1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
|
#pragma once
#include <ATen/ATen.h>
#include <c10/util/accumulate.h>
#include <c10/util/irange.h>
#include <torch/csrc/distributed/c10d/Types.hpp>
#ifdef _WIN32
#include <winsock2.h>
#include <ws2tcpip.h>
typedef SSIZE_T ssize_t;
#pragma comment(lib, "Ws2_32.lib")
#else
#include <fcntl.h>
#include <netdb.h>
#include <sys/poll.h>
#include <sys/socket.h>
#include <unistd.h>
#endif
#include <sys/types.h>
#include <chrono>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <limits>
#include <string>
#include <system_error>
#include <tuple>
#include <vector>
namespace c10d {
TORCH_API std::string parse_env(const char* env_var_name);
// Retrieve tensor shapes from a given tensor.
TORCH_API std::vector<at::Tensor> getTensorShapes(const std::vector<at::Tensor>& tensors);
// Use -2 to represent unset state of env vars
#define C10D_ENV_NOT_SET -2
// Turns at::IntArrayRef into "(1, 2, 3, 4)".
inline std::string toString(at::IntArrayRef l) {
std::stringstream ss;
ss << "(";
for (const auto i : c10::irange(l.size())) {
if (i > 0) {
ss << ", ";
}
ss << l[i];
}
ss << ")";
return ss.str();
}
inline std::string toString(const c10::Layout& layout) {
std::stringstream ss;
ss << layout;
return ss.str();
}
inline void assertSameType(
const at::DeprecatedTypeProperties& type,
const std::vector<at::Tensor>& tensors) {
for (const auto i : c10::irange(tensors.size())) {
if (!tensors[i].options().type_equal(type.options())) {
const std::string expected = type.toString();
const std::string actual = tensors[i].toString();
throw std::invalid_argument(
"mixed types (" + expected + " and " + actual + ")");
}
}
}
inline int parseEnvVarInt(const char* envVarName) {
char* stringValue = std::getenv(envVarName);
if (stringValue != nullptr) {
int val;
try {
val = std::stoi(stringValue);
} catch (std::exception& e) {
TORCH_CHECK(false,
"Invalid value for environment variable: " + std::string(envVarName));
}
return val;
}
return C10D_ENV_NOT_SET;
}
inline int parseEnvVarIntDefault(const char* envVarName, int defaultVal) {
int val = parseEnvVarInt(envVarName);
if (val == C10D_ENV_NOT_SET)
return defaultVal;
return val;
}
inline bool parseEnvVarFlag(const char* envVarName) {
int val = parseEnvVarInt(envVarName);
if (val == 1) {
return true;
} else if (val == 0 || val == C10D_ENV_NOT_SET) {
return false;
}
TORCH_CHECK(false,
"Invalid value for environment variable: " + std::string(envVarName));
return false;
}
inline void assertSameSizes(
const at::IntArrayRef& sizes,
const std::vector<at::Tensor>& tensors) {
for (const auto i : c10::irange(tensors.size())) {
if (!tensors[i].sizes().equals(sizes)) {
const auto expected = toString(sizes);
const auto actual = toString(tensors[i].sizes());
throw std::invalid_argument(
"mixed sizes (" + expected + " and " + actual + ")");
}
}
}
inline void assertSameSizeAndType(const std::vector<at::Tensor>& tensors) {
// Ensure we have at least one tensor
if (tensors.size() == 0) {
throw std::invalid_argument("argument is empty");
}
// Ensure all tensors have identical type and shape
auto options = tensors[0].options();
auto sizes = tensors[0].sizes();
for (const auto i : c10::irange(1, tensors.size())) {
if (!tensors[i].options().type_equal(options)) {
const auto expected = toString(options);
const auto actual = toString(tensors[i].options());
throw std::invalid_argument(
"argument contains mixed types (" + expected + " and " + actual +
")");
}
if (!tensors[i].sizes().equals(sizes)) {
const auto expected = toString(sizes);
const auto actual = toString(tensors[i].sizes());
throw std::invalid_argument(
"argument contains mixed sizes (" + expected + " and " + actual +
")");
}
}
}
inline void assertTypeMatch(
std::function<void(const std::string&)> fn,
const at::DeprecatedTypeProperties& type,
const at::ArrayRef<at::Tensor> tensors,
size_t index) {
if (!tensors[index].options().type_equal(type.options())) {
fn("invalid tensor type at index " + std::to_string(index) + " (expected " +
type.toString() + ", got " + tensors[index].toString() + ")");
}
}
inline void assertTypeMatch(
std::function<void(const std::string&)> fn,
const at::TensorOptions& options,
