
std::make_unique<DistAccumulateGradCaptureHook>(
std::dynamic_pointer_cast<AccumulateGrad>(
accumulateGradFn->shared_from_this()),
autogradContext));
}
}
}
// Mark all 'RecvRPCBackward' as needing execution.
for (const auto& recvBackwardEdge : recvBackwardEdges) {
graphTask->exec_info_[recvBackwardEdge.function.get()].needed_ = true;
}
}
// Set graph task owner in a single thread since concurrent access to
// 'owner_' field is not permitted.
graphTask->owner_ = torch::autograd::CPU_DEVICE;
// Let autograd context take ownership of the GraphTask.
autogradContext->setGraphTask(std::move(graphTask));
}
void DistEngine::execute_graph_task_until_ready_queue_empty(
NodeTask&& node_task,
bool incrementOutstandingTasks) {
engine_.initialize_device_threads_pool();
// Create a ready queue per call to traverse the graph_task from
// root_to_execute This allow concurrent execution of the same GraphTask from
// different threads
std::shared_ptr<ReadyQueue> cpu_ready_queue = std::make_shared<ReadyQueue>();
auto graph_task = node_task.base_.lock();
if (graph_task == nullptr) {
LOG(ERROR) << "GraphTask has expired for NodeTask: "
<< node_task.fn_->name() << ", skipping execution.";
return;
}
cpu_ready_queue->push(std::move(node_task), incrementOutstandingTasks);
torch::autograd::set_device(torch::autograd::CPU_DEVICE);
while (!cpu_ready_queue->empty()) {
std::shared_ptr<GraphTask> local_graph_task;
{
// Scope this block of execution since NodeTask is not needed after this
// block and can be deallocated (release any references to grad tensors
// as part of inputs_)
NodeTask task = cpu_ready_queue->pop();
if (!(local_graph_task = task.base_.lock())) {
continue;
}
if (task.fn_ && !local_graph_task->has_error_.load()) {
at::ThreadLocalStateGuard tls_guard(local_graph_task->thread_locals_);
try {
GraphTaskGuard guard(local_graph_task);
engine_.evaluate_function(
local_graph_task, task.fn_.get(), task.inputs_, cpu_ready_queue);
} catch (std::exception& e) {
engine_.thread_on_exception(local_graph_task, task.fn_, e);
// break the loop in error so that we immediately stop the execution
// of this GraphTask, mark it completed if necessary and return the
// future with proper ErrorMessage
break;
}
}
}
// Decrement the outstanding task.
--local_graph_task->outstanding_tasks_;
}
// Check if we've completed execution.
if (graph_task->completed()) {
// We don't need to explicitly notify the owner thread, since
// 'mark_as_completed_and_run_post_processing' would mark the Future as
// completed and this would notify the owner thread that the task has been
// completed.
graph_task->mark_as_completed_and_run_post_processing();
}
}
c10::intrusive_ptr<c10::ivalue::Future> DistEngine::
runEngineAndAccumulateGradients(
const ContextPtr& autogradContext,
const std::shared_ptr<Node>& graphRoot,
const edge_list& outputEdges,
bool incrementOutstandingTasks) {
// Cleanup previous state for outstanding RPCs. Outstanding RPCs could be
// lingering if we're running backward multiple times and some of the
// passes ran into errors.
autogradContext->clearOutstandingRpcs();
auto graphTask = autogradContext->retrieveGraphTask();
at::launch([this, graphTask, graphRoot, incrementOutstandingTasks]() {
execute_graph_task_until_ready_queue_empty(
/*node_task*/ NodeTask(graphTask, graphRoot, InputBuffer(0)),
/*incrementOutstandingTasks*/ incrementOutstandingTasks);
});
// Use a reference here to avoid refcount bump on futureGrads.
auto& futureGrads = graphTask->future_result_;
// Build a future that waits for the callbacks to execute (since callbacks
// execute after the original future is completed). This ensures we return a
// future that waits for all gradient accumulation to finish.
auto accumulateGradFuture =
c10::make_intrusive<c10::ivalue::Future>(c10::NoneType::get());
futureGrads->addCallback([autogradContext, outputEdges, accumulateGradFuture](
c10::ivalue::Future& futureGrads) {
if (futureGrads.hasError()) {
// Don't accumulate gradients if we receive an error.
