File: ProcessGroupWrapper.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (465 lines) | stat: -rw-r--r-- 16,594 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
#include <torch/csrc/distributed/c10d/ProcessGroupWrapper.hpp>

#ifdef USE_C10D_GLOO

#include <c10/core/Allocator.h>
#include <c10/core/DeviceType.h>
#include <c10/core/ScalarType.h>
#include <c10/core/TensorOptions.h>
#include <c10/util/Exception.h>
#include <c10/util/Optional.h>
#include <c10/util/intrusive_ptr.h>
#include <c10/util/irange.h>
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupGloo.hpp>
#include <stdexcept>

namespace c10d {

namespace {
// A container for information about a particular collective, including optype
// and input tensors (if applicable.)
struct CollectiveFingerPrint {
  // Current collective's operation type.
  OpType op_type_;
  // Number of input tensors
  std::size_t num_tensors_;
  // input tensor data types
  std::vector<int8_t> tensor_dtypes_;
  // input tensor device types
  std::vector<int8_t> tensor_device_types_;
  // input tensor sizes
  std::vector<std::vector<int64_t>> tensor_sizes_;

  explicit CollectiveFingerPrint(
      OpType op_type,
      const std::vector<at::Tensor>& input_tensors)
      : op_type_(op_type), num_tensors_(input_tensors.size()) {
    tensor_dtypes_.reserve(num_tensors_);
    tensor_device_types_.reserve(num_tensors_);
    tensor_sizes_.reserve(num_tensors_);
    for (const at::Tensor& t : input_tensors) {
      tensor_dtypes_.push_back(static_cast<int8_t>(t.dtype().toScalarType()));
      tensor_device_types_.push_back(static_cast<int8_t>(t.device().type()));
      tensor_sizes_.push_back(t.sizes().vec());
    }
  }

  // Constructor for the data received from deserialized fingerprint
  CollectiveFingerPrint(
      OpType op_type,
      std::vector<int8_t> tensor_dtypes,
      std::vector<int8_t> tensor_device_types,
      std::vector<std::vector<int64_t>> tensor_sizes)
      : op_type_(op_type),
        tensor_dtypes_(tensor_dtypes),
        tensor_device_types_(tensor_device_types),
        tensor_sizes_(tensor_sizes) {}

  // Logs collective information in case of a failure.
  friend std::ostream& operator<<(
      std::ostream& output,
      const CollectiveFingerPrint& collective_fingerprint);

  // Executes and verifies the collective fingerprint.
  void verify(c10::intrusive_ptr<ProcessGroup> pg) {
    at::Tensor serialized_tensor = serialize_fingerprint();
    std::vector<at::Tensor> inp{serialized_tensor};
    // First verify tensor shapes. This is needed because if e.g. tensor dim
    // does not match across processes, directly verifying tensors will result
    // in a crash during allgather, but we'd actually like to report a
    // description about the inconsistency. Since the input is just a 1D tensor
    // the shape will be a single int k_i and we need to make sure k_i is
    // consistent across the whole world.
    std::vector<at::Tensor> sp = c10d::getTensorShapes(inp);
    verify_tensors(sp, pg);
    // Now verify consistency for the actual tensor.
    verify_tensors(inp, pg);
  }

  // Takes a serialized fingerprint from
  // CollectiveFingerPrint::serialize_fingerprint and deserializes it back to a
  // CollectiveFingerPrint struct
  CollectiveFingerPrint deserialize_fingerprint(at::Tensor serialized_tensor) {
    OpType optype;
    auto dtypes = std::vector<int8_t>();
    auto device_types = std::vector<int8_t>();
    auto sizes = std::vector<std::vector<int64_t>>();
    int index = 0;
    // 1. OpType
    optype = OpType(serialized_tensor[index].item<int>());
    index++;

    if (index < serialized_tensor.size(0)) {
      // 2. Num tensors
      int num_tensors = serialized_tensor[index].item<int>();
      index++;
      dtypes.reserve(num_tensors);
      device_types.reserve(num_tensors);
      sizes.reserve(num_tensors);