const at::ArrayRef<at::Tensor> tensors,
size_t index) {
if (!tensors[index].options().type_equal(options)) {
fn("invalid tensor type at index " + std::to_string(index) + " (expected " +
toString(options) + ", got " + toString(tensors[index].options()) + ")");
}
}
inline void assertSizesMatch(
std::function<void(const std::string&)> fn,
const at::IntArrayRef& sizes,
const at::ArrayRef<at::Tensor> tensors,
size_t index) {
if (tensors[index].sizes() != sizes) {
fn("invalid tensor size at index " + std::to_string(index) + " (expected " +
toString(sizes) + ", got " + toString(tensors[index].sizes()) + ")");
}
}
inline void assertLayoutMatch(
std::function<void(const std::string&)> fn,
const c10::Layout& expected,
const at::ArrayRef<at::Tensor> tensors,
size_t index) {
const auto& actual = tensors[index].layout();
if (actual != expected) {
fn("invalid tensor layout at index " + std::to_string(index) +
" (expected " + toString(expected) + ", got " + toString(actual) + ")");
}
}
inline void assertLayoutMatch(
std::function<void(const std::string&)> fn,
const at::ArrayRef<at::Tensor> tensors) {
const auto& layout = tensors[0].layout();
for (const auto i : c10::irange(1, tensors.size())) {
assertLayoutMatch(fn, layout, tensors, i);
}
}
inline void assertNonEmpty(
std::function<void(const std::string&)> fn,
const at::ArrayRef<at::Tensor> tensors) {
if (tensors.size() == 0) {
fn("requires non-empty tensor list");
}
}
inline void assertSingleElement(
std::function<void(const std::string&)> fn,
const at::ArrayRef<at::Tensor> tensors) {
if (tensors.size() != 1) {
fn("requires a single-element tensor list");
}
}
inline void assertSingleElementInput(
std::function<void(const std::string&)> fn,
const at::ArrayRef<at::Tensor> tensors) {
if (tensors.size() != 1) {
fn("requires a single-element input tensor list");
}
}
inline void assertSingleElementOutput(
std::function<void(const std::string&)> fn,
const at::ArrayRef<at::Tensor> tensors) {
if (tensors.size() != 1) {
fn("requires a single-element output tensor list");
}
}
inline void assertRootRank(
std::function<void(const std::string&)> fn,
int rank,
int size) {
if (rank < 0 || rank >= size) {
fn("invalid root rank: " + std::to_string(rank));
}
}
inline void assertRootTensor(
std::function<void(const std::string&)> fn,
int rank,
int size) {
if (rank < 0 || rank >= size) {
fn("invalid root tensor: " + std::to_string(rank));
}
}
inline void assertDense(
std::function<void(const std::string&)> fn,
const at::ArrayRef<at::Tensor> tensors) {
const auto& layout = tensors[0].layout();
if (layout != at::kStrided) {
fn("only supports dense tensors");
}
}
inline void assertCPU(
std::function<void(const std::string&)> fn,
const at::ArrayRef<at::Tensor> tensors) {
const auto& device = tensors[0].device();
if (device.type() != at::kCPU) {
fn("only supports CPU tensors");
}
}
inline void assertSameDevice(
std::function<void(const std::string&)> fn,
const at::ArrayRef<at::Tensor> tensors) {
if (tensors.size() < 2) {
return;
}
const auto& device = tensors[0].device();
for (const auto i : c10::irange(1, tensors.size())) {
if (tensors[i].device() != device) {
fn("tensors should be on the same device");
}
}
}
inline void assertTypeAndSizesMatch(
std::function<void(const std::string&)> fn,
const at::ArrayRef<at::Tensor> tensors,
const at::DeprecatedTypeProperties& type,
const at::IntArrayRef& sizes) {
for (const auto i : c10::irange(tensors.size())) {
assertTypeMatch(fn, type, tensors, i);
assertSizesMatch(fn, sizes, tensors, i);
}
}
inline void assertTypeAndSizesMatch(
std::function<void(const std::string&)> fn,
const at::ArrayRef<at::Tensor> tensors,
const at::TensorOptions& options,
const at::IntArrayRef& sizes) {
for (const auto i : c10::irange(tensors.size())) {
assertTypeMatch(fn, options, tensors, i);
assertSizesMatch(fn, sizes, tensors, i);
}
}
inline void assertTypeAndSizesMatch(
std::function<void(const std::string&)> fn,
const at::ArrayRef<at::Tensor> tensors) {
const auto& options = tensors[0].options();
const auto sizes = tensors[0].sizes();
assertTypeAndSizesMatch(fn, tensors.slice(1), options, sizes);
}
// Copied from ATen/core/functional.h.