// We must add the node information here since DistEngine::execute
// waits on accumulateGradFuture and will throw an exception once we
// set the error below.
std::string errorMsg = c10::str(
"Error on Node ",
DistAutogradContainer::getInstance().getWorkerId(),
": ",
futureGrads.tryRetrieveErrorMessage());
accumulateGradFuture->setError(std::make_exception_ptr(
c10::ivalue::Future::FutureError(std::move(errorMsg))));
return;
}
try {
const variable_list& grads = futureGrads.constValue().toTensorVector();
TORCH_INTERNAL_ASSERT(grads.size() == outputEdges.size());
accumulateGradFuture->markCompleted(c10::IValue());
} catch (std::exception& e) {
accumulateGradFuture->setErrorIfNeeded(std::current_exception());
}
});
return accumulateGradFuture;
}
c10::intrusive_ptr<c10::ivalue::Future> DistEngine::executeSendFunctionAsync(
const ContextPtr& autogradContext,
const std::shared_ptr<SendRpcBackward>& sendFunction,
bool retainGraph) {
// Typically the local autograd engine ensures stream synchronizations between
// nodes in the graph. However, for distributed autograd the sendFunction
// inputs might have been retrieved over the wire on a separate stream and the
// sendFunction itself runs on a different stream. As a result, we need to
// manually synchronize those two streams here.
const auto& send_backward_stream =
sendFunction->stream(c10::DeviceType::CUDA);
if (send_backward_stream) {
for (const auto& grad : sendFunction->getGrads()) {
const auto guard = c10::impl::VirtualGuardImpl{c10::DeviceType::CUDA};
const auto default_stream = guard.getStream(grad.device());
if (send_backward_stream != default_stream) {
auto event = c10::Event{c10::DeviceType::CUDA};
event.record(default_stream);
send_backward_stream->wait(event);
}
}
}
std::unique_lock<std::mutex> lock(initializedContextIdsLock_);
if (initializedContextIds_.find(autogradContext->contextId()) ==
initializedContextIds_.end()) {
edge_list outputEdges;
// Pass in a dummy graphRoot since all send functions are the roots.
auto dummyRoot = std::make_shared<GraphRoot>(edge_list(), variable_list());
computeDependencies(
autogradContext, {}, {}, dummyRoot, outputEdges, retainGraph);
// Mark the autograd context id as initialized and unlock.
initializedContextIds_.insert(autogradContext->contextId());
lock.unlock();
// Enqueue the current send function.
auto graphTask = autogradContext->retrieveGraphTask();
// Run the autograd engine.
auto accumulateGradFuture = runEngineAndAccumulateGradients(
autogradContext,
sendFunction,
outputEdges,
/*incrementOutstandingTasks=*/false);
// Build the 'uber' future that waits for everything.
auto callbackFuture =
c10::make_intrusive<c10::ivalue::Future>(c10::NoneType::get());
accumulateGradFuture->addCallback(
[autogradContext,
callbackFuture](c10::ivalue::Future& accumulateGradFuture) {
try {
if (accumulateGradFuture.hasError()) {
// Perform cleanup at the end of the backward pass (before we mark
// the future as completed).
DistEngine::getInstance().cleanupBackwardPass(autogradContext);
// Skip any further processing on errors.
callbackFuture->setError(accumulateGradFuture.exception_ptr());
return;
}
// Wait for all RPCs after the autograd engine is done.
auto rpcFuture =
autogradContext->clearAndWaitForOutstandingRpcsAsync();
rpcFuture->addCallback([callbackFuture, autogradContext](
c10::ivalue::Future& rpcFuture) {
try {
// Perform cleanup at the end of the backward pass (before
// we mark the future as completed).
