1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
|
#include <torch/csrc/distributed/c10d/NCCLUtils.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp>
#include <torch/csrc/distributed/c10d/UCCForNCCL.hpp>
#include <sstream>
#ifdef USE_C10D_NCCL
#include <exception>
#include <map>
#include <stdexcept>
#include <tuple>
#include <unordered_set>
#include <utility>
#include <ATen/cuda/CUDAContext.h>
#include <c10/core/DeviceType.h>
#include <c10/cuda/CUDAGraphsC10Utils.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/util/CallOnce.h>
#include <c10/util/Exception.h>
#include <c10/util/Logging.h>
#include <c10/util/Optional.h>
#include <c10/util/irange.h>
#include <torch/csrc/distributed/c10d/ParamCommsUtils.hpp>
#include <torch/csrc/distributed/c10d/TraceUtils.h>
#include <torch/csrc/distributed/c10d/Utils.hpp>
#include <torch/csrc/cuda/nccl.h>
namespace c10d {
constexpr const char* const kNCCLAbortedCommStoreKey = "NCCLABORTEDCOMM";
namespace {
#if defined(NCCL_MAJOR) && \
((NCCL_MAJOR > 2) || (NCCL_MAJOR == 2) && (NCCL_MINOR >= 10))
#define NCCL_HAS_AVG 1
#endif
// NCCL op mapping
const std::map<ReduceOp::RedOpType, ncclRedOp_t> ncclOp = {
{ReduceOp::MIN, ncclMin},
{ReduceOp::MAX, ncclMax},
{ReduceOp::SUM, ncclSum},
{ReduceOp::PRODUCT, ncclProd},
#ifdef NCCL_HAS_AVG
{ReduceOp::AVG, ncclAvg},
#endif
};
// NCCL type typing
std::map<at::ScalarType, ncclDataType_t> ncclDataType = {
{at::kChar, ncclInt8},
{at::kByte, ncclUint8},
{at::kFloat, ncclFloat},
{at::kDouble, ncclDouble},
{at::kInt, ncclInt32},
{at::kLong, ncclInt64},
{at::kHalf, ncclHalf},
{at::kBool, ncclUint8},
#if HAS_NCCL_BF16_DATATYPE
{at::kBFloat16, ncclBfloat16},
#endif
};
// Helper function that gets the data type and issues error if not supported
ncclDataType_t getNcclDataType(at::ScalarType type) {
auto it = ncclDataType.find(type);
TORCH_CHECK(
it != ncclDataType.end(),
"Input tensor data type is not supported for NCCL process group: ",
type);
return it->second;
}
#ifdef ENABLE_NCCL_PREMUL_SUM_SUPPORT
template <typename T, ncclDataType_t dataType>
ncclRedOpRAII unpackPreMulSum(
const ReduceOp& reduceOp,
const ncclComm_t& comm,
int dev_in_group) {
const auto* preMulSupplement =
reinterpret_cast<NCCLPreMulSumSupplement*>(reduceOp.supplement_.get());
ncclRedOp_t preMulSum;
bool has_tensor = !preMulSupplement->tensor_factors.empty();
auto residence = has_tensor ? ncclScalarDevice : ncclScalarHostImmediate;
T* ptr_factor = has_tensor
? preMulSupplement->tensor_factors[dev_in_group].data_ptr<T>()
: nullptr;
T scalar_factor = T(preMulSupplement->double_factor);
ncclRedOpCreatePreMulSum(
&preMulSum,
has_tensor ? ptr_factor : &scalar_factor,
dataType,
residence,
comm);
return ncclRedOpRAII(preMulSum, comm);
}
#endif
ncclRedOpRAII getNcclReduceOp(
const ReduceOp& reduceOp,
at::Tensor& input,
const ncclDataType_t& dataType,
const ncclComm_t& comm,
int dev_in_group) {
try {
if (input.scalar_type() == at::kBool) {
if (reduceOp == ReduceOp::SUM) {
// For bool tensors, map sum to max, which both represent a bitwise or.
// This is to prevent overflow issues with sum, since we use uint8 to
// represent a bool (see ncclDataType mapping).
return ncclMax;
}
#ifdef NCCL_HAS_AVG
if (reduceOp == ReduceOp::AVG) {
TORCH_CHECK(false, "Cannot use ReduceOp.AVG with boolean inputs");
}
#endif
}
if (reduceOp == ReduceOp::PREMUL_SUM) {
#ifdef ENABLE_NCCL_PREMUL_SUM_SUPPORT
switch (dataType) {
case ncclHalf:
return unpackPreMulSum<at::Half, ncclHalf>(
reduceOp, comm, dev_in_group);
case ncclFloat:
return unpackPreMulSum<float, ncclFloat>(
reduceOp, comm, dev_in_group);
case ncclDouble:
return unpackPreMulSum<double, ncclDouble>(
reduceOp, comm, dev_in_group);
default:
TORCH_CHECK(
false, "PreMulSum Data type must be half, float, or double");
ncclRedOp_t unused;
return unused;
}
#else
TORCH_CHECK(false, "PreMulSum requires NCCL>=2.11.1");
#endif
}
return ncclOp.at(reduceOp);
} catch (const std::out_of_range& e) {
switch (reduceOp) {
case ReduceOp::AVG:
TORCH_CHECK(
false,
"AVG requires NCCL 2.10+. The current version is ",
NCCL_MAJOR,
".",
NCCL_MINOR);
break;
case ReduceOp::BAND:
TORCH_CHECK(false, "Cannot use ReduceOp.BAND with NCCL");
break;
case ReduceOp::BOR:
TORCH_CHECK(false, "Cannot use ReduceOp.BOR with NCCL");
break;
case ReduceOp::BXOR:
TORCH_CHECK(false, "Cannot use ReduceOp.BXOR with NCCL");
break;
default:
TORCH_CHECK(false, "Unhandled ReduceOp");
break;
}
}
}
// Get the deviceList String from the list of devices
std::string getKeyFromDevices(const std::vector<at::Device>& devices) {
std::string deviceList;
for (auto& device : devices) {
if (deviceList.empty()) {
deviceList = std::to_string(device.index());
} else {
deviceList += "," + std::to_string(device.index());
}
}
return deviceList;
}
std::string getKeySendRecv(int myRank, int peer) {
int lowRank = myRank < peer ? myRank : peer;
int highRank = myRank < peer ? peer : myRank;
std::string sendRecvPair =
std::to_string(lowRank) + ":" + std::to_string(highRank);
return sendRecvPair;
}
// Get the list of devices from list of tensors
std::vector<at::Device> getDeviceList(const std::vector<at::Tensor>& tensors) {
std::vector<at::Device> res;
res.reserve(tensors.size());
for (auto& tensor : tensors) {
// tensors must all be on the same device, or all on distinct devices.
// The line below assumes that constraint has already been enforced
// (by check_gpu_tensors_same_device or
// check_gpu_tensors_different_devices).
if (res.size() == 0 || tensor.device() != res[0]) {
res.push_back(tensor.device());
}
}
return res;
}
// Return CUDA device with ordinal given by input rank.
at::Device getDeviceForRank(int rank) {
TORCH_CHECK(rank >= 0, "Invalid rank ", rank);
auto numGPUs = at::cuda::getNumGPUs();
int16_t deviceIdx = static_cast<int16_t>(rank % numGPUs);
return at::Device(at::DeviceType::CUDA, deviceIdx);
}
// [Sync Streams] Helper that lets the input ncclStreams to wait for the current
// stream. NCCL communications run on ncclStreams, but input tensors are
// allocated on different streams (i.e., current streams). Communications on
// ncclStreams cannot start before pending input tensor ops on current streams
// finish. Otherwise, ops on two streams might read/write same tensors
// concurrently.
//
// The synchronization above alone is not enough. We also need to make sure
// input tensors are not freed before their usages on ncclStreams finish. This
// can be achieved by calling c10::cuda::CUDACachingAllocator::recordStream,
// which remembers the usage stream (ncclStream), creates an event on the usage
// stream when GC attempts to free the input tensor, and delays GC until that
// event is done.
void syncStreams(
const std::vector<at::Device>& devices,
std::vector<at::cuda::CUDAEvent>& ncclEvents,
std::vector<at::cuda::CUDAStream>& ncclStreams) {
for (const auto i : c10::irange(devices.size())) {
at::cuda::CUDAStream& ncclStream = ncclStreams[i];
at::cuda::CUDAEvent& ncclEvent = ncclEvents[i];
ncclEvent.record(at::cuda::getCurrentCUDAStream(devices[i].index()));
ncclEvent.block(ncclStream);
}
}
// Given a ncclUniqueId, convert it to a string representation that can be put
// in the store.
std::string buildNcclUniqueIdStr(const ncclUniqueId& ncclID) {
const uint8_t* bytes = reinterpret_cast<const uint8_t*>(&ncclID);
std::ostringstream oss;
for (const auto i : c10::irange(NCCL_UNIQUE_ID_BYTES)) {
oss << std::hex << static_cast<int>(bytes[i]);
}
return oss.str();
}
std::string getNcclAbortedCommStoreKey(const std::string ncclIdStr) {
return std::string(kNCCLAbortedCommStoreKey) + ":" + ncclIdStr;
}
// Returns exception's what() given an exception_ptr instance.
std::string getExceptionMsgFromExceptionPtr(
const std::exception_ptr& exceptionPtr) {
TORCH_CHECK(exceptionPtr != nullptr);
try {
std::rethrow_exception(exceptionPtr);
} catch (const std::exception& e) {
return e.what();
} catch (...) {
return "Unknown exception type";
}
}
inline void errorIfCapturingNonCapturableNCCL() {
auto status = c10::cuda::currentStreamCaptureStatusMayInitCtx();
// parentheses avoid some compiler warnings
static const uint64_t min_version =
(((uint64_t)2) << 32) + (((uint64_t)9) << 16) + ((uint64_t)6);
static const uint64_t cur_version = torch::cuda::nccl::version();
if (cur_version < min_version) {
TORCH_CHECK(
status == c10::cuda::CaptureStatus::None,
"Capturing NCCL collectives is only allowed with NCCL >= 2.9.6");
}
}
} // namespace
const int64_t ProcessGroupNCCL::kWatchdogThreadSleepMillis = 10000;
const int64_t ProcessGroupNCCL::kWorkCleanupThreadSleepMillis = 1000;
constexpr int64_t kWaitForAbortCommStoreKey = 1000;
constexpr int64_t kSynchronizeBusyWaitMillis = 10;
thread_local uint64_t ProcessGroupNCCL::ncclActiveGroupCounter_ = 0;
std::ostream& operator<<(
std::ostream& output,
const ProcessGroupNCCL::WorkNCCL& workNCCL) {
std::string workInfo;
if (workNCCL.outputs_) {
workInfo = c10::str(
"WorkNCCL(",
"SeqNum=",
workNCCL.seq_,
", OpType=",
opTypeToString(workNCCL.opType_),
", TensorShape=",
(*workNCCL.outputs_)[0].sizes(),
", Timeout(ms)=",
workNCCL.opTimeout_.count(),
")");
} else {
workInfo = c10::str(
"WorkNCCL(",
"SeqNum=",
workNCCL.seq_,
", OpType=",
opTypeToString(workNCCL.opType_),
", Timeout(ms)=",
workNCCL.opTimeout_.count(),
")");
}
return output << workInfo;
}
ProcessGroupNCCL::WorkNCCL::WorkNCCL(
const std::vector<at::Device>& devices,
int rank,
OpType opType,
uint64_t seq,
const char* profilingTitle,
const c10::optional<std::vector<at::Tensor>>& inputs,
bool desyncDebug)
: Work(rank, opType, profilingTitle, inputs),
devices_(devices),
workStartTime_(std::chrono::steady_clock::now()),
seq_(seq) {
// Creates the CUDA event wrappers
// Note: The actual events are lazily created when first recorded to with
// DEFAULT_FLAGS = cudaEventDisableTiming.