template <typename F, typename T>
inline auto fmap(T& inputs, const F& fn)
-> std::vector<decltype(fn(*inputs.begin()))> {
std::vector<decltype(fn(*inputs.begin()))> r;
r.reserve(inputs.size());
for (auto& input : inputs) {
r.push_back(fn(input));
}
return r;
}
// Copied from torch/csrc/utils/tensor_flatten.h.
inline at::Tensor flattenDenseTensors(at::TensorList tensors) {
static const auto flatten = [](const at::Tensor& t) {
return t.contiguous().view({-1});
};
if (tensors.size() == 1) {
return flatten(tensors[0]);
}
return at::cat(::c10d::fmap(tensors, flatten));
}
inline at::Tensor newLikeFlat(
std::vector<std::vector<at::Tensor>>& tensors,
size_t deviceIdx) {
if (tensors.size() == 0 || tensors[0].size() == 0) {
TORCH_CHECK(false, "Received an empty list");
}
if (deviceIdx >= tensors.size()) {
TORCH_CHECK(false, "Invalid device index");
}
auto& t = tensors[deviceIdx][0];
auto device = t.device();
for (const auto i : c10::irange(1, tensors[deviceIdx].size())) {
if (tensors[deviceIdx][i].device() != device) {
TORCH_CHECK(false, "Expecting all tensors on the same device");
}
}
at::DeviceGuard gpuGuard(device);
std::vector<int64_t> sizes{static_cast<int64_t>(tensors[deviceIdx].size())};
std::vector<int64_t> strides{static_cast<int64_t>(t.numel())};
sizes.insert(sizes.end(), t.sizes().begin(), t.sizes().end());
strides.insert(strides.end(), t.strides().begin(), t.strides().end());
return at::empty_strided(
sizes, strides, t.options().memory_format(c10::nullopt));
}
inline at::Tensor newLikeFlat(std::vector<at::Tensor>& tensors) {
if (tensors.size() == 0) {
TORCH_CHECK(false, "Received an empty list");
}
auto& t = tensors[0];
at::DeviceGuard gpuGuard(t.device());
std::vector<int64_t> sizes{static_cast<int64_t>(tensors.size())};
sizes.insert(sizes.end(), t.sizes().begin(), t.sizes().end());
return at::empty(sizes, t.options());
}
inline std::vector<std::vector<int64_t>> getSizes(
const std::vector<at::Tensor>& tensors) {
std::vector<std::vector<int64_t>> sizes(tensors.size());
for (const auto i : c10::irange(tensors.size())) {
sizes[i] = tensors[i].sizes().vec();
}
return sizes;
}
inline std::vector<int> getDevices(const std::vector<at::Tensor>& tensors) {
std::vector<int> devices(tensors.size(), -1);
if (tensors[0].device().is_cuda()) {
for (const auto i : c10::irange(tensors.size())) {
devices[i] = tensors[i].storage().device().index();
}
}
return devices;
}
template <typename T>
inline T* getDataPointer(const at::Tensor& tensor) {
// This method is only used in ProcessGroupGloo for now. Call sites must make
// sure that the input tensor is contiguous. It is OK if the tensor does not
// start from the beginning of the storage. For example, it could come from
// chunk(..., dim=0)[1]. Hence, we need to use data_ptr() instead of
// tensor.storage().data()
// NB: not using tensor.data<T>() because tensor is not aware of gloo::TYPE
