1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
#include <c10/util/C++17.h>
#include <torch/csrc/distributed/autograd/rpc_messages/rpc_with_autograd.h>
#include <torch/csrc/distributed/rpc/rpc_agent.h>
#include <torch/csrc/distributed/rpc/utils.h>
#include <torch/csrc/jit/serialization/pickle.h>
#include <torch/csrc/utils/byte_order.h>
namespace torch {
namespace distributed {
namespace autograd {
using rpc::Message;
using rpc::MessageType;
using rpc::RpcCommandBase;
using rpc::worker_id_t;
RpcWithAutograd::RpcWithAutograd(
worker_id_t fromWorkerId,
MessageType messageType,
const AutogradMetadata& autogradMetadata,
c10::intrusive_ptr<rpc::Message> wrappedMessage,
rpc::DeviceMap deviceMap)
: fromWorkerId_(fromWorkerId),
messageType_(messageType),
autogradMetadata_(autogradMetadata),
wrappedMessage_(std::move(wrappedMessage)),
deviceMap_(std::move(deviceMap)) {
TORCH_INTERNAL_ASSERT(
messageType_ == MessageType::FORWARD_AUTOGRAD_REQ ||
messageType_ == MessageType::FORWARD_AUTOGRAD_RESP);
tensors_ = wrappedMessage_->tensors();
wrappedMessageType_ = wrappedMessage_->type();
}
RpcWithAutograd::RpcWithAutograd(
worker_id_t fromWorkerId,
MessageType messageType,
const AutogradMetadata& autogradMetadata,
std::unique_ptr<RpcCommandBase> wrappedRpc,
MessageType wrappedMessageType,
std::vector<torch::Tensor> tensors,
rpc::DeviceMap deviceMap)
: fromWorkerId_(fromWorkerId),
messageType_(messageType),
autogradMetadata_(autogradMetadata),
wrappedRpc_(std::move(wrappedRpc)),
wrappedMessageType_(wrappedMessageType),
tensors_(std::move(tensors)),
deviceMap_(std::move(deviceMap)) {
TORCH_INTERNAL_ASSERT(wrappedRpc_ != nullptr, "wrappedRpc cannot be null!");
TORCH_INTERNAL_ASSERT(
messageType_ == MessageType::FORWARD_AUTOGRAD_REQ ||
messageType_ == MessageType::FORWARD_AUTOGRAD_RESP);
}
c10::intrusive_ptr<Message> RpcWithAutograd::toMessageImpl() && {
auto messageId = wrappedMessage_->id();
auto wrappedMessageType = wrappedMessage_->type();
auto payload = std::move(*wrappedMessage_).movePayload();
TORCH_INTERNAL_ASSERT(!payload.empty());
// Convert deviceMap to c10::Dict for serialization.
c10::Dict<std::string, std::string> deviceMap;
for (const auto& mapEntry : deviceMap_) {
deviceMap.insert(mapEntry.first.str(), mapEntry.second.str());
}
std::vector<at::IValue> ivalues{
wrappedMessageType,
autogradMetadata_.autogradContextId,
autogradMetadata_.autogradMessageId,
fromWorkerId_,
deviceMap};
// Now pickle using JIT pickler.
std::vector<torch::Tensor> tensorTable;
std::vector<char> additionalPayload =
jit::pickle(c10::ivalue::Tuple::create(std::move(ivalues)), &tensorTable);
// We shouldn't have any tensors!
TORCH_INTERNAL_ASSERT(tensorTable.empty());
// This wraps additionalPayload into payload and takes care of resizing,
// encoding.
rpc::writeWrappedPayload(payload, additionalPayload);
return c10::make_intrusive<Message>(
std::move(payload), std::move(tensors_), messageType_, messageId);
}
std::unique_ptr<RpcWithAutograd> RpcWithAutograd::fromMessage(
const Message& message) {
MessageType originalMessageType = message.type();
TORCH_INTERNAL_ASSERT(
MessageType::FORWARD_AUTOGRAD_REQ == originalMessageType ||
MessageType::FORWARD_AUTOGRAD_RESP == originalMessageType);
std::vector<torch::Tensor> tensors = message.tensors();
int64_t messageId = message.id();
// Decode message type, autograd context id, autograd message id and worker
// id from which we received this message.
auto payload = message.payload();
auto tupleElements = rpc::readWrappedPayload(payload, message);
// Gather all the fields.
TORCH_INTERNAL_ASSERT(tupleElements.size() == 5);
MessageType wrappedMessageType =
static_cast<MessageType>(tupleElements[0].toInt());
AutogradMetadata autogradMetadata(
tupleElements[1].toInt(), tupleElements[2].toInt());
worker_id_t workerId = tupleElements[3].toInt();
auto c10DeviceMap =
tupleElements[4].to<c10::Dict<std::string, std::string>>();
// Convert to regular map.
rpc::DeviceMap deviceMap;
for (const auto& mapEntry : c10DeviceMap) {
deviceMap.insert({mapEntry.key(), mapEntry.value()});
}
// Create new message type and build wrapped RPC.
auto wrappedMessage = c10::make_intrusive<Message>(
std::move(payload), std::move(tensors), wrappedMessageType, messageId);
std::unique_ptr<RpcCommandBase> wrappedRpc;
if (originalMessageType == MessageType::FORWARD_AUTOGRAD_REQ) {
wrappedRpc = deserializeRequest(*wrappedMessage);
} else {
wrappedRpc = deserializeResponse(*wrappedMessage, wrappedMessageType);
}
return std::make_unique<RpcWithAutograd>(
workerId,
originalMessageType,
autogradMetadata,
std::move(wrappedRpc),
wrappedMessageType,
wrappedMessage->tensors(),
deviceMap);
}
std::vector<torch::Tensor>& RpcWithAutograd::tensors() {
return tensors_;
}
const AutogradMetadata& RpcWithAutograd::autogradMetadata() const {
return autogradMetadata_;
}
RpcCommandBase& RpcWithAutograd::wrappedRpc() {
TORCH_INTERNAL_ASSERT(wrappedRpc_ != nullptr, "wrappedRpc cannot be null!");
return *wrappedRpc_;
}
void RpcWithAutograd::setWrappedRpc(
std::unique_ptr<RpcCommandBase> wrappedRpc) {
wrappedRpc_ = std::move(wrappedRpc);
}
std::unique_ptr<RpcCommandBase> RpcWithAutograd::moveWrappedRpc() && {
TORCH_INTERNAL_ASSERT(wrappedRpc_ != nullptr, "wrappedRpc cannot be null!");
return std::move(wrappedRpc_);
}
MessageType RpcWithAutograd::wrappedMessageType() const {
return wrappedMessageType_;
}
rpc::worker_id_t RpcWithAutograd::fromWorkerId() const {
return fromWorkerId_;
}
const rpc::DeviceMap& RpcWithAutograd::deviceMap() {
return deviceMap_;
}
} // namespace autograd
} // namespace distributed
} // namespace torch
|