DistEngine::getInstance().cleanupBackwardPass(autogradContext);
} catch (std::exception& e) {
callbackFuture->setErrorIfNeeded(std::current_exception());
return;
}
// Finally mark the 'uber' future as completed.
if (!rpcFuture.hasError()) {
callbackFuture->markCompleted(c10::IValue());
} else {
callbackFuture->setError(rpcFuture.exception_ptr());
}
});
} catch (std::exception& e) {
callbackFuture->setErrorIfNeeded(std::current_exception());
}
});
// Return the future which waits for all async processing to be done.
return callbackFuture;
} else {
lock.unlock();
auto graphTask = autogradContext->retrieveGraphTask();
at::launch([this, graphTask, sendFunction]() {
execute_graph_task_until_ready_queue_empty(
/*node_task*/ NodeTask(graphTask, sendFunction, InputBuffer(0)),
/*incrementOutstandingTasks*/ false);
});
auto fut = c10::make_intrusive<c10::ivalue::Future>(c10::NoneType::get());
fut->markCompleted(c10::IValue());
return fut;
}
}
void DistEngine::execute(
int64_t contextId,
const variable_list& roots,
bool retainGraph) {
// Retrieve the context for the given context_id. This will throw if the
// context_id is invalid.
auto autogradContext =
DistAutogradContainer::getInstance().retrieveContext(contextId);
// Perform initial pre-processing.
edge_list rootEdges;
variable_list grads;
validateRootsAndRetrieveEdges(roots, rootEdges, grads);
std::shared_ptr<Node> graphRoot =
std::make_shared<GraphRoot>(rootEdges, grads);
edge_list outputEdges;
// Compute dependencies locally, starting from all roots and all 'send'
// functions.
{
std::lock_guard<std::mutex> guard(initializedContextIdsLock_);
// Context should not have been initialized already.
TORCH_INTERNAL_ASSERT(
initializedContextIds_.find(autogradContext->contextId()) ==
initializedContextIds_.end());
computeDependencies(
autogradContext, rootEdges, grads, graphRoot, outputEdges, retainGraph);
// Mark the autograd context id as initialized.
initializedContextIds_.insert(autogradContext->contextId());
}
BackwardPassCleanupGuard guard(autogradContext);
// This needs to be blocking and as a result we wait for the future to
// complete.
runEngineAndAccumulateGradients(autogradContext, graphRoot, outputEdges)
->waitAndThrow();
// Wait for all of the outstanding rpcs to complete.
autogradContext->clearAndWaitForOutstandingRpcsAsync()->waitAndThrow();
}
void DistEngine::cleanupBackwardPass(const ContextPtr& autogradContext) {
// Validate only the GraphTask is holding a reference to the Future
// which holds gradients for the backward pass. This ensures that
// after 'resetGraphTask' is called below, there are no remaining
// references left to the gradients for the backward pass.
//
// This ensures our 'use_count' checks in
// AccumulateGrad::accumulateGrad are correct and we're
// not leaking any references to the gradients anywhere else.
const auto& futureGrads =
autogradContext->retrieveGraphTask()->future_result_;
TORCH_INTERNAL_ASSERT(futureGrads.use_count() == 1);
// Reset the graph task once we're done with all processing.
autogradContext->resetGraphTask();
// Clear any outstanding rpcs.
autogradContext->clearOutstandingRpcs();
// Clear the context id once we're done with the autograd engine
// processing.
std::lock_guard<std::mutex> guard(initializedContextIdsLock_);
initializedContextIds_.erase(autogradContext->contextId());
}
size_t DistEngine::numBackwardPasses() const {
std::lock_guard<std::mutex> guard(initializedContextIdsLock_);
return initializedContextIds_.size();
}
std::unordered_map<std::string, int> DistEngine::getDebugInfo() const {
std::unordered_map<std::string, int> debugInfo;
debugInfo[kNumBackwardPasses] = numBackwardPasses();
debugInfo[kNumAutogradContexts] =
DistAutogradContainer::getInstance().numAutogradContexts();
return debugInfo;
}
} // namespace autograd
} // namespace distributed
} // namespace torch
|