return static_cast<T*>(tensor.data_ptr());
}
template <typename T>
std::vector<T*> getDataPointers(const std::vector<at::Tensor>& tensors) {
std::vector<T*> ptrs(tensors.size());
for (const auto i : c10::irange(tensors.size())) {
ptrs[i] = getDataPointer<T>(tensors[i]);
}
return ptrs;
}
// For alltoall split size sanity check
inline void checkSplitSizes(
const std::vector<int64_t>& split_sizes,
const at::Tensor& tensor,
int group_size) {
if (split_sizes.size() == 0) {
TORCH_CHECK(
tensor.size(0) % group_size == 0,
"Tensor's dim 0 does not divide equally across group size");
} else {
TORCH_CHECK(
split_sizes.size() == static_cast<size_t>(group_size),
"Number of tensor splits not equal to group size");
const auto sum = c10::sum_integers(split_sizes);
TORCH_CHECK(
sum == tensor.size(0), "Split sizes doesn't match total dim 0 size");
}
}
// Compute alltoall lengths and offsets, handling multi-dimension tensors
template <typename T>
size_t computeLengthsAndOffsets(
const std::vector<int64_t>& split_sizes,
const at::Tensor& tensor,
std::vector<T>* lengths,
std::vector<T>* offsets) {
size_t group_size = lengths->size();
bool equal_splits = false;
size_t dim0_size = tensor.size(0);
size_t row_size = (dim0_size ? tensor.numel() / dim0_size : 1);
size_t split_size = 0;
size_t offset = 0;
if (split_sizes.size() == 0) {
equal_splits = true;
split_size = tensor.size(0) / group_size;
}
for(const auto i : c10::irange(group_size)) {
size_t length = row_size * (equal_splits ? split_size : split_sizes[i]);
TORCH_INTERNAL_ASSERT(
length <= std::numeric_limits<int>::max() &&
offset <= std::numeric_limits<int>::max(),
"Length or offset larger than INT_MAX not supported");
(*lengths)[i] = length;
(*offsets)[i] = offset;
offset += length;
}
return offset;
}
template <typename T>
size_t computeLengthsAndOffsets(
const std::vector<at::Tensor>& tensors,
std::vector<T>* lengths,
std::vector<T>* offsets) {
size_t group_size = lengths->size();
size_t offset = 0;
for(const auto i : c10::irange(group_size)) {
size_t length = tensors[i].numel();
TORCH_INTERNAL_ASSERT(
length <= std::numeric_limits<int>::max() &&
offset <= std::numeric_limits<int>::max(),
"Length or offset larger than INT_MAX not supported");
(*lengths)[i] = length;
(*offsets)[i] = offset;
offset += length;
}
return offset;
}
using RankType = uint32_t;
using SizeType = uint64_t;
// `errno` is only meaningful when it fails. E.g., a successful `fork()` sets
// `errno` to `EINVAL` in child process on some macos
// (https://stackoverflow.com/a/20295079), and thus `errno` should really only
// be inspected if an error occurred.
//
// `success_cond` is an expression used to check if an error has happend. So for
// `fork()`, we can use `SYSCHECK(pid = fork(), pid != -1)`. The function output
// is stored in variable `__output` and may be used in `success_cond`.