if (desyncDebug) {
ncclStartEvents_ =
std::make_shared<std::vector<at::cuda::CUDAEvent>>(devices.size());
}
ncclEndEvents_ =
std::make_shared<std::vector<at::cuda::CUDAEvent>>(devices.size());
ncclComms_.resize(devices.size());
}
ProcessGroupNCCL::WorkNCCL::WorkNCCL(const WorkNCCL& w)
: Work(w.rank_, w.opType_),
std::enable_shared_from_this<WorkNCCL>(w),
devices_(w.devices_),
ncclStartEvents_(w.ncclStartEvents_),
ncclEndEvents_(w.ncclEndEvents_),
ncclComms_(w.ncclComms_),
blockingWait_(w.blockingWait_),
opTimeout_(w.opTimeout_),
workStartTime_(w.workStartTime_),
seq_(w.seq_),
startTraceUpdated_(w.startTraceUpdated_),
store_(w.store_) {
exception_ = w.exception_;
}
ProcessGroupNCCL::WorkNCCL::~WorkNCCL() {}
bool ProcessGroupNCCL::WorkNCCL::isCompleted() {
checkAndSetException();
return exception() || finishedGPUExecutionInternal();
}
bool ProcessGroupNCCL::WorkNCCL::isStarted() {
checkAndSetException();
return exception() || startedGPUExecutionInternal();
}
bool ProcessGroupNCCL::WorkNCCL::isSuccess() const {
if (exception()) {
// Already detected an exception.
return false;
}
return !checkForNCCLErrors(ncclComms_) && finishedGPUExecutionInternal();
}
void ProcessGroupNCCL::WorkNCCL::checkAndSetException() {
if (exception()) {
// We already have an exception.
return;
}
auto exception_ptr = checkForNCCLErrors(ncclComms_);
std::unique_lock<std::mutex> lock(mutex_);
exception_ = exception_ptr;
if (exception_) {
LOG(INFO) << "[Rank " << rank_ << "]"
<< " found async exception when checking for NCCL errors: "
<< getExceptionMsgFromExceptionPtr(exception_);
}
}
void ProcessGroupNCCL::WorkNCCL::setException(
std::exception_ptr exception_ptr) {
std::unique_lock<std::mutex> lock(mutex_);
exception_ = exception_ptr;
}
// Helper that checks if the NCCL kernels are completed on the GPUs
bool ProcessGroupNCCL::WorkNCCL::finishedGPUExecution() {
checkAndSetException();
return finishedGPUExecutionInternal();
}
bool ProcessGroupNCCL::WorkNCCL::startedGPUExecutionInternal() const {
for (const auto i : c10::irange(devices_.size())) {
// Checking the work's corresponding CUDA events' status
if (!(*ncclStartEvents_)[i].query()) {
return false;
}
}
return true;
}
bool ProcessGroupNCCL::WorkNCCL::finishedGPUExecutionInternal() const {
try {
for (const auto i : c10::irange(devices_.size())) {
// Checking the work's corresponding CUDA events' status
if (!(*ncclEndEvents_)[i].query()) {
return false;
}
}
} catch (const std::exception& e) {
if (std::string(e.what()).find("driver shutting down") ==
std::string::npos) {
throw;
}
LOG(INFO) << "[Rank " << rank_
<< "] Event query failed with exception: " << e.what();
}
return true;
}
void ProcessGroupNCCL::WorkNCCL::checkAndThrowException() {
// Set the appropriate exception if found.
checkAndSetException();
// Throw an exception, only if we have a valid exception.
if (exception()) {
std::rethrow_exception(exception());
}
}
void ProcessGroupNCCL::WorkNCCL::handleNCCLGuard(
ErrorHandlingMode asyncErrorHandling) {
std::lock_guard<std::mutex> lock(mutex_);
if (exception_) {
auto exceptionMsg = c10::str(
"Some NCCL operations have failed or timed out. Due to the ",
"asynchronous nature of CUDA kernels, subsequent GPU operations ",
"might run on corrupted/incomplete data.");
LOG(ERROR) << exceptionMsg;
C10_LOG_API_USAGE_ONCE("ProcessGroupNCCL.WorkNCCL.handleNCCLGuard");
if (asyncErrorHandling == TearDown) {
auto tearDownMsg = c10::str(
"To avoid data inconsistency, we are taking the entire process down.");
LOG(ERROR) << tearDownMsg;
std::rethrow_exception(exception_);
}
}
}
void ProcessGroupNCCL::WorkNCCL::synchronize() {
// Call Synchronize without a timeout. We use this method to avoid adding a
// timeout argument to the public synchronize API.
synchronizeInternal(kNoTimeout);
}
void ProcessGroupNCCL::WorkNCCL::synchronizeStreams() {
for (const auto i : c10::irange(devices_.size())) {
auto currentStream = at::cuda::getCurrentCUDAStream(devices_[i].index());
// Block the current stream on the NCCL stream
(*ncclEndEvents_)[i].block(currentStream);
}
}
// Waiting on the work's corresponding CUDA events
void ProcessGroupNCCL::WorkNCCL::synchronizeInternal(
std::chrono::milliseconds timeout) {
synchronizeStreams();
// In case of blocking, wait for the operation to complete.
if (blockingWait_) {
// Wait for the operation to complete.
while (!isCompleted()) {
if (timedOut()) {
// When operation times out due to some errors that are not
// detected by nccl communicators, ncclCommWatchdog can not check this
// time out error and thus can not abort ncclComms accordingly.
// So explicitly abort ncclComms here before throwing this timed out
// exception to users, after this, ncclCommWatchdog can detect nccl
// communicators are aborted and clean up devNCCLCommMap_ accordingly.
// if throwing timed out excepiton without aborting nccl communicators
// here, it was observed that CUDA GPU will have 100% utilization and
// can not run new events successfully.
std::stringstream ss;
ss << *this;
auto timeoutErrorMsg =
c10::str("Work ", ss.str(), " timed out in call to wait().");
for (const auto& ncclComm : ncclComms_) {
ncclComm->ncclCommAbort(timeoutErrorMsg);
const auto& storeKey = getNcclAbortedCommStoreKey(
buildNcclUniqueIdStr(ncclComm->getNcclId()));
auto rankStr = std::to_string(rank_);
store_->set(
storeKey,
std::vector<uint8_t>(
reinterpret_cast<const uint8_t*>(rankStr.data()),
reinterpret_cast<const uint8_t*>(rankStr.data()) +
rankStr.size()));
LOG(INFO) << "[Rank " << rank_
<< "] Wrote aborted communicator id to store: " << storeKey;
}
auto currentTimepoint = std::chrono::steady_clock::now();
auto timeElapsed =
std::chrono::duration_cast<std::chrono::milliseconds>(
currentTimepoint - workStartTime_);
std::string exceptionMsg = c10::str(
"[Rank ",
rank_,
"] ",
"Caught collective operation timeout: ",
(*this),
" ran for ",
timeElapsed.count(),
" milliseconds before timing out.");
TORCH_CHECK(false, exceptionMsg);
}
// Check for errors and throw appropriate exception.
checkAndThrowException();
std::this_thread::sleep_for(
std::chrono::milliseconds(kSynchronizeBusyWaitMillis));
}
checkAndThrowException();
}
// Device synchronize only after we've completed timeout checks.
if (!barrierTensors_.empty()) {
// If we use the work to do barrier, we should block here
for (auto& device : devices_) {
at::cuda::CUDAGuard gpuGuard(device);
AT_CUDA_CHECK(cudaDeviceSynchronize());
}
}
}
// Same as calling synchronize().
bool ProcessGroupNCCL::WorkNCCL::wait(std::chrono::milliseconds timeout) {
RECORD_PARAM_COMMS(
rank_, // rank
"wait", // colName
0, // inSize
0, // outSize
at::kByte, // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>()); // outSplitSizes
synchronizeInternal(timeout);
// Always return true, because abort API is not implemented.
return true;
}
void ProcessGroupNCCL::WorkNCCL::abort() {
TORCH_CHECK(false, "ProcessGroupNCCL::WorkNCCL::abort not implemented.");
}
bool ProcessGroupNCCL::WorkNCCL::timedOut() {
auto currentTimepoint = std::chrono::steady_clock::now();
return (
std::chrono::duration_cast<std::chrono::milliseconds>(
currentTimepoint - workStartTime_) >= opTimeout_);
}
ProcessGroupNCCL::CoalescedWorkNCCL::CoalescedWorkNCCL(
std::vector<ProcessGroupNCCL::WorkNCCL> works,
int rank,
OpType opType)
: Work(rank, opType, nullptr), works_(std::move(works)) {}
ProcessGroupNCCL::CoalescedWorkNCCL::~CoalescedWorkNCCL() = default;
c10::intrusive_ptr<ProcessGroupNCCL::CoalescedWorkNCCL> ProcessGroupNCCL::
initCoalescedWork(
const std::vector<c10::intrusive_ptr<Work>>& works,
int rank,
OpType opType) {
std::vector<ProcessGroupNCCL::WorkNCCL> ncclWorks;
ncclWorks.reserve(works.size());
for (auto& work : works) {
ncclWorks.push_back(*static_cast<ProcessGroupNCCL::WorkNCCL*>(work.get()));
}
return c10::make_intrusive<ProcessGroupNCCL::CoalescedWorkNCCL>(
ncclWorks, rank, opType);
}
// Same as calling synchronize().
bool ProcessGroupNCCL::CoalescedWorkNCCL::wait(
std::chrono::milliseconds timeout) {
for (auto& w : works_) {
w.wait(timeout);
}
// Always return true, because abort API is not implemented.
return true;
}
ProcessGroupNCCL::ProcessGroupNCCL(
const c10::intrusive_ptr<Store>& store,
int rank,
int size,
c10::intrusive_ptr<Options> options)
: ProcessGroup(rank, size),
store_(store),
options_(options),
ncclCommCounter_(0),
traceKeyStart_(getTraceStartKey("NCCL", rank)),
traceKeyEnd_(getTraceEndKey("NCCL", rank)),
terminateProcessGroup_(false) {
TORCH_CHECK(
at::cuda::getNumGPUs() != 0,
"ProcessGroupNCCL is only supported with GPUs, no GPUs found!");
blockingWait_ = parseEnvVarFlag(NCCL_BLOCKING_WAIT);
asyncErrorHandling_ = static_cast<ErrorHandlingMode>(
parseEnvVarIntDefault(NCCL_ASYNC_ERROR_HANDLING, 0));
desyncDebug_ = parseEnvVarFlag(NCCL_DESYNC_DEBUG) ||
(dist_debug_level_ >= DebugLevel::Detail);
if (blockingWait_) {
if (asyncErrorHandling_ != NoHandling || desyncDebug_) {
LOG(INFO) << "[Rank " << rank_ << "] NCCL_BLOCKING_WAIT and "
<< "NCCL_ASYNC_ERROR_HANDLING|NCCL_DESYNC_DEBUG"
<< "should not both be enabled. "
<< "Only NCCL_BLOCKING_WAIT is being used in this process.";
asyncErrorHandling_ = NoHandling;
desyncDebug_ = false;
}
} else {
if (desyncDebug_ && asyncErrorHandling_ == NoHandling) {
LOG(INFO) << "[Rank " << rank_
<< "] NCCL_DESYNC_DEBUG and NCCL_ASYNC_ERROR_HANDLING "
<< "must both be enabled. "
<< "Enabling NCCL_ASYNC_ERROR_HANDLING.";
asyncErrorHandling_ = TearDown;
}
}
if (parseEnvVarFlag(ENABLE_NCCL_HEALTH_CHECK)) {
// Perform health check by initializing dummy communicators and destroying
// them. This will help indicate any NCCL-related issues prior to the first
// collective.
