1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
#include <c10/util/intrusive_ptr.h>
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
#include <torch/csrc/distributed/c10d/Types.hpp>
#include <torch/library.h>
namespace c10d {
namespace ops {
// Below are ProcessGroup's corresponding ops for each backend. Ops are but
// routed through the dispatcher to be dispatched to the appropriate backend.
// Currently a no-op as the process group does not have a list of backends.
c10::intrusive_ptr<Work> send_cpu(
at::TensorList tensors,
const c10::intrusive_ptr<ProcessGroup>& process_group,
int64_t dstRank,
int64_t tag) {
auto tensor_vec = tensors.vec();
return process_group->send(
tensor_vec, static_cast<int>(dstRank), static_cast<int>(tag));
}
c10::intrusive_ptr<Work> send_cuda(
at::TensorList tensors,
const c10::intrusive_ptr<ProcessGroup>& process_group,
int64_t dstRank,
int64_t tag) {
auto tensor_vec = tensors.vec();
return process_group->send(
tensor_vec, static_cast<int>(dstRank), static_cast<int>(tag));
}
c10::intrusive_ptr<Work> recv_cpu_(
at::TensorList tensors,
const c10::intrusive_ptr<ProcessGroup>& process_group,
int64_t srcRank,
int64_t tag) {
auto tensor_vec = tensors.vec();
return process_group->recv(
tensor_vec, static_cast<int>(srcRank), static_cast<int>(tag));
}
c10::intrusive_ptr<Work> recv_cuda_(
at::TensorList tensors,
const c10::intrusive_ptr<ProcessGroup>& process_group,
int64_t srcRank,
int64_t tag) {
auto tensor_vec = tensors.vec();
return process_group->recv(
tensor_vec, static_cast<int>(srcRank), static_cast<int>(tag));
}
std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>> broadcast_cpu_(
at::TensorList tensors,
const c10::intrusive_ptr<ProcessGroup>& process_group,
int64_t root_rank,
int64_t root_tensor,
int64_t timeout) {
auto tensor_vec = tensors.vec();
auto work = process_group->broadcast(
tensor_vec,
BroadcastOptions{
root_rank, root_tensor, std::chrono::milliseconds(timeout)});
return std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>>(
std::move(tensor_vec), work);
}
std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>> broadcast_cuda_(
at::TensorList tensors,
const c10::intrusive_ptr<ProcessGroup>& process_group,
int64_t root_rank,
int64_t root_tensor,
int64_t timeout) {
auto tensor_vec = tensors.vec();
auto work = process_group->broadcast(
tensor_vec,
BroadcastOptions{
root_rank, root_tensor, std::chrono::milliseconds(timeout)});
return std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>>(
std::move(tensor_vec), work);
}
std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>> allreduce_cpu_(
at::TensorList tensors,
const c10::intrusive_ptr<ProcessGroup>& process_group,
const c10::intrusive_ptr<ReduceOp>& reduce_op,
int64_t timeout) {
auto tensor_vec = tensors.vec();
auto work = process_group->allreduce(
tensor_vec,
AllreduceOptions{*reduce_op.get(), std::chrono::milliseconds(timeout)});
// Return input tensors as output tensors to make inplace allreduce look like
// a functional API, so that make_fx can correctly build the dependencies in
// the graph later.
return std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>>(
std::move(tensor_vec), work);
}
std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>> allreduce_cuda_(
at::TensorList tensors,
const c10::intrusive_ptr<ProcessGroup>& process_group,
const c10::intrusive_ptr<ReduceOp>& reduce_op,
int64_t timeout) {
auto tensor_vec = tensors.vec();
auto work = process_group->allreduce(
tensor_vec,
AllreduceOptions{*reduce_op.get(), std::chrono::milliseconds(timeout)});
// Return input tensors as output tensors to make inplace allreduce look like
// a functional API, so that make_fx can correctly build the dependencies in
// the graph later.
return std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>>(
std::move(tensor_vec), work);
}
// register functions to dispatcher
namespace {
TORCH_LIBRARY_IMPL(c10d, CPU, m) {
m.impl("send", send_cpu);
}
TORCH_LIBRARY_IMPL(c10d, CUDA, m) {
m.impl("send", send_cuda);
}
TORCH_LIBRARY_IMPL(c10d, CPU, m) {
m.impl("recv_", recv_cpu_);
}
TORCH_LIBRARY_IMPL(c10d, CUDA, m) {
m.impl("recv_", recv_cuda_);
}
TORCH_LIBRARY_IMPL(c10d, CPU, m) {
m.impl("broadcast_", broadcast_cpu_);
}
TORCH_LIBRARY_IMPL(c10d, CUDA, m) {
m.impl("broadcast_", broadcast_cuda_);
}
TORCH_LIBRARY_IMPL(c10d, CPU, m) {
m.impl("allreduce_", allreduce_cpu_);
}
// TODO: The SparseCPU/SparseCUDA dispatched methods are only used to support
// sparse all_reduce in the Gloo backend
TORCH_LIBRARY_IMPL(c10d, SparseCPU, m) {
m.impl("allreduce_", allreduce_cpu_);
}
TORCH_LIBRARY_IMPL(c10d, SparseCUDA, m) {
m.impl("allreduce_", allreduce_cuda_);
}
TORCH_LIBRARY_IMPL(c10d, CUDA, m) {
m.impl("allreduce_", allreduce_cuda_);
}
} // namespace
} // namespace ops
} // namespace c10d
|