#ifdef _WIN32
#define SYSCHECK(expr, success_cond) \
while (true) { \
auto __output = (expr); \
auto errno_local = WSAGetLastError(); \
(void)__output; \
if (!(success_cond)) { \
if (errno == EINTR) { \
continue; \
} else if ( \
errno_local == WSAETIMEDOUT || errno_local == WSAEWOULDBLOCK) { \
TORCH_CHECK(false, "Socket Timeout"); \
} else { \
throw std::system_error(errno_local, std::system_category()); \
} \
} else { \
break; \
} \
}
#else
#define SYSCHECK(expr, success_cond) \
while (true) { \
auto __output = (expr); \
(void)__output; \
if (!(success_cond)) { \
if (errno == EINTR) { \
continue; \
} else if (errno == EAGAIN || errno == EWOULDBLOCK) { \
TORCH_CHECK(false, "Socket Timeout"); \
} else { \
throw std::system_error(errno, std::system_category()); \
} \
} else { \
break; \
} \
}
#endif
// Most functions indicate error by returning `-1`. This is a helper macro for
// this common case with `SYSCHECK`.
// Since SOCKET_ERROR = -1 in MSVC, so also leverage SYSCHECK_ERR_RETURN_NEG1
#define SYSCHECK_ERR_RETURN_NEG1(expr) SYSCHECK(expr, __output != -1)
namespace tcputil {
// Send and receive
template <typename T>
void sendBytes(
int socket,
const T* buffer,
size_t length,
bool moreData = false) {
size_t bytesToSend = sizeof(T) * length;
if (bytesToSend == 0) {
return;
}
auto bytes = reinterpret_cast<const uint8_t*>(buffer);
uint8_t* currentBytes = const_cast<uint8_t*>(bytes);
int flags = 0;
#ifdef MSG_MORE
if (moreData) { // there is more data to send
flags |= MSG_MORE;
}
#endif
// Ignore SIGPIPE as the send() return value is always checked for error
#ifdef MSG_NOSIGNAL
flags |= MSG_NOSIGNAL;
#endif
while (bytesToSend > 0) {
ssize_t bytesSent;
SYSCHECK_ERR_RETURN_NEG1(
bytesSent =
::send(socket, (const char*)currentBytes, bytesToSend, flags))
if (bytesSent == 0) {
throw std::system_error(ECONNRESET, std::system_category());
}
bytesToSend -= bytesSent;
currentBytes += bytesSent;
}
}
template <typename T>
void recvBytes(int socket, T* buffer, size_t length) {
size_t bytesToReceive = sizeof(T) * length;
if (bytesToReceive == 0) {
return;
}
auto bytes = reinterpret_cast<uint8_t*>(buffer);
uint8_t* currentBytes = bytes;
while (bytesToReceive > 0) {
ssize_t bytesReceived;
SYSCHECK_ERR_RETURN_NEG1(
bytesReceived = recv(socket, (char*)currentBytes, bytesToReceive, 0))
if (bytesReceived == 0) {
throw std::system_error(ECONNRESET, std::system_category());
}
bytesToReceive -= bytesReceived;
currentBytes += bytesReceived;
}
}
// send a vector's length and data
template <typename T>
void sendVector(int socket, const std::vector<T>& vec, bool moreData = false) {
SizeType size = vec.size();
sendBytes<SizeType>(socket, &size, 1, true);
sendBytes<T>(socket, vec.data(), size, moreData);
}
// receive a vector as sent in sendVector
template <typename T>
std::vector<T> recvVector(int socket) {
SizeType valueSize;
recvBytes<SizeType>(socket, &valueSize, 1);
std::vector<T> value(valueSize);
recvBytes<T>(socket, value.data(), value.size());
return value;
}
// this is only for convenience when sending rvalues
template <typename T>
void sendValue(int socket, const T& value, bool moreData = false) {
sendBytes<T>(socket, &value, 1, moreData);
}
template <typename T>
T recvValue(int socket) {
T value;
recvBytes<T>(socket, &value, 1);
return value;
}
// send a string's length and data
inline void sendString(
int socket,
const std::string& str,
bool moreData = false) {
SizeType size = str.size();
sendBytes<SizeType>(socket, &size, 1, true);
sendBytes<char>(socket, str.data(), size, moreData);
}
// receive a string as sent in sendString
inline std::string recvString(int socket) {
SizeType valueSize;
recvBytes<SizeType>(socket, &valueSize, 1);
std::vector<char> value(valueSize);
recvBytes<char>(socket, value.data(), value.size());
return std::string(value.data(), value.size());
}
} // namespace tcputil
} // namespace c10d
|