// Run it in a separate thread and wait on CV to handle timeouts, since
// majority of getNCCLComm failures are hangs.
runHealthCheck();
}
#ifdef ENABLE_NCCL_ERROR_CHECKING
ncclCommWatchdogThread_ =
std::thread(&ProcessGroupNCCL::ncclCommWatchdog, this);
#endif
if (asyncErrorHandling_ != NoHandling) {
workCleanupThread_ = std::thread(&ProcessGroupNCCL::workCleanupLoop, this);
}
init();
LOG(INFO) << "[Rank " << rank_
<< "] ProcessGroupNCCL initialized with following options:"
<< "\nNCCL_ASYNC_ERROR_HANDLING: " << asyncErrorHandling_
<< "\nNCCL_DESYNC_DEBUG: " << desyncDebug_
<< "\nNCCL_BLOCKING_WAIT: " << blockingWait_
<< "\nTIMEOUT(ms): " << options_->timeout.count()
<< "\nUSE_HIGH_PRIORITY_STREAM: "
<< options_->is_high_priority_stream;
#ifdef USE_NCCL_WITH_UCC
static c10::once_flag initialize_ucc_lib_flag;
c10::call_once(initialize_ucc_lib_flag, [&] {
uccLib_ = loadTorchUCC();
if (uccLib_ != nullptr) {
LOG(INFO) << "[Rank " << rank_ << "] torch_ucc.so loaded";
}
});
if (uccLib_ != nullptr) {
LOG(INFO) << "[Rank " << rank_ << "] torch_ucc.so loaded";
typedef c10::intrusive_ptr<ProcessGroup> fn(
const c10::intrusive_ptr<Store>& store, int rank, int size);
auto createProcessGroupUCC =
reinterpret_cast<fn*>(uccLib_->sym("createProcessGroupUCC"));
if (createProcessGroupUCC != nullptr) {
uccPG_ = createProcessGroupUCC(store, rank_, size_);
LOG(INFO) << "[Rank " << rank_ << "] ProcessGroupUCC created.";
}
}
#endif
}
void ProcessGroupNCCL::runHealthCheck() {
// Run health check in a separate thread and wait on CV to handle timeouts,
// since majority of getNCCLComm failures are hangs.
struct HealthCheckData {
std::mutex healthCheckMutex;
std::condition_variable healthCheckCv;
bool healthCheckSuccess = false;
std::exception_ptr healthCheckException;
};
HealthCheckData healthCheckData;
auto t = std::thread([&healthCheckData, this]() {
try {
std::vector<at::Device> rankDevice = {getDeviceForRank(rank_)};
const auto key = getKeyFromDevices(rankDevice);
// OpType does not matter, only need to set to not go through send/recv
// path.
getNCCLComm(key, rankDevice, OpType::ALLREDUCE);
// Now destroy the communicators and remove them from cache so we don't
// use destroyed communicators.
destroyNCCLComms(key);
// Notify main thread the health check is complete.
{
std::lock_guard<std::mutex> lk(healthCheckData.healthCheckMutex);
healthCheckData.healthCheckSuccess = true;
}
healthCheckData.healthCheckCv.notify_one();
} catch (const std::exception& e) {
// Populate exception ptr.
healthCheckData.healthCheckException = std::current_exception();
// Unblock waiting main thread which will report exception.
healthCheckData.healthCheckCv.notify_one();
} // Unknown exceptions will just cause the program to terminate.
});
// We don't need to join the thread, just need to verify health check via the
// CV. Hence we detach the thread here.
t.detach(); // NOLINT
LOG(INFO) << "[Rank " << rank_ << "]"
<< " will wait up to " << options_->timeout.count()
<< " msec for NCCL health check to complete.";
std::unique_lock<std::mutex> lock(healthCheckData.healthCheckMutex);
healthCheckData.healthCheckCv.wait_for(
lock, options_->timeout, [&healthCheckData]() {
return healthCheckData.healthCheckSuccess;
});
if (healthCheckData.healthCheckException) {
std::rethrow_exception(healthCheckData.healthCheckException);
}
// If there is no exception, the likely culprit is a timeout/hang which is how
// most communicator init issues manifest themselves.
TORCH_CHECK(
healthCheckData.healthCheckSuccess,
"ProcessGroupNCCL: Health check failure: Failed to initialize NCCL communicator on rank ",
rank_);
}
void ProcessGroupNCCL::setSequenceNumberForGroup() {}
uint64_t ProcessGroupNCCL::getSequenceNumberForGroup() {
return seq_;
}
ProcessGroupNCCL::~ProcessGroupNCCL() {
terminateProcessGroup_.store(true);
watchdogCV_.notify_one();
#ifdef ENABLE_NCCL_ERROR_CHECKING
ncclCommWatchdogThread_.join();
#endif
if (asyncErrorHandling_ != NoHandling) {
workMetaListCV_.notify_one();
workCleanupThread_.join();
}
{
// Abort all NCCL Communicators on Process Group Destruction
std::lock_guard<std::mutex> lock(mutex_);
for (auto& it : devNCCLCommMap_) {
auto& ncclComms = it.second;
for (const auto& ncclComm : ncclComms) {
std::string abortReason =
c10::str("Process Group destroyed on rank ", rank_);
ncclComm->ncclCommAbort(abortReason);
}
}
}
}
void ProcessGroupNCCL::abortTimedOutCollectives(
std::unordered_set<std::string>& abortedCommIds) {
std::unique_lock<std::mutex> lock(workMetaListMutex_);
for (auto& work : workMetaList_) {
work.checkAndSetException();
// Aborting NCCL Communicators due to errors is already handled above.
if (work.exception()) {
continue;
}
// Check for Timeouts in the WorkNCCL Operations, and abort all
// communicators accordingly.
if (work.timedOut()) {
auto currentTimepoint = std::chrono::steady_clock::now();
auto timeElapsed = std::chrono::duration_cast<std::chrono::milliseconds>(
currentTimepoint - work.workStartTime_);
std::string exceptionMsg = c10::str(
"[Rank ",
rank_,
"] ",
"Watchdog caught collective operation timeout: ",
work,
" ran for ",
timeElapsed.count(),
" milliseconds before timing out.");
if (desyncDebug_) {
exceptionMsg += retrieveDesyncReport(store_, "NCCL", rank_, size_);
}
LOG(ERROR) << exceptionMsg;
std::exception_ptr exception_ptr =
std::make_exception_ptr(std::runtime_error(exceptionMsg));
work.setException(exception_ptr);
for (const auto& ncclComm : work.ncclComms_) {
ncclComm->ncclCommAbort(exceptionMsg);
abortedCommIds.emplace(buildNcclUniqueIdStr(ncclComm->getNcclId()));
}
}
}
}
void ProcessGroupNCCL::ncclCommWatchdog() {
try {
LOG(INFO) << "[Rank " << rank_ << "] NCCL watchdog thread started!";
ncclCommWatchdogInternal();
LOG(INFO) << "[Rank " << rank_
<< "] NCCL watchdog thread terminated normally";
} catch (std::exception& e) {
LOG(INFO) << "[Rank " << rank_
<< "] NCCL watchdog thread terminated with exception: "
<< e.what();
} catch (...) {
LOG(INFO) << "[Rank " << rank_
<< "] NCCL watchdog thread terminated with unknown exception";
}
}
void ProcessGroupNCCL::ncclCommWatchdogInternal() {
while (!terminateProcessGroup_.load()) {
std::unordered_set<std::string> abortedCommIds;
std::unordered_set<std::string> allCommIds;
{
// Loop through the cache of communicators for NCCL errors.
std::lock_guard<std::mutex> lock(mutex_);
for (auto& it : devNCCLCommMap_) {
auto& ncclComms = it.second;
for (const auto& ncclComm : ncclComms) {
allCommIds.emplace(buildNcclUniqueIdStr(ncclComm->getNcclId()));
}
std::exception_ptr ncclErrorException = checkForNCCLErrors(ncclComms);
if (ncclErrorException) {
auto exceptionMsg =
getExceptionMsgFromExceptionPtr(ncclErrorException);
LOG(INFO)
<< "[Rank " << rank_
<< "] Received NCCL errors for communicators in the cache: \n"
<< "NCCL error: \n"
<< exceptionMsg;
if (blockingWait_ || asyncErrorHandling_ != NoHandling) {
LOG(INFO) << "[Rank " << rank_
<< "] Aborting communicators that received errors";
// We abort NCCL communicators that have received errors from this
// thread, and exceptions are set on the corresponding work objects.
// The workCleanupThread will then loop through the unfinished
// collectives and throw exceptions if an exception has been set on
// any of the work objects from this thread.
for (const auto& ncclComm : ncclComms) {
// We are aborting remaining communicators due to an error in
// at least one of these communicators, so propagate that reason
// for better debugability.
ncclComm->ncclCommAbort(exceptionMsg);
// Note that we don't remove the aborted communicators from the
// cache. The reason is that if we do remove the communicator
// from the cache, it is possible that a new collective operation
// calls `ncclCommInitRank` to create a new communicator whereas
// other ranks might have failed/timed out and didn't enter
// `ncclCommInitRank`. As a result, when there is a failure on
// a communicator the application receives an exception and its
// their responsibility to destroy the process group and recreate
// it to recover from errors.
abortedCommIds.emplace(
buildNcclUniqueIdStr(ncclComm->getNcclId()));
}
}
}
}
}
if (asyncErrorHandling_ != NoHandling) {
abortTimedOutCollectives(abortedCommIds);
}
if (blockingWait_) {
// When we abort a communicator on one rank, it is likely that might cause
// other ranks to hang indefinitely. As a result, whenever we abort a
// communicator, we write its ID to the store. The watchdog on other ranks
// then monitor the store, find an aborted communicator ID and abort their
// respective communicator as well.
// Record the aborted communicators locally and in the store.
for (const auto& abortedCommId : abortedCommIds) {
abortedComms_.emplace(abortedCommId);
const auto& storeKey = getNcclAbortedCommStoreKey(abortedCommId);
auto rankStr = std::to_string(rank_);
store_->set(
storeKey,
std::vector<uint8_t>(
reinterpret_cast<const uint8_t*>(rankStr.data()),
reinterpret_cast<const uint8_t*>(rankStr.data()) +
rankStr.size()));
LOG(INFO) << "[Rank " << rank_
<< "] Watchdog wrote aborted communicator id to store: "
<< storeKey;
}
// Check for any communicators in the store and abort them if needed.
for (const auto& commId : allCommIds) {
if (abortedComms_.find(commId) == abortedComms_.end()) {
// Check if we need to abort them if not already aborted (shouldn't
// wait more than the watchdog sleep time.).
const auto& storeKey = getNcclAbortedCommStoreKey(commId);
try {
store_->wait(
{storeKey},
std::chrono::milliseconds(kWaitForAbortCommStoreKey));
auto val = store_->get(storeKey);
std::string rank(reinterpret_cast<char*>(val.data()), val.size());
std::stringstream ss;
ss << "[Rank " << rank_ << "] Found key in store: " << storeKey
<< ", from rank: " << rank
<< ". This means that rank has aborted its NCCL communicators previously and is not in a healthy state."