      // 3. Tensor dtypes
      for (int i = 0; i < num_tensors; i++) {
        dtypes.push_back(serialized_tensor[index].item<int8_t>());
        index++;
      }
      // 4. Device types
      for (int i = 0; i < num_tensors; i++) {
        device_types.push_back(serialized_tensor[index].item<int8_t>());
        index++;
      }
      // 5. Tensor shapes
      for (int i = 0; i < num_tensors; i++) {
        // 5a. Shape size
        int size = serialized_tensor[index].item<int>();
        index++;
        // 5b. Shape
        auto shapeVec = std::vector<int64_t>();
        shapeVec.reserve(size);
        for (int j = 0; j < size; j++) {
          shapeVec.push_back(serialized_tensor[index].item<int64_t>());
          index++;
        }
        sizes.push_back(shapeVec);
      }
    }
    return CollectiveFingerPrint(optype, dtypes, device_types, sizes);
  }

 private:
  void verify_tensors(
      std::vector<at::Tensor>& tensors_to_verify,
      c10::intrusive_ptr<ProcessGroup>& pg) {
    // Create output tensor data structure to pass into allgather.
    std::vector<std::vector<at::Tensor>> output_tensors;
    // output tensors: [<tensor 0 outputs>, <tensor 1 outputs>, ..., <tensor n
    // outputs>]
    output_tensors.reserve(tensors_to_verify.size());
    for (const auto& tensor_shape : tensors_to_verify) {
      // Each rank has its own outputs shape, e.g.
      // <tensor 0 outputs>: [<rank 0 tensor>, <rank 1 tensor>, ..., <rank n
      // tensor>]
      std::vector<at::Tensor> outputs;
      outputs.reserve(pg->getSize());
      for (const auto i : c10::irange(pg->getSize())) {
        std::ignore = i; // Suppress unused variable warning
        outputs.emplace_back(at::zeros_like(tensor_shape));
      }
      output_tensors.emplace_back(outputs);
    }
    // Allgather tensor shapes.
    pg->allgather(output_tensors, tensors_to_verify)->wait();
    // Verify equivalence
    for (const auto i : c10::irange(output_tensors.size())) {
      const std::vector<at::Tensor> gathered_tensors = output_tensors[i];
      const at::Tensor reference_tensor = tensors_to_verify[i];
      for (int rank = 0; rank < gathered_tensors.size(); rank++) {
        const auto& rank_tensor = gathered_tensors[rank];
        if (!rank_tensor.equal(reference_tensor)) {
          CollectiveFingerPrint rank_fingerprint =
              deserialize_fingerprint(rank_tensor);
          std::stringstream ss;
          ss << "Detected mismatch between collectives on ranks. Rank "
             << pg->getRank() << " is running collective: " << *this
             << ", but Rank " << rank
             << " is running collective: " << rank_fingerprint << ".";
          TORCH_CHECK(false, ss.str());
        }
      }
    }
  }

  // Serializes the information (op type, input shapes, data types, device
  // types) about the collective fingerprint into a tensor
  at::Tensor serialize_fingerprint() {
    auto data = std::make_unique<std::vector<int64_t>>();
    // std::vector<int64_t> data;
    // 1. OpType
    data->push_back(static_cast<int64_t>(op_type_));
    // 2. Num tensors
    data->push_back(static_cast<int64_t>(num_tensors_));
    // 3. Tensor dtypes
    for (const auto& type : tensor_dtypes_) {
      data->push_back(type);
    }
    // 4. Device types
    for (const auto& d : tensor_device_types_) {
      data->push_back(d);
    }
    // 5. Shapes
    for (const auto& sizes : tensor_sizes_) {
      data->push_back(sizes.size());
      for (const auto& s : sizes) {
        data->push_back(s);
      }
    }
    // Serialize data into tensor
    int64_t data_size = data->size();
    // Need to release here and get the ptr due to C++ parameter evaluation
    // order.
    auto d = data.release();
    at::Tensor serialized_tensor =
        at::for_blob(d->data(), {data_size})
            .context(
                d,
                [](void* ctx) {
                  delete static_cast<std::vector<int64_t>*>(ctx);
                })
            .options(at::TensorOptions().dtype(at::kLong))
            .make_tensor();
    return serialized_tensor;
  }
};

std::ostream& operator<<(
    std::ostream& output,
    const CollectiveFingerPrint& collective_fingerprint) {
  std::string collectiveInfo;
  if (collective_fingerprint.num_tensors_ != 0) {
    // Convert dtype and device type info to string.
    std::vector<std::string> dtype_strs;
    std::vector<std::string> device_type_strs;
    std::vector<std::string> size_strs;
    for (const auto& tensor_dtype : collective_fingerprint.tensor_dtypes_) {
      dtype_strs.emplace_back(
          c10::toString(static_cast<at::ScalarType>(tensor_dtype)));
    }
    for (const auto& tensor_device_type :
         collective_fingerprint.tensor_device_types_) {
      device_type_strs.emplace_back(
          c10::toString(static_cast<at::DeviceType>(tensor_device_type)));
    }
    if (!collective_fingerprint.tensor_sizes_.empty()) {
      for (const auto& single_tensor_shape_num :
           collective_fingerprint.tensor_sizes_[0]) {
        size_strs.emplace_back(std::to_string(single_tensor_shape_num));
      }
    }

    collectiveInfo = c10::str(
        "CollectiveFingerPrint(",
        "OpType=",
        opTypeToString(collective_fingerprint.op_type_),
        ", TensorShape=[",
        c10::Join(", ", size_strs),
        "], TensorDtypes=",
        (dtype_strs),
        ", TensorDeviceTypes=",
        (device_type_strs),
        ")");
  } else {
    collectiveInfo = c10::str(
        "CollectiveFingerPrint(",
        "OpType=",
        opTypeToString(collective_fingerprint.op_type_),
        ")");
  }
  return output << collectiveInfo;
}