<< ". Aborting appropriate communicators";
std::string abortReason = ss.str();
LOG(WARNING) << abortReason;
// Now abort the appropriate communicators.
std::lock_guard<std::mutex> lock(mutex_);
auto it = ncclIdToCommMap_.find(commId);
TORCH_INTERNAL_ASSERT(it != ncclIdToCommMap_.end());
for (const auto& ncclComm : it->second) {
// The reason we are aborting is because some other ranks have
// aborted their communicators originally, so propagate that
// reason.
ncclComm->ncclCommAbort(abortReason);
}
abortedComms_.emplace(commId);
LOG(INFO) << "[Rank " << rank_
<< "] Aborted communicators for key in store: "
<< storeKey;
} catch (std::exception& e) {
VLOG(1) << "Did not find key in store: " << storeKey
<< ", error: " << e.what();
}
}
}
}
std::unique_lock<std::mutex> lock(watchdogCVMutex_);
watchdogCV_.wait_for(
lock,
std::chrono::milliseconds(kWatchdogThreadSleepMillis),
[&]() -> bool { return terminateProcessGroup_.load(); });
}
}
void ProcessGroupNCCL::workCleanupLoop() {
bool done = false;
while (!terminateProcessGroup_.load() || !done) {
std::list<WorkNCCL> doneWorks;
{
std::unique_lock<std::mutex> lock(workMetaListMutex_);
// We busy-poll the work vector every kWatchdogThreadSleepMillis
// milliseconds as long as the atomic is True.
workMetaListCV_.wait_for(
lock,
std::chrono::milliseconds(kWorkCleanupThreadSleepMillis),
[&]() -> bool { return terminateProcessGroup_.load(); });
for (auto it = workMetaList_.begin(); it != workMetaList_.end();
/* no increment*/) {
auto& work = *it;
if (desyncDebug_ && !work.exception()) {
if (!work.startTraceUpdated_ && work.isStarted() &&
!terminateProcessGroup_.load() && !storeError_) {
work.startTraceUpdated_ = true;
storeError_ = !c10d::traceUpdate(
store_,
traceKeyStart_,
work.seq_,
opTypeToString(work.opType_));
}
}
if (work.isCompleted()) {
if (desyncDebug_ && !work.exception()) {
// To close the window between the check of work.isStarted() and
// the check of work.isCompleted().
if (!work.startTraceUpdated_ && !terminateProcessGroup_.load() &&
!storeError_) {
storeError_ = !c10d::traceUpdate(
store_,
traceKeyStart_,
work.seq_,
opTypeToString(work.opType_));
}
if (!terminateProcessGroup_.load() && !storeError_) {
storeError_ = !c10d::traceUpdate(
store_,
traceKeyEnd_,
work.seq_,
opTypeToString(work.opType_));
}
}
// Handle Exceptions on failed GPU operations and remove completed
// workNCCL objects from work vector.
if (!terminateProcessGroup_.load()) {
work.handleNCCLGuard(asyncErrorHandling_);
}
doneWorks.push_back(std::move(*it));
it = workMetaList_.erase(it);
} else {
// Increment the iterator if the current WorkNCCL object is not
// completed.
++it;
}
}
done = workMetaList_.empty();
}
doneWorks.clear();
}
}
std::exception_ptr ProcessGroupNCCL::WorkNCCL::checkForNCCLErrors(
const std::vector<std::shared_ptr<NCCLComm>>& ncclComms) const {
return checkForNCCLErrorsInternal(ncclComms);
}
std::exception_ptr ProcessGroupNCCL::checkForNCCLErrors(
const std::vector<std::shared_ptr<NCCLComm>>& ncclComms) {
return checkForNCCLErrorsInternal(ncclComms);
}
std::exception_ptr ProcessGroupNCCL::checkForNCCLErrorsInternal(
const std::vector<std::shared_ptr<NCCLComm>>& ncclComms) {
for (const auto& ncclComm : ncclComms) {
// Prioritize commFailureReason over checkForNcclError() result if
// commFailureReason is set.
auto commFailureReason = ncclComm->getNcclCommFailureReason();
if (commFailureReason != c10::nullopt) {
return std::make_exception_ptr(std::runtime_error(c10::str(
"NCCL communicator encountered error set by ProcessGroupNCCL: ",
*commFailureReason)));
}
ncclResult_t ncclAsyncErr = ncclComm->checkForNcclError();
if (ncclAsyncErr != ncclSuccess) {
return std::make_exception_ptr(std::runtime_error(
"NCCL error: " + ncclGetErrorWithVersion(ncclAsyncErr) + "\n" +
getNcclErrorDetailStr(ncclAsyncErr)));
}
}
return nullptr;
}
void ProcessGroupNCCL::broadcastUniqueNCCLID(
ncclUniqueId* ncclID,
bool isSingleP2POp,
const std::string& p2pKey,
int p2pRank) {
// For collective operations:
// For every NCCL communicator that we create we need to broadcast
// a unique ID from rank 0 to all other ranks. This broadcast is
// done by rank 0 setting a key in the store and all other ranks
// retrieving the contents of that key. A single process group
// may create multiple NCCL communicators, so we use a sequence
// number to differentiate between them.
// For single point-to-point operations:
// The sequence number will only be increased on 2 out of all the
// processes in a Process Group. So all following collective
// operations will see different sequence numbers which will cause
// runtime errors. To avoid that, use the src:target pair instead
// of sequence number for p2p communications.
std::string storeKey;
if (!isSingleP2POp) {
storeKey = std::to_string(ncclCommCounter_++);
} else {
storeKey = p2pKey;
}
if (rank_ == 0 || (isSingleP2POp && p2pRank == 0)) {
auto vec = std::vector<uint8_t>(
reinterpret_cast<uint8_t*>(ncclID),
reinterpret_cast<uint8_t*>(ncclID) + NCCL_UNIQUE_ID_BYTES);
store_->set(storeKey, vec);
} else {
try {
auto vec = store_->get(storeKey);
TORCH_CHECK(vec.size() == NCCL_UNIQUE_ID_BYTES);
std::memcpy(ncclID, vec.data(), vec.size());
} catch (const std::exception& e) {
std::string exceptionMsg = c10::str(
"[",
rank_,
"] is setting up NCCL communicator and "
"retreiving ncclUniqueId from [0] via c10d key-value store by key '",
storeKey,
"', but store->get('",
storeKey,
"') got error: ");
TORCH_CHECK(false, exceptionMsg + e.what());
} catch (...) {
TORCH_CHECK(
false,
c10::str(
"Unknown exception while [",
rank_,
"] is setting up NCCL communicator and "
"retreiving ncclUniqueId from [0] via c10d key-value store by key '",
storeKey,
"'"));
}
}
}
void ProcessGroupNCCL::destroyNCCLComms(const std::string& devNCCLCommMapKey) {
std::lock_guard<std::mutex> lock(mutex_);
if (devNCCLCommMap_.find(devNCCLCommMapKey) == devNCCLCommMap_.end()) {
TORCH_INTERNAL_ASSERT(
false,
"Expected to find key ",
devNCCLCommMapKey,
" in NCCL communicator map.");
}
std::vector<std::shared_ptr<NCCLComm>>& ncclComms =
devNCCLCommMap_[devNCCLCommMapKey];
// Loop through communicators and call ncclCommAbort.
for (const auto& comm : ncclComms) {
// ncclCommDestroy(comm->getNcclComm()) results in segfault when PG is being
// destroyed, so using ncclCommAbort here.
comm->ncclCommAbort();
}
// Remove communicators from the cache.
devNCCLCommMap_.erase(devNCCLCommMapKey);
// Clear used device indices.
usedDeviceIdxs_.clear();
}
std::vector<std::shared_ptr<NCCLComm>>& ProcessGroupNCCL::getNCCLComm(
const std::string& devicesKey,
const std::vector<at::Device>& devices,
OpType opType,
int p2pRank,
bool isSendRecvSelf) {
// Sanity check
if (devicesKey.empty()) {
TORCH_CHECK(
false,
"Not able to create/get the NCCL Communicator since "
"the GPU devices are not known");
}
for (auto& device : devices) {
usedDeviceIdxs_.insert(device.index());
}
{
std::lock_guard<std::mutex> lock(mutex_);
if (devNCCLCommMap_.find(devicesKey) != devNCCLCommMap_.end()) {
// Reuse the cached communicator if there is one.
return devNCCLCommMap_[devicesKey];
}
}
// NCCL communicator not cached, create a new entry
std::vector<std::shared_ptr<NCCLComm>> ncclComms;
ncclComms.resize(devices.size());
// Create the unique NCCL ID and broadcast it
ncclUniqueId ncclID;
// For batch_isend_irecv, ncclGroupStart() would be called upfront
bool batchP2P = ncclActiveGroupCounter_ > 0;
bool singleP2POp = isP2POp(opType, batchP2P);
// For point-to-point communication, lower rank of the two will get unique id.
if (rank_ == 0 || (singleP2POp && p2pRank == 0)) {
C10D_NCCL_CHECK(ncclGetUniqueId(&ncclID), c10::nullopt);
}
// For point-to-point communication on the same process, don't need broadcast.
if (!isSendRecvSelf) {
// Broadcast so that each process can have a unique NCCL ID
broadcastUniqueNCCLID(&ncclID, singleP2POp, devicesKey, p2pRank);
}
at::cuda::OptionalCUDAGuard gpuGuard;
std::vector<at::cuda::CUDAStream> streamVal;
streamVal.reserve(devices.size());
// [Group Start/End Note] This is used to ensure that nccl communicator will
// be created before communication primitives are called. Let's look at this
// example: Using the batch_isend_irecv to send a tensor to a target process.
// On the sender side, the corresponding underlying NCCL calls will look like
// ncclGroupStart() // This is in batch_isend_irecv
// ncclGroupStart() // This is [Note 1]
// ncclCommInitRank() // Inside NCCLComm::create
// ncclSend()
// ncclGroupEnd() // This is [Note 2]
// ncclGroupEnd() // This is in batch_isend_irecv
// With this pattern, the nccl communicator will be created in the last
// ncclGroupEnd which means when ncclSend is processed, the passed
// communicator argument is NULL which will lead to runtime error. So we need
// to "close" all active nccl groups to ensure nccl communicator is actually
// created before encountering any communication calls. This is why we need
// the following for loop.
for (const auto i : c10::irange(ncclActiveGroupCounter_)) {
(void)i;
C10D_NCCL_CHECK(ncclGroupEnd(), c10::nullopt);
}
// [Note 1] Create the NCCL communicators for each GPU
C10D_NCCL_CHECK(ncclGroupStart(), c10::nullopt);
for (const auto i : c10::irange(devices.size())) {
// GPU world size and GPU rank
int numRanks, rank;
if (!singleP2POp) {
// Collective, all-to-all, or batch P2P
numRanks = getSize() * devices.size();
rank = getRank() * devices.size() + i;
} else if (isSendRecvSelf) {
// Same process send and recv.
numRanks = 1;
rank = 0;
} else {
// For single point-to-point operation, there are only 2 processes
// involved so the GPU rank is either 0 or 1.
numRanks = 2;
rank = p2pRank;
}
// Get the device index
int deviceIndex = devices[i].index();
gpuGuard.set_index(deviceIndex);
ncclComms[i] = NCCLComm::create(numRanks, rank, ncclID);
// Creates the NCCL streams
streamVal.push_back(
at::cuda::getStreamFromPool(options_->is_high_priority_stream));
}
// [Note 2 ]
C10D_NCCL_CHECK(ncclGroupEnd(), c10::nullopt);
// At this point NCCL should have been initialized, hence we can accurately
// get the env value even if NCCL sets it by reading from nccl.conf file
if (getRank() == 0) {
LOG(INFO) << "NCCL_DEBUG: " << parse_env("NCCL_DEBUG");
}
// See [Group Start/End Note]
for (const auto i : c10::irange(ncclActiveGroupCounter_)) {
(void)i;
C10D_NCCL_CHECK(ncclGroupStart(), c10::nullopt);
}
ncclStreams_.emplace(devicesKey, std::move(streamVal));
// Note: these events are created with the (default) cudaEventDisableTiming
// flag This flag provides the best performance when used with
// cudaStreamWaitEvent() and cudaEventQuery(). Since we here don't measure the
// performance using cudaEvent, this should be set.
ncclEvents_.emplace(
std::piecewise_construct,
std::make_tuple(devicesKey),
std::make_tuple(devices.size()));
// Hold the lock before modifying the cache.
std::lock_guard<std::mutex> lock(mutex_);
// Record the communicators based on ncclUniqueId.
ncclIdToCommMap_.emplace(buildNcclUniqueIdStr(ncclID), ncclComms);
// Move the NCCL resource to cache
devNCCLCommMap_.emplace(devicesKey, std::move(ncclComms));
return devNCCLCommMap_[devicesKey];
}
namespace {
// Check validity of tensor
void check_gpu_single_tensor(const at::Tensor& tensor) {
if (!tensor.is_cuda() || tensor.is_sparse()) {
TORCH_CHECK(false, "Tensors must be CUDA and dense");
}
if (!tensor.is_contiguous(tensor.suggest_memory_format())) {
TORCH_CHECK(false, "Tensors must be contiguous");
}
}
// Checks that all `tensors' have the same type and shape and reside on distinct
// GPUs.
// TODO: test_c10d_nccl.py should consider adding tests for the error conditions
// here, ie, that deliberately pass invalid tensors and check the right
// exception is thrown.
void check_gpu_tensors_different_devices(
const std::vector<at::Tensor>& tensors) {
if (tensors.size() == 0) {
TORCH_CHECK(false, "Tensor list must be nonempty");
}
if (tensors.size() > static_cast<size_t>(at::cuda::getNumGPUs())) {
TORCH_CHECK(
false,
"Tensor list mustn't be larger than the number of available GPUs");
}
const auto& first = tensors.front();
// Set for ensuring that tensors are on separate devices.
std::unordered_set<decltype(first.get_device())> usedDevices;
usedDevices.reserve(tensors.size());
for (const auto& t : tensors) {
if (!t.is_cuda() || t.is_sparse()) {
TORCH_CHECK(false, "Tensors must be CUDA and dense");
}
if (t.scalar_type() != first.scalar_type()) {
TORCH_CHECK(false, "Tensors must have identical type");
}
if (t.sizes() != first.sizes()) {
TORCH_CHECK(false, "Tensors must have identical size");
}
if (t.strides() != first.strides()) {
TORCH_CHECK(false, "Tensors must have identical strides");
}
if (!t.is_contiguous(t.suggest_memory_format())) {
TORCH_CHECK(false, "Tensors must be contiguous");
}
const auto inserted = usedDevices.insert(t.get_device()).second;
if (!inserted) {
TORCH_CHECK(false, "Tensors must be on distinct GPU devices");
}
}
}
// Checks that all `tensors' have the same type and shape and reside on the same
// GPU.
// TODO: test_c10d_nccl.py should consider adding tests for the error conditions
// here, ie, that deliberately pass invalid tensors and check the right
// exception is thrown. The "Expected list of tensors on the same device"
// condition may be a challenge because the test would need to pass tensors on
// different devices in the same process.
int64_t check_gpu_tensors_same_device(const std::vector<at::Tensor>& tensors) {
if (tensors.size() == 0) {
TORCH_CHECK(false, "Tensor list must be nonempty");
}
const auto& first = tensors.front();
int64_t total_numel = 0;
for (const auto& t : tensors) {
if (!t.is_cuda() || t.is_sparse()) {
TORCH_CHECK(false, "Tensors must be CUDA and dense");
}
if (t.scalar_type() != first.scalar_type()) {
TORCH_CHECK(false, "Tensors must have identical type");
}
if (!t.is_non_overlapping_and_dense()) {
TORCH_CHECK(false, "Tensors must be non-overlapping and dense");
}
// If we're in this function, the user called a _coalesced collective
// on a set of tensors with potentially different sizes and strides.
// Therefore, we don't check for matching sizes and strides,
// but we do double-check tensors are on the same device.
TORCH_CHECK(
t.get_device() == tensors[0].get_device(),
"Expected list of tensors on the same device");
total_numel += t.numel();
}
return total_numel;
}
bool check_same_size(const std::vector<at::Tensor>& input_tensors) {
for (const auto& input_tensor : input_tensors) {
if (!input_tensors[0].is_same_size(input_tensor)) {
return false;
}
}
return true;
}
// Flatten each list in `tensor_lists' for a gather or scatter operation, and
// ensure compatibility with the corresponding tensor in `other'.
std::vector<at::Tensor> flatten_for_scatter_gather(
std::vector<std::vector<at::Tensor>>& tensor_lists,
std::vector<at::Tensor>& other,
size_t world_size) {
if (tensor_lists.size() != other.size()) {
TORCH_CHECK(
false,
"Tensor list operands to scatter/gather must have the same length");
}
const auto num_devices = tensor_lists.size();
std::vector<at::Tensor> flattened;
flattened.resize(num_devices);
for (const auto i : c10::irange(size_t{}, num_devices)) {
if (tensor_lists[i].size() != world_size * num_devices) {
TORCH_CHECK(
false,
"Tensor list input to scatter/gather must match number of collective"
" participants");
}
// Only check device match for the first tensor in the list; the call to
// newLikeFlat() below will check the rest.
if (tensor_lists[i].front().get_device() != other[i].get_device()) {
TORCH_CHECK(
false,
"Corresponding input/output tensors to scatter/gather must all reside"
" on the same device");
}
for (const auto& t : tensor_lists[i]) {
if (t.numel() != other[i].numel()) {
TORCH_CHECK(
false,
"All tensor operands to scatter/gather must have the same number of elements");
}
}
// Flatten the tensors (from all ranks) into a single big tensor.
flattened[i] = newLikeFlat(tensor_lists, i);
}
return flattened;
}
} // namespace
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL> ProcessGroupNCCL::initWork(
std::vector<at::Device> devices,
int rank,
OpType opType,
const char* profilingTitle,
const c10::optional<std::vector<at::Tensor>>& inputs) {
return c10::make_intrusive<ProcessGroupNCCL::WorkNCCL>(
devices, rank, opType, seq_, profilingTitle, inputs, desyncDebug_);
}
std::vector<at::Tensor> ProcessGroupNCCL::WorkNCCL::result() {
return *outputs_;
}
c10::intrusive_ptr<c10::ivalue::Future> ProcessGroupNCCL::WorkNCCL::
getFuture() {
return future_;
}
void ProcessGroupNCCL::workEnqueue(
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL> work) {
if (!terminateProcessGroup_.load()) {
std::lock_guard<std::mutex> lock(workMetaListMutex_);
// Avoid view tensors to be processed in cleanup thread.
// View tensors' destruction invokes autograd_meta, which
// needs to be destructed in user thread. Otherwise will
// get deadlock. Here we enqueue work without outputs_.
workMetaList_.emplace_back(WorkNCCL(*work));
}
}
ProcessGroupNCCL::Options::Options(bool is_high_priority_stream)
: ProcessGroup::Options(NCCL_BACKEND_NAME),
is_high_priority_stream(is_high_priority_stream) {}
void ProcessGroupNCCL::startCoalescing() {
coalescedDevices_.clear();
coalescing_active_ = true;
groupStart();
}
void ProcessGroupNCCL::endCoalescing(
std::vector<c10::intrusive_ptr<Work>>& reqs) {
groupEnd();
if (reqs.size() != coalescedDevices_.size()) {
TORCH_CHECK(false, "Number of requests do not match number of collectives");
}
int batch_idx = 0;
for (const auto& req : reqs) {
auto ncclWork = static_cast<ProcessGroupNCCL::WorkNCCL*>(req.get());
// @lint-ignore CLANGTIDY
std::vector<at::Device> devices = coalescedDevices_[batch_idx];
const auto key = getKeyFromDevices(devices);
auto& ncclStreams = ncclStreams_[key];
for (const auto i : c10::irange(devices.size())) {
(*ncclWork->ncclEndEvents_)[i].record(ncclStreams[i]);
}
batch_idx += 1;
}
coalescing_active_ = false;
}
template <typename Fn, typename PreProcess, typename PostProcess>
c10::intrusive_ptr<Work> ProcessGroupNCCL::collective(
std::vector<at::Tensor>& inputs,
std::vector<at::Tensor>& outputs,
Fn fn,
PreProcess pre,
PostProcess post,
OpType opType,
const char* profilingTitle) {
errorIfCapturingNonCapturableNCCL();
// Bump collective counter
seq_++;
// Currently, the API permits two scenarios where inputs.size() and
// outputs.size() are > 0.
// 1. If the call was a _coalesced call, all inputs must be on the same
// device.
// The group of nccl calls applies the collective separately to each input,
// but the group as a whole should be efficient, and might even execute as
// a single fused kernel.
// 2. If the call was a _multigpu call, all inputs must be on different
// devices.
// The nccl group applies the collective across them (eg, if the collective
// is an allreduce, the output on each device contains contributions summed
// across `inputs' tensors).
const auto devices = getDeviceList(inputs);
const bool inputs_same_dev = (devices.size() == 1);
const auto key = getKeyFromDevices(devices);
auto& ncclComms = getNCCLComm(key, devices, opType);
if (coalescing_active_) {
coalescedDevices_.push_back(devices);
}
// Used many times below, so we stash the unordered_map lookup
auto& ncclStreams = ncclStreams_[key];
// First let NCCL streams wait for input tensors allocation streams
syncStreams(devices, ncclEvents_[key], ncclStreams);
// Work itself will create the CUDA events on all GPUs of tensors
bool can_profile = outputs.size() == 1;
auto work = initWork(
devices,
rank_,
opType,
can_profile ? profilingTitle : nullptr,
can_profile ? c10::optional<std::vector<at::Tensor>>(inputs)
: c10::nullopt);
// Store references to outputs to be used by WorkNCCL::result and operator<<.
work->outputs_ = std::make_shared<std::vector<at::Tensor>>(outputs);
at::cuda::OptionalCUDAGuard gpuGuard;
// Start event should only be recorded before the ncclGroupStart()
if (desyncDebug_) {
for (const auto i : c10::irange(devices.size())) {
at::cuda::CUDAStream& ncclStream = ncclStreams[i];
(*work->ncclStartEvents_)[i].record(ncclStream);
}
}
pre(ncclStreams);
{
torch::cuda::nccl::AutoNcclGroup nccl_group_guard;
for (const auto i : c10::irange(inputs.size())) {
if (!inputs_same_dev || (inputs_same_dev && i == 0)) {
gpuGuard.set_index(devices[i].index());
}
decltype(i) stream_comm_i = (inputs_same_dev ? 0 : i);
auto& ncclStream = ncclStreams[stream_comm_i];
auto& ncclComm = ncclComms[stream_comm_i];
// Both `inputs' and `outputs' are created on a worker stream and used in
// different ncclStreams. Hence, both must record the ncclStream to
// prevent being freed before the collective finishes.
//
// We only record `inputs' here, and leave recording `outputs' to `fn' for
// operations where `inputs' and `outputs' are not the same.