} // namespace

ProcessGroupWrapper::ProcessGroupWrapper(
    c10::intrusive_ptr<ProcessGroup> pg,
    c10::intrusive_ptr<ProcessGroupGloo> glooPg)
    : ProcessGroup(pg->getRank(), pg->getSize()), pg_(pg), glooPg_(glooPg) {
  // Set the sequence number for the underlying process group.
  pg_->setSequenceNumberForGroup();
}

const std::string ProcessGroupWrapper::getBackendName() const {
  return pg_->getBackendName();
}

c10::intrusive_ptr<Work> ProcessGroupWrapper::broadcast(
    std::vector<at::Tensor>& data,
    const BroadcastOptions& opts) {
  runCollectiveChecks(OpType::BROADCAST, data);
  return pg_->broadcast(data, opts);
}

c10::intrusive_ptr<Work> ProcessGroupWrapper::allreduce(
    std::vector<at::Tensor>& data,
    const AllreduceOptions& opts) {
  runCollectiveChecks(OpType::ALLREDUCE, data);
  return pg_->allreduce(data, opts);
}

c10::intrusive_ptr<Work> ProcessGroupWrapper::allreduce_coalesced(
    std::vector<at::Tensor>& tensors,
    const AllreduceCoalescedOptions& opts) {
  // NOTE: We don't enforce shape checking for allreduce_coalesced because
  // the implementation itself does not enforce it we have tests that use
  // inconsistent shapes, see python implementation in distributed_c10d for
  // details.
  runCollectiveChecks(OpType::ALLREDUCE_COALESCED, {});
  return pg_->allreduce_coalesced(tensors, opts);
}

c10::intrusive_ptr<Work> ProcessGroupWrapper::reduce(
    std::vector<at::Tensor>& tensors,
    const ReduceOptions& opts) {
  runCollectiveChecks(OpType::REDUCE, tensors);
  return pg_->reduce(tensors, opts);
}

c10::intrusive_ptr<Work> ProcessGroupWrapper::allgather(
    std::vector<std::vector<at::Tensor>>& outputTensors,
    std::vector<at::Tensor>& inputTensors,
    const AllgatherOptions& opts) {
  runCollectiveChecks(OpType::ALLGATHER, inputTensors);
  return pg_->allgather(outputTensors, inputTensors, opts);
}

c10::intrusive_ptr<Work> ProcessGroupWrapper::_allgather_base(
    at::Tensor& outputBuffer,
    at::Tensor& inputBuffer,
    const AllgatherOptions& opts) {
  std::vector<at::Tensor> inputTensors({inputBuffer});
  runCollectiveChecks(OpType::_ALLGATHER_BASE, inputTensors);
  return pg_->_allgather_base(outputBuffer, inputBuffer, opts);
}

c10::intrusive_ptr<Work> ProcessGroupWrapper::allgather_coalesced(
    std::vector<std::vector<at::Tensor>>& outputTensorLists,
    std::vector<at::Tensor>& inputTensors,
    const AllgatherOptions& opts) {
  // NOTE: We don't enforce shape checking for allgather_coalesced because
  // the implementation itself does not enforce it we have tests that use
  // inconsistent shapes, see python implementation in distributed_c10d for
  // details.
  runCollectiveChecks(OpType::ALLGATHER_COALESCED, {});
  return pg_->allgather_coalesced(outputTensorLists, inputTensors, opts);
}

c10::intrusive_ptr<Work> ProcessGroupWrapper::gather(
    std::vector<std::vector<at::Tensor>>& outputTensors,
    std::vector<at::Tensor>& inputTensors,
    const GatherOptions& opts) {
  runCollectiveChecks(OpType::GATHER, inputTensors);
  return pg_->gather(outputTensors, inputTensors, opts);
}

c10::intrusive_ptr<Work> ProcessGroupWrapper::scatter(
    std::vector<at::Tensor>& outputTensors,
    std::vector<std::vector<at::Tensor>>& inputTensors,
    const ScatterOptions& opts) {
  runCollectiveChecks(OpType::SCATTER, outputTensors);
  return pg_->scatter(outputTensors, inputTensors, opts);
}