//
// See [Sync Streams].
c10::cuda::CUDACachingAllocator::recordStream(
inputs[i].storage().data_ptr(), ncclStream);
C10D_NCCL_CHECK(
fn(inputs[i], outputs[i], ncclComm->getNcclComm(), ncclStream),
ncclComm->getNcclCommFailureReason());
}
}
post(ncclStreams);
// End event should only be recorded after the ncclGroupEnd()
for (const auto i : c10::irange(devices.size())) {
at::cuda::CUDAStream& ncclStream = ncclStreams[i];
if (!coalescing_active_) {
(*work->ncclEndEvents_)[i].record(ncclStream);
}
work->ncclComms_[i] = ncclComms[i];
}
{
c10::cuda::CUDAMultiStreamGuard streamGuard(ncclStreams);
work->future_ = c10::make_intrusive<at::ivalue::Future>(
c10::ListType::create(c10::TensorType::get()), devices);
// Add a callback that runs profiling end callbacks. wrapCallback() in CUDA
// future blocks the stream this callback runs on the corresponding
// ncclEndEvents_ ensuring appropriate synchronization.
if (work->recordFunctionEndCallback_) {
work->future_->addCallback([work](at::ivalue::Future& /* unused */) {
work->recordFunctionEndCallback_();
});
}
work->future_->markCompleted(at::IValue(*work->outputs_));
}
// Set appropriate work parameters.
work->blockingWait_ = blockingWait_;
work->opTimeout_ = options_->timeout;
work->store_ = store_;
if (asyncErrorHandling_ != NoHandling) {
workEnqueue(work);
}
return work;
}
template <typename Fn, typename PreProcess, typename PostProcess>
c10::intrusive_ptr<Work> ProcessGroupNCCL::pointToPoint(
std::vector<at::Tensor>& tensors,
Fn fn,
int peer,
OpType opType,
PreProcess pre,
PostProcess post,
const char* profilingTitle) {
const auto devices = getDeviceList(tensors);
std::string key;
int p2pRank = 0, p2pTargetRank = 0;
bool isSendRecvSelf = false;
// For batch_isend_irecv, ncclGroupStart() would be called upfront
bool batchP2P = ncclActiveGroupCounter_ > 0;
if (batchP2P) {
// For batch P2P, we need to treat it like a collective when selecting
// communicator, because other ranks can call into this batch other than my
// rank and my peer
key = getKeyFromDevices(devices);
p2pRank = rank_;
p2pTargetRank = peer;
} else {
// For single P2P, preserve the old two-rank behavior (to avoid perf diff)
key = getKeySendRecv(rank_, peer);
p2pRank = rank_ <= peer ? 0 : 1;
isSendRecvSelf = rank_ == peer;
p2pTargetRank = isSendRecvSelf ? 0 : 1 - p2pRank;
}
auto& ncclComms = getNCCLComm(key, devices, opType, p2pRank, isSendRecvSelf);
if (coalescing_active_) {
coalescedDevices_.push_back(devices);
}
// First let NCCL streams wait for input tensors allocation streams
syncStreams(devices, ncclEvents_[key], ncclStreams_[key]);
// Work itself will create the CUDA events on all GPUs of tensors
bool can_profile = tensors.size() == 1;
auto work = initWork(
devices,
rank_,
opType,
can_profile ? profilingTitle : nullptr,
can_profile ? c10::optional<std::vector<at::Tensor>>(tensors)
: c10::nullopt);
// Store references to outputs to be used by WorkNCCL::result and operator<<.
// Note that these outputs are only valid for recv(), as send() does not
// modify the inputs but we still create these outputs for use cases such as
// profiling.
work->outputs_ = std::make_shared<std::vector<at::Tensor>>(tensors);
at::cuda::OptionalCUDAGuard gpuGuard;
// Start event should only be recorded before the ncclGroupStart()
if (desyncDebug_) {
for (const auto i : c10::irange(tensors.size())) {
at::cuda::CUDAStream& ncclStream = ncclStreams_[key][i];
(*work->ncclStartEvents_)[i].record(ncclStream);
}
}
pre(ncclStreams_[key]);
for (const auto i : c10::irange(tensors.size())) {
gpuGuard.set_index(devices[i].index());
at::cuda::CUDAStream& ncclStream = ncclStreams_[key][i];
// Both send tensor and recv tensor are created on a worker stream and used
// in different ncclStreams. Hence, both must record the ncclStream to
// prevent being freed before the collective finishes.
//
// See [Sync Streams].
c10::cuda::CUDACachingAllocator::recordStream(
tensors[i].storage().data_ptr(), ncclStream);
}
{
torch::cuda::nccl::AutoNcclGroup nccl_group_guard;
for (const auto i : c10::irange(tensors.size())) {
gpuGuard.set_index(devices[i].index());
at::cuda::CUDAStream& ncclStream = ncclStreams_[key][i];
C10D_NCCL_CHECK(
fn(tensors[i],
ncclComms[i]->getNcclComm(),
ncclStream,
p2pTargetRank),
ncclComms[i]->getNcclCommFailureReason());
}
}
post(ncclStreams_[key]);
// End event should only be recorded after the ncclGroupEnd()
for (const auto i : c10::irange(tensors.size())) {
at::cuda::CUDAStream& ncclStream = ncclStreams_[key][i];
if (!coalescing_active_) {
(*work->ncclEndEvents_)[i].record(ncclStream);
}
work->ncclComms_[i] = ncclComms[i];
work->blockingWait_ = blockingWait_;
work->opTimeout_ = options_->timeout;
work->store_ = store_;
}
// Future only needs to be created and marked completed with outputs for
// recv(), but still create future for use cases such as profiling even for
// send().
{
c10::cuda::CUDAMultiStreamGuard streamGuard(ncclStreams_[key]);
work->future_ = c10::make_intrusive<at::ivalue::Future>(
c10::ListType::create(c10::TensorType::get()), devices);
work->future_->markCompleted(at::IValue(*work->outputs_));
}
// Add a callback that runs profiling end callbacks. wrapCallback() in CUDA
// future blocks the stream this callback runs on the corresponding
// ncclEndEvents_ ensuring appropriate synchronization.
if (work->recordFunctionEndCallback_) {
work->future_->addCallback([work](at::ivalue::Future& /* unused */) {
work->recordFunctionEndCallback_();
});
}
return work;
}
template <typename Fn>
c10::intrusive_ptr<Work> ProcessGroupNCCL::collective(
std::vector<at::Tensor>& inputs,
std::vector<at::Tensor>& outputs,
Fn fn,
OpType opType,
const char* profilingTitle) {
return collective(
inputs,
outputs,
fn,
[](std::vector<at::cuda::CUDAStream>&) {},
[](std::vector<at::cuda::CUDAStream>&) {},
opType,
profilingTitle);
}
template <typename Fn>
c10::intrusive_ptr<Work> ProcessGroupNCCL::pointToPoint(
std::vector<at::Tensor>& tensor,
Fn fn,
int peer,
OpType opType,
const char* profilingTitle) {
return pointToPoint(
tensor,
fn,
peer,
opType,
[](std::vector<at::cuda::CUDAStream>&) {},
[](std::vector<at::cuda::CUDAStream>&) {},
profilingTitle);
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::allreduce_impl(
std::vector<at::Tensor>& tensors,
const AllreduceOptions& opts) {
int dev_in_group = 0;
return collective(
tensors,
tensors,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
auto ncclDataType = getNcclDataType(input.scalar_type());
auto ncclReduceOp = getNcclReduceOp(
opts.reduceOp, input, ncclDataType, comm, dev_in_group++);
return ncclAllReduce(
input.data_ptr(),
output.data_ptr(),
input.numel(),
ncclDataType,
ncclReduceOp,
comm,
stream.stream());
},
OpType::ALLREDUCE,
"nccl:all_reduce");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::allreduce(
std::vector<at::Tensor>& tensors,
const AllreduceOptions& opts) {
check_gpu_tensors_different_devices(tensors);
// @lint-ignore CLANGTIDY
auto tensor = tensors.back();
RECORD_PARAM_COMMS(
rank_, // rank
"allreduce", // colName
tensor.numel(), // inSize
tensor.numel(), // outSize
tensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>()); // outSplitSizes
return allreduce_impl(tensors, opts);
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::allreduce_coalesced(
std::vector<at::Tensor>& tensors,
const AllreduceCoalescedOptions& opts) {
auto total_numel = check_gpu_tensors_same_device(tensors);
// @lint-ignore CLANGTIDY
RECORD_PARAM_COMMS(
rank_, // rank
"allreduce_coalesced", // colName
total_numel, // inSize
total_numel, // outSize
tensors[0].scalar_type(), // dType
// I'm not sure what in,outSplitSizes mean here.
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>()); // outSplitSizes
return allreduce_impl(tensors, opts);
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::broadcast(
std::vector<at::Tensor>& tensors,
const BroadcastOptions& opts) {
check_gpu_tensors_different_devices(tensors);
// @lint-ignore CLANGTIDY
auto tensor = tensors.back();
RECORD_PARAM_COMMS(
rank_, // rank
"broadcast", // colName
tensor.numel(), // inSize
tensor.numel(), // outSize
tensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>()); // outSplitSizes
return collective(
tensors,
tensors,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
const auto root = opts.rootRank * tensors.size() + opts.rootTensor;
return ncclBcast(
input.data_ptr(),
input.numel(),
getNcclDataType(input.scalar_type()),
root,
comm,
stream.stream());
},
OpType::BROADCAST,
"nccl:broadcast");
}
// _broadcast_oop adds an out-of-place broadcast in PGNCCL
// Custom collectives may be implemented by coalescing broadcast operations
// One use-case is implementing a vector all_gather (all_gather_v)
// where unevenly sized inputs are gathered among participating ranks
// Since all_gather provides an out-of-place API, an all_gather_v
// semantic implemented inside pg_nccl.all_gather also needs to support
// out-of-place, for which an out-of-place broadcast is required to be added
c10::intrusive_ptr<Work> ProcessGroupNCCL::_broadcast_oop(
std::vector<at::Tensor>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const BroadcastOptions& opts) {
check_gpu_tensors_different_devices(outputTensors);
check_gpu_tensors_different_devices(inputTensors);
// @lint-ignore CLANGTIDY
auto tensor = outputTensors.back();
// @lint-ignore CLANGTIDY
auto in_tensor = inputTensors.back();
if (tensor.numel() != in_tensor.numel()) {
TORCH_CHECK(
false,
"Tensor input and output of _broadcast_oop must have the same number of elements ");
}
RECORD_PARAM_COMMS(
rank_, // rank
"_broadcast_oop", // colName
tensor.numel(), // inSize
tensor.numel(), // outSize
tensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>()); // outSplitSizes
return collective(
inputTensors,
outputTensors,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
const auto root = opts.rootRank * inputTensors.size() + opts.rootTensor;
return ncclBroadcast(
input.data_ptr(),
output.data_ptr(),
input.numel(),
getNcclDataType(input.scalar_type()),
root,
comm,
stream.stream());
},
OpType::BROADCAST,
"nccl:_broadcast_oop");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::reduce(
std::vector<at::Tensor>& tensors,
const ReduceOptions& opts) {
check_gpu_tensors_different_devices(tensors);
// @lint-ignore CLANGTIDY
auto tensor = tensors.back();
RECORD_PARAM_COMMS(
rank_, // rank
"reduce", // colName
tensor.numel(), // inSize
tensor.numel(), // outSize
tensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>()); // outSplitSizes
int dev_in_group = 0;
return collective(
tensors,
tensors,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
const auto root = opts.rootRank * tensors.size() + opts.rootTensor;
auto ncclDataType = getNcclDataType(input.scalar_type());
auto ncclReduceOp = getNcclReduceOp(
opts.reduceOp, input, ncclDataType, comm, dev_in_group++);
return ncclReduce(
input.data_ptr(),
output.data_ptr(),
input.numel(),
ncclDataType,
ncclReduceOp,
root,
comm,
stream.stream());
},
OpType::REDUCE,
"nccl:reduce");
}
// _reduce_oop exposes an out-of-place reduce from PGNCCL
// Custom collectives may be implemented by coalescing reduce operations
// One use-case is implementing a vector reduce_scatter (reduce_scatter_v)
// where inputs are reduced and scattered unevenly among participating ranks
// Since reduce_scatter provides an out-of-place API, a reduce_scatter_v
// semantic implemented inside pg_nccl.reduce_scatter also needs to support
// out-of-place, for which an out-of-place reduce is required to be added
c10::intrusive_ptr<Work> ProcessGroupNCCL::_reduce_oop(
std::vector<at::Tensor>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const ReduceOptions& opts) {
check_gpu_tensors_different_devices(outputTensors);
check_gpu_tensors_different_devices(inputTensors);
// @lint-ignore CLANGTIDY
auto tensor = outputTensors.back();
// @lint-ignore CLANGTIDY
auto in_tensor = inputTensors.back();
if (tensor.numel() != in_tensor.numel()) {
TORCH_CHECK(
false,
"Tensor input and output of _reduce_oop must have the same number of elements ");
}
RECORD_PARAM_COMMS(
rank_, // rank
"_reduce_oop", // colName
tensor.numel(), // inSize
tensor.numel(), // outSize
tensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>()); // outSplitSizes
int dev_in_group{0};
return collective(
inputTensors,
outputTensors,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
const auto root = opts.rootRank * inputTensors.size() + opts.rootTensor;
const auto ncclDataType = getNcclDataType(input.scalar_type());
const auto ncclReduceOp = getNcclReduceOp(
opts.reduceOp, input, ncclDataType, comm, dev_in_group++);
return ncclReduce(
input.data_ptr(),
output.data_ptr(),
input.numel(),
ncclDataType,
ncclReduceOp,
(int)root,
comm,
stream.stream());
},
OpType::REDUCE,
"nccl:_reduce_oop");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::allgather(
std::vector<std::vector<at::Tensor>>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const AllgatherOptions& opts) {
check_gpu_tensors_different_devices(inputTensors);
// @lint-ignore CLANGTIDY
bool same_size = check_same_size(outputTensors.back());
if (same_size) {
auto outputFlattened =
flatten_for_scatter_gather(outputTensors, inputTensors, size_);
check_gpu_tensors_different_devices(outputFlattened);
// @lint-ignore CLANGTIDY
auto tensor = inputTensors.back();
RECORD_PARAM_COMMS(
rank_, // rank
"all_gather", // colName
tensor.numel(), // inSize
tensor.numel() * // outSize
this->getSize(), // dType
tensor.scalar_type(),
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>()); // outSplitSize
return collective(
inputTensors,
outputFlattened,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
return ncclAllGather(
input.data_ptr(),
output.data_ptr(),
input.numel(),
getNcclDataType(input.scalar_type()),
comm,
stream.stream());
},
[&](std::vector<at::cuda::CUDAStream>& ncclStreams) {},
[&](std::vector<at::cuda::CUDAStream>& ncclStreams) {
// Copy the flattened output tensors to the outputs.
for (const auto i : c10::irange(outputTensors.size())) {
at::cuda::CUDAStreamGuard guard(ncclStreams[i]);
for (const auto j : c10::irange(outputTensors[0].size())) {
// See [Sync Streams].
c10::cuda::CUDACachingAllocator::recordStream(
outputTensors[i][j].storage().data_ptr(), ncclStreams[i]);
outputTensors[i][j].copy_(outputFlattened[i][j], true);
}
}
},
OpType::ALLGATHER,
"nccl:all_gather");
} else {
const auto num_devices = outputTensors.size();
const auto num_reduces = outputTensors[0].size();
std::vector<c10::intrusive_ptr<Work>> works;
startCoalescing();
for (const auto i : c10::irange(num_reduces)) {
std::vector<at::Tensor> inputs_multi_dev(num_devices);
std::vector<at::Tensor> outputs_multi_dev(num_devices);
for (const auto j : c10::irange(num_devices)) {
// @lint-ignore CLANGTIDY
outputs_multi_dev[j] = outputTensors[j][i];
inputs_multi_dev[j] =
// @lint-ignore CLANGTIDY
i == (rank_ * num_devices + j) ? inputTensors[j]
: outputs_multi_dev[j];
}
auto broadcastOpts = BroadcastOptions{
static_cast<int64_t>(i / num_devices),
static_cast<int64_t>(i % num_devices),
opts.timeout};
auto work =
_broadcast_oop(outputs_multi_dev, inputs_multi_dev, broadcastOpts);
works.push_back(work);
}
endCoalescing(works);
return initCoalescedWork(works, rank_, OpType::BROADCAST);
}
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::allgather_coalesced(
std::vector<std::vector<at::Tensor>>& /* unused */,
std::vector<at::Tensor>& /* unused */,
const AllgatherOptions& /* unused */) {
TORCH_CHECK(false, "ProcessGroupNCCL does not support allgather_coalesced");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::reduce_scatter(
std::vector<at::Tensor>& outputTensors,
std::vector<std::vector<at::Tensor>>& inputTensors,
const ReduceScatterOptions& opts) {
check_gpu_tensors_different_devices(outputTensors);
// @lint-ignore CLANGTIDY
bool same_size = check_same_size(inputTensors.back());
if (same_size) {
// @lint-ignore CLANGTIDY
auto tensor = outputTensors.back();
RECORD_PARAM_COMMS(
rank_, // rank
"reduce_scatter", // colName
tensor.numel() * // inSize
this->getSize(), // outSize
tensor.numel(), // dType
tensor.scalar_type(),
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>()); // outSplitSizes
int dev_in_group{0};
auto inputFlattened =
flatten_for_scatter_gather(inputTensors, outputTensors, size_);
check_gpu_tensors_different_devices(inputFlattened);
return collective(
inputFlattened,
outputTensors,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
const auto ncclDataType = getNcclDataType(input.scalar_type());
const auto ncclReduceOp = getNcclReduceOp(
opts.reduceOp, input, ncclDataType, comm, dev_in_group++);
return ncclReduceScatter(
input.data_ptr(),
output.data_ptr(),
output.numel(),
ncclDataType,
ncclReduceOp,
comm,
stream.stream());
},
[&](std::vector<at::cuda::CUDAStream>& ncclStreams) {
// Copy the input tensors to the flattened inputs.
for (const auto i : c10::irange(inputTensors.size())) {
at::cuda::CUDAStreamGuard guard(ncclStreams[i]);
for (const auto j : c10::irange(inputTensors[0].size())) {
// See [Sync Streams].
c10::cuda::CUDACachingAllocator::recordStream(
inputTensors[i][j].storage().data_ptr(), ncclStreams[i]);
inputFlattened[i][j].copy_(inputTensors[i][j], true);
}
}
},
[&](std::vector<at::cuda::CUDAStream>&) {},
OpType::REDUCE_SCATTER,
"nccl:reduce_scatter");
} else {
const auto num_devices = inputTensors.size();
const auto num_reduces = inputTensors[0].size();
std::vector<c10::intrusive_ptr<Work>> works;
startCoalescing();
for (const auto i : c10::irange(num_reduces)) {
std::vector<at::Tensor> inputs_multi_dev(num_devices);
std::vector<at::Tensor> outputs_multi_dev(num_devices);
for (const auto j : c10::irange(num_devices)) {
// @lint-ignore CLANGTIDY
inputs_multi_dev[j] = inputTensors[j][i];
outputs_multi_dev[j] =
// @lint-ignore CLANGTIDY
i == (rank_ * num_devices + j) ? outputTensors[j]
: inputs_multi_dev[j];
}
auto reduceOpts = ReduceOptions{
opts.reduceOp,
static_cast<int64_t>(i / num_devices),
static_cast<int64_t>(i % num_devices),
opts.timeout};
auto work = _reduce_oop(outputs_multi_dev, inputs_multi_dev, reduceOpts);
works.push_back(work);
}
endCoalescing(works);
return initCoalescedWork(works, rank_, OpType::REDUCE);
}
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::_reduce_scatter_base(
at::Tensor& outputTensor,
at::Tensor& inputTensor,
const ReduceScatterOptions& opts) {
if (inputTensor.dtype() != outputTensor.dtype()) {
TORCH_CHECK(
false, "input tensor must be the same type as the output tensor.");
}
if (inputTensor.numel() != outputTensor.numel() * size_) {
TORCH_CHECK(
false,
"input tensor must be the same size as output size times world size");
}
// @lint-ignore CLANGTIDY
const auto& tensor = outputTensor;
RECORD_PARAM_COMMS(
rank_, // rank
"_reduce_scatter_base", // colName
tensor.numel() * // inSize
this->getSize(),
tensor.numel(), // outSize
tensor.scalar_type(), // dtype
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>()); // outSplitSizes
auto inputs = std::vector<at::Tensor>{inputTensor};
auto outputs = std::vector<at::Tensor>{outputTensor};
int dev_in_group = 0;
return collective(
inputs,
outputs,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
auto ncclDataType = getNcclDataType(input.scalar_type());
auto ncclReduceOp = getNcclReduceOp(
opts.reduceOp, input, ncclDataType, comm, dev_in_group++);
return ncclReduceScatter(
input.data_ptr(),
output.data_ptr(),
output.numel(),
ncclDataType,
ncclReduceOp,
comm,
stream.stream());
},
[&](std::vector<at::cuda::CUDAStream>&) {},
[&](std::vector<at::cuda::CUDAStream>&) {},
OpType::_REDUCE_SCATTER_BASE,
"nccl:_reduce_scatter_base");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::barrier(const BarrierOptions& opts) {
RECORD_PARAM_COMMS(
rank_, // rank
"barrier", // colName
0, // inSize
0, // outSize
at::kByte, // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>()); // outSplitSizes
std::vector<at::Device> devices;
// Use user defined GPU device ids if provided
if (!opts.device_ids.empty()) {
for (auto device : opts.device_ids) {
devices.emplace_back(at::DeviceType::CUDA, device);
}
} else if (usedDeviceIdxs_.empty()) {
// This means there is not yet a NCCL collective being called
// Here we have to use the best guesses and will use a single GPU to call
// allreduce to achieve barrier.
// In case the multiple processes fall into the same node, we use rank to
// ensure that each process is on a different GPU
auto numGPUs = at::cuda::getNumGPUs();
int16_t deviceIdx = static_cast<int16_t>(rank_ % numGPUs);
LOG(INFO) << c10::str(
"Rank ",
this->getRank(),
" using GPU ",
deviceIdx,
" to perform barrier as devices used by this process are currently unknown. ",
"This can potentially cause a hang if this rank to GPU mapping is incorrect.",
"Specify device_ids in barrier() to force use of a particular device.");
devices.emplace_back(getDeviceForRank(rank_));
} else {
for (auto usedDeviceIdx : usedDeviceIdxs_) {
devices.emplace_back(at::DeviceType::CUDA, usedDeviceIdx);
}
}
std::vector<at::Tensor> barrierTensors;
barrierTensors.reserve(devices.size());
at::cuda::OptionalCUDAGuard gpuGuard;
for (auto& device : devices) {
gpuGuard.set_index(device.index());
barrierTensors.push_back(at::empty(
{1},
at::TensorOptions().device(at::DeviceType::CUDA).dtype(at::kByte)));
}
// All reduce to achieve the barrier
auto work = allreduce(barrierTensors);
// Work will take over barrierTensors
auto ncclWork = dynamic_cast<ProcessGroupNCCL::WorkNCCL*>(work.get());
TORCH_CHECK(ncclWork);
ncclWork->barrierTensors_ = std::move(barrierTensors);
return work;
}
#ifdef ENABLE_NCCL_P2P_SUPPORT
c10::intrusive_ptr<Work> ProcessGroupNCCL::alltoall_base(
at::Tensor& outputTensor,
at::Tensor& inputTensor,
std::vector<int64_t>& outputSplitSizes,
std::vector<int64_t>& inputSplitSizes,
const AllToAllOptions& /* unused */) {
check_gpu_single_tensor(outputTensor);
check_gpu_single_tensor(inputTensor);
if (outputSplitSizes.size() == 0 && inputSplitSizes.size() == 0) {
std::vector<at::Tensor> inputTensors = {inputTensor};
std::vector<at::Tensor> outputTensors = {outputTensor};
RECORD_PARAM_COMMS(
rank_, // rank
"all_to_all", // colName
inputTensor.numel(), // inSize
outputTensor.numel(), // outSize
inputTensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>()); // outSplitSizes
return collective(
inputTensors,
outputTensors,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
// See [Sync Streams].