c10::intrusive_ptr<Work> ProcessGroupWrapper::reduce_scatter(
    std::vector<at::Tensor>& outputTensors,
    std::vector<std::vector<at::Tensor>>& inputTensors,
    const ReduceScatterOptions& opts) {
  runCollectiveChecks(OpType::REDUCE_SCATTER, outputTensors);
  return pg_->reduce_scatter(outputTensors, inputTensors, opts);
}

c10::intrusive_ptr<Work> ProcessGroupWrapper::alltoall_base(
    at::Tensor& outputTensor,
    at::Tensor& inputTensor,
    std::vector<int64_t>& outputSplitSizes,
    std::vector<int64_t>& inputSplitSizes,
    const AllToAllOptions& opts) {
  // alltoall supports uneven split, so don't enforce shape checking.
  runCollectiveChecks(OpType::ALLTOALL_BASE, {});
  return pg_->alltoall_base(
      outputTensor, inputTensor, outputSplitSizes, inputSplitSizes, opts);
}

c10::intrusive_ptr<Work> ProcessGroupWrapper::alltoall(
    std::vector<at::Tensor>& outputTensors,
    std::vector<at::Tensor>& inputTensors,
    const AllToAllOptions& opts) {
  // alltoall supports uneven split, so don't enforce shape checking.
  runCollectiveChecks(OpType::ALLTOALL, {});
  return pg_->alltoall(outputTensors, inputTensors, opts);
}

void ProcessGroupWrapper::monitoredBarrier(
    const BarrierOptions& opts,
    bool waitAllRanks) {
  return pg_->monitoredBarrier(opts, waitAllRanks);
}

void ProcessGroupWrapper::setSequenceNumberForGroup() {
  // Set underlying pg's sequence number if it is not set.
  if (pg_->getSequenceNumberForGroup() == 0) {
    // Set the sequence number for the underlying process group.
    pg_->setSequenceNumberForGroup();
  }
}

uint64_t ProcessGroupWrapper::getSequenceNumberForGroup() {
  return pg_->getSequenceNumberForGroup();
}

c10::intrusive_ptr<Work> ProcessGroupWrapper::send(
    std::vector<at::Tensor>& tensors,
    int dstRank,
    int tag) {
  return pg_->send(tensors, dstRank, tag);
}

c10::intrusive_ptr<Work> ProcessGroupWrapper::recv(
    std::vector<at::Tensor>& tensors,
    int srcRank,
    int tag) {
  return pg_->recv(tensors, srcRank, tag);
}

c10::intrusive_ptr<Work> ProcessGroupWrapper::recvAnysource(
    std::vector<at::Tensor>& tensors,
    int tag) {
  return pg_->recvAnysource(tensors, tag);
}

c10::intrusive_ptr<Work> ProcessGroupWrapper::barrier(
    const BarrierOptions& opts) {
  runCollectiveChecks(OpType::BARRIER, {});
  return pg_->barrier(opts);
}

c10::intrusive_ptr<Work> ProcessGroupWrapper::_reduce_scatter_base(
    at::Tensor& outputBuffer,
    at::Tensor& inputBuffer,
    const ReduceScatterOptions& opts) {
  runCollectiveChecks(
      OpType::_REDUCE_SCATTER_BASE, {inputBuffer, outputBuffer});
  return pg_->_reduce_scatter_base(outputBuffer, inputBuffer, opts);
}

c10::intrusive_ptr<ProcessGroup> ProcessGroupWrapper::getWrappedPg() const {
  return pg_;
}

void ProcessGroupWrapper::runCollectiveChecks(
    OpType op_type,
    const std::vector<at::Tensor>& tensors) const {
  // first perform a monitored barrier to ensure all ranks can synchronize.
  c10d::BarrierOptions options;
  // TODO: we should use wrapped pg_'s timeout here, but C++ ProcessGroup API
  // does not expose timeout.
  auto finger_print = CollectiveFingerPrint(op_type, tensors);
  try {
    glooPg_->monitoredBarrier(options, /* waitAllRanks */ true);
  } catch (const std::runtime_error& e) {
    // Attach collective info to the exception and re-raise.
    std::stringstream ss;
    ss << finger_print;
    auto collective_info = ss.str();
    auto err_msg = c10::str(
        "ProcessGroupWrapper: Monitored Barrier encountered error running collective: ",
        collective_info,
        ". Error: \n",
        e.what());
    TORCH_CHECK(false, err_msg);
  }
  // Will throw if an ill-formed collective is detected.
  finger_print.verify(glooPg_);
}

} // namespace c10d

#endif // USE_C10D_GLOO