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
torch::cuda::nccl::all2all_single_equal_split(
input, output, this->getSize(), comm, stream);
return ncclSuccess;
},
OpType::ALLTOALL_BASE,
"nccl:all_to_all");
} else {
c10d::checkSplitSizes(inputSplitSizes, inputTensor, size_);
c10d::checkSplitSizes(outputSplitSizes, outputTensor, size_);
std::vector<at::Tensor> inputTensors = {inputTensor};
std::vector<at::Tensor> outputTensors = {outputTensor};
RECORD_PARAM_COMMS(
rank_, // rank
"all_to_allv", // colName
inputTensor.numel(), // inSize
outputTensor.numel(), // outSize
inputTensor.scalar_type(), // dType
inputSplitSizes, // inSplitSizes
outputSplitSizes); // outSplitSizes
return collective(
inputTensors,
outputTensors,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
std::vector<size_t> send_lengths(size_);
std::vector<size_t> recv_lengths(size_);
std::vector<size_t> send_offsets(size_);
std::vector<size_t> recv_offsets(size_);
c10d::computeLengthsAndOffsets(
inputSplitSizes, input, &send_lengths, &send_offsets);
c10d::computeLengthsAndOffsets(
outputSplitSizes, output, &recv_lengths, &recv_offsets);
// See [Sync Streams].
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
torch::cuda::nccl::all2all_single_unequal_split(
input.data_ptr(),
send_lengths.data(),
send_offsets.data(),
output.data_ptr(),
recv_lengths.data(),
recv_offsets.data(),
input.element_size(),
input.scalar_type(),
comm,
stream);
return ncclSuccess;
},
OpType::ALLTOALL_BASE,
"nccl:all_to_all");
}
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::alltoall(
std::vector<at::Tensor>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const AllToAllOptions& /* unused */) {
auto device = outputTensors[0].device();
for (const auto r : c10::irange(outputTensors.size())) {
check_gpu_single_tensor(outputTensors[r]);
check_gpu_single_tensor(inputTensors[r]);
TORCH_CHECK(
device == outputTensors[r].device() &&
device == inputTensors[r].device(),
"Tensors must be on the same device")
}
std::vector<at::Tensor> inputTensor0 = {inputTensors[0]};
std::vector<at::Tensor> outputTensor0 = {outputTensors[0]};
return collective(
inputTensor0,
outputTensor0,
[&](at::Tensor& /* unused */,
at::Tensor& /* unused */,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
torch::cuda::nccl::all2all(outputTensors, inputTensors, comm, stream);
return ncclSuccess;
},
OpType::ALLTOALL);
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::send(
std::vector<at::Tensor>& tensors,
int dstRank,
int /* unused */) {
check_gpu_tensors_different_devices(tensors);
auto ret = pointToPoint(
tensors,
[&](at::Tensor& input,
ncclComm_t comm,
at::cuda::CUDAStream& stream,
int dst) {
torch::cuda::nccl::send(input, comm, stream, dst);
return ncclSuccess;
},
dstRank,
OpType::SEND,
"nccl:send");
return ret;
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::recv(
std::vector<at::Tensor>& tensors,
int srcRank,
int /* unused */) {
check_gpu_tensors_different_devices(tensors);
auto ret = pointToPoint(
tensors,
[&](at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream,
int src) {
torch::cuda::nccl::recv(output, comm, stream, src);
return ncclSuccess;
},
srcRank,
OpType::RECV,
"nccl:recv");
return ret;
}
#else
c10::intrusive_ptr<Work> ProcessGroupNCCL::alltoall_base(
at::Tensor& /* unused */,
at::Tensor& /* unused */,
std::vector<int64_t>& /* unused */,
std::vector<int64_t>& /* unused */,
const AllToAllOptions& /* unused */) {
TORCH_CHECK(
false,
"ProcessGroupNCCL only supports alltoall* for NCCL lib version >= 2.7.0");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::alltoall(
std::vector<at::Tensor>& /* unused */,
std::vector<at::Tensor>& /* unused */,
const AllToAllOptions& /* unused */) {
TORCH_CHECK(
false,
"ProcessGroupNCCL only supports alltoall* for NCCL lib version >= 2.7.0");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::send(
std::vector<at::Tensor>& /* unused */,
int /* unused */,
int /* unused */) {
TORCH_CHECK(
false,
"ProcessGroupNCCL only supports send for NCCL lib version >= 2.7.0");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::recv(
std::vector<at::Tensor>& /* unused */,
int /* unused */,
int /* unused */) {
TORCH_CHECK(
false,
"ProcessGroupNCCL only supports recv for NCCL lib version >= 2.7.0");
}
#endif
void ProcessGroupNCCL::groupStart() {
#if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2)
C10D_NCCL_CHECK(ncclGroupStart(), c10::nullopt);
#endif
++ncclActiveGroupCounter_;
}
void ProcessGroupNCCL::groupEnd() {
#if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2)
C10D_NCCL_CHECK(ncclGroupEnd(), c10::nullopt);
#endif
--ncclActiveGroupCounter_;
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::gather(
std::vector<std::vector<at::Tensor>>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const GatherOptions& opts) {
static auto invalidArgument = [](const std::string& msg) {
TORCH_CHECK(false, "ProcessGroupNCCL::gather: " + msg);
};
assertRootRank(invalidArgument, opts.rootRank, size_);
check_gpu_tensors_different_devices(inputTensors);
assertSingleElementInput(invalidArgument, inputTensors);
// @lint-ignore CLANGTIDY
auto tensor = inputTensors.back();
RECORD_PARAM_COMMS(
rank_, // rank
"gather", // colName
tensor.numel(), // inSize
tensor.numel() * this->getSize(), // outSize
tensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>()); // outSplitSize
std::vector<at::Tensor> outputs;
if (getRank() == opts.rootRank) {
if (outputTensors.size() != 1) {
std::stringstream ss;
ss << "requires a single-element output list containing a list with "
<< getSize() << " tensors.";
invalidArgument(ss.str());
} else if (outputTensors[0].size() != static_cast<size_t>(getSize())) {
std::stringstream ss;
ss << "Incorrect output list size " << outputTensors[0].size()
<< ". Output list size should be " << getSize()
<< ", same as size of the process group.";
invalidArgument(ss.str());
}
const auto& options = inputTensors[0].options();
const auto& sizes = inputTensors[0].sizes();
assertTypeAndSizesMatch(invalidArgument, outputTensors[0], options, sizes);
outputs = outputTensors[0];
} else {
// if not in the root rank, initialize outputs as empty list
if (outputTensors.size() != 0) {
invalidArgument("requires empty output on non-root");
}
outputs = {};
// append a empty tensor to the list, we don't use it but the
// `collective` template function requires it to invoke its function
outputs.emplace_back();
}
return collective(
inputTensors,
outputs,
[&](at::Tensor& /* unused */,
at::Tensor& /* unused */,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
const auto root = opts.rootRank;
if (getRank() == root) {
for (auto output : outputs) {
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
}
}
torch::cuda::nccl::gather(inputTensors[0], outputs, comm, stream, root);
return ncclSuccess;
},
OpType::GATHER,
"nccl:gather");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::scatter(
std::vector<at::Tensor>& outputTensors,
std::vector<std::vector<at::Tensor>>& inputTensors,
const ScatterOptions& opts) {
static auto invalidArgument = [](const std::string& msg) {
TORCH_CHECK(false, "ProcessGroupNCCL::scatter: " + msg);
};
assertRootRank(invalidArgument, opts.rootRank, size_);
check_gpu_tensors_different_devices(outputTensors);
assertSingleElementInput(invalidArgument, outputTensors);
// @lint-ignore CLANGTIDY
auto tensor = outputTensors.back();
RECORD_PARAM_COMMS(
rank_, // rank
"scatter", // colName
tensor.numel(), // inSize
tensor.numel() * this->getSize(), // outSize
tensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>()); // outSplitSize
std::vector<at::Tensor> inputs;
if (getRank() == opts.rootRank) {
if (inputTensors.size() != 1) {
std::stringstream ss;
ss << "requires a single-element input list containing a list with "
<< getSize() << " tensors.";
invalidArgument(ss.str());
} else if (inputTensors[0].size() != static_cast<size_t>(getSize())) {
std::stringstream ss;
ss << "Incorrect input list size " << inputTensors[0].size()
<< ". Input list size should be " << getSize()
<< ", same as size of the process group.";
invalidArgument(ss.str());
}
const auto& options = outputTensors[0].options();
const auto& sizes = outputTensors[0].sizes();
assertTypeAndSizesMatch(invalidArgument, inputTensors[0], options, sizes);
inputs = inputTensors[0];
} else {
// if not in the root rank, initialize inputTensors as empty place holder
// with an empty list
if (inputTensors.size() != 0) {
invalidArgument("requires empty input on non-root");
}
inputs = {};
// append a empty tensor to the list, we don't use it but the
// `collective` template function requires it to invoke its function
inputs.emplace_back();
}
return collective(
outputTensors,
inputs,
[&](at::Tensor& /* unused */,
at::Tensor& /* unused */,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
const auto root = opts.rootRank;
if (getRank() == root) {
for (auto input : inputs) {
c10::cuda::CUDACachingAllocator::recordStream(
input.storage().data_ptr(), stream);
}
}
torch::cuda::nccl::scatter(
inputs, outputTensors[0], comm, stream, root);
return ncclSuccess;
},
OpType::SCATTER,
"nccl:scatter");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::recvAnysource(
std::vector<at::Tensor>& /* unused */,
int /* unused */) {
TORCH_CHECK(false, "ProcessGroupNCCL does not support recvAnysource");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::_allgather_base(
at::Tensor& output_tensor,
at::Tensor& input_tensor,
const AllgatherOptions& /*unused */) {
check_gpu_single_tensor(input_tensor);
check_gpu_single_tensor(output_tensor);
if (input_tensor.dtype() != output_tensor.dtype()) {
TORCH_CHECK(false, "output tensor must have the same type as input tensor");
}
if (input_tensor.numel() * size_ != output_tensor.numel()) {
TORCH_CHECK(
false,
"output tensor size must be equal to world_size times input tensor size");
}
// just a wrapper to fit the collective interface
auto inputs = std::vector<at::Tensor>{input_tensor};
auto outputs = std::vector<at::Tensor>{output_tensor};
return collective(
inputs,
outputs,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
return ncclAllGather(
input.data_ptr(),
output.data_ptr(),
input.numel(),
getNcclDataType(input.scalar_type()),
comm,
stream.stream());
},
[&](std::vector<at::cuda::CUDAStream>&) {},
[&](std::vector<at::cuda::CUDAStream>&) {},
OpType::_ALLGATHER_BASE,
"nccl:_all_gather_base");
}
#ifdef USE_NCCL_WITH_UCC
std::shared_ptr<at::DynamicLibrary> ProcessGroupNCCL::uccLib_ = nullptr;
#endif
bool ProcessGroupNCCL::isUCCAvailable() const {
#ifdef USE_NCCL_WITH_UCC
return (uccPG_ != nullptr);
#else
return false;
#endif
}
} // namespace c10d
#endif // USE_C10D_NCCL
|