1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
|
#include <torch/csrc/python_headers.h>
#include <c10/util/intrusive_ptr.h>
#include <torch/csrc/distributed/c10d/FileStore.hpp>
#include <torch/csrc/distributed/c10d/TCPStore.hpp>
#include <torch/csrc/distributed/c10d/Utils.hpp>
#ifndef _WIN32
#include <torch/csrc/distributed/c10d/HashStore.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupRoundRobin.hpp>
#endif
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
#include <torch/csrc/distributed/c10d/PyProcessGroup.hpp>
#ifdef USE_C10D_GLOO
#include <torch/csrc/distributed/c10d/ProcessGroupGloo.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupWrapper.hpp>
#endif
#ifdef USE_C10D_NCCL
#include <torch/csrc/distributed/c10d/NCCLUtils.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp>
#endif
#ifdef USE_C10D_MPI
#include <torch/csrc/distributed/c10d/ProcessGroupMPI.hpp>
#endif
#ifdef USE_C10D_UCC
#include <torch/csrc/distributed/c10d/ProcessGroupUCC.hpp>
#endif
#include <fmt/format.h>
#include <pybind11/chrono.h>
#include <torch/csrc/distributed/c10d/PrefixStore.hpp>
#include <torch/csrc/distributed/c10d/comm.hpp>
#include <torch/csrc/distributed/c10d/debug.h>
#include <torch/csrc/distributed/c10d/logger.hpp>
#include <torch/csrc/distributed/c10d/reducer.hpp>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/distributed/c10d/Ops.hpp>
#include <torch/csrc/distributed/c10d/python_comm_hook.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/utils/object_ptr.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/custom_class.h>
namespace {
// Wrapper to ensure GIL is released before destructing ProcessGroupGloo
// TODO: move this somewhere more generally useful
template <typename T>
class IntrusivePtrNoGilDestructor {
c10::intrusive_ptr<T> impl_;
public:
IntrusivePtrNoGilDestructor() = default;
IntrusivePtrNoGilDestructor(const IntrusivePtrNoGilDestructor&) = default;
IntrusivePtrNoGilDestructor(IntrusivePtrNoGilDestructor&&) = default;
IntrusivePtrNoGilDestructor& operator=(const IntrusivePtrNoGilDestructor&) =
default;
IntrusivePtrNoGilDestructor& operator=(IntrusivePtrNoGilDestructor&&) =
default;
/* implicit */ IntrusivePtrNoGilDestructor(c10::intrusive_ptr<T> impl)
: impl_(std::move(impl)) {}
// This ctor is very important; see
// https://github.com/pybind/pybind11/issues/2957
explicit IntrusivePtrNoGilDestructor(T* impl)
: impl_(c10::intrusive_ptr<T>::unsafe_steal_from_new(impl)) {}
~IntrusivePtrNoGilDestructor() {
if (impl_) {
if (PyGILState_Check()) {
pybind11::gil_scoped_release release;
impl_.reset();
} else {
impl_.reset();
}
}
}
T& operator*() const noexcept {
return *impl_;
}
T* operator->() const noexcept {
return impl_.get();
}
C10_NODISCARD T* get() const noexcept {
return impl_.get();
}
void reset() noexcept {
impl_.reset();
}
operator bool() const noexcept {
return impl_;
}
};
} // anonymous namespace
PYBIND11_DECLARE_HOLDER_TYPE(T, IntrusivePtrNoGilDestructor<T>, true);
namespace torch {
namespace distributed {
namespace c10d {
namespace {
std::vector<std::string> split(char separator, const std::string& string) {
std::vector<std::string> pieces;
std::stringstream ss(string);
std::string item;
while (std::getline(ss, item, separator)) {
pieces.push_back(std::move(item));
}
return pieces;
}
template <typename T>
using shared_ptr_class_ = py::class_<T, std::shared_ptr<T>>;
constexpr auto kDeprecationWarning =
"{} API is being deprecated, please ping "
"https://github.com/pytorch/pytorch/issues/46291 "
"if you see this warning";
template <typename T>
using intrusive_ptr_class_ = py::class_<T, c10::intrusive_ptr<T>>;
template <typename T>
using intrusive_ptr_no_gil_destructor_class_ =
py::class_<T, IntrusivePtrNoGilDestructor<T>>;
// PythonStore is a pybind11 trampoline class to allow a Python
// class to inherit from c10d.Store and implement its interface.
class PythonStore : public ::c10d::Store {
public:
using ::c10d::Store::Store;
// Note: this function manually calls the Python-side overload
// for this function instead of using the PYBIND11_OVERLOAD_XYZ
// macros. This is done so that we can call the Python-side
// function with a std::string instead of a std::vector<uint8_t>.
void set(const std::string& key, const std::vector<uint8_t>& value) override {
pybind11::gil_scoped_acquire gil;
pybind11::function fn =
pybind11::get_overload(static_cast<const ::c10d::Store*>(this), "set");
TORCH_INTERNAL_ASSERT(fn);
// Call function with a py::bytes object for the value.
fn(key,
py::bytes(reinterpret_cast<const char*>(value.data()), value.size()));
}
// Note: this function manually calls the Python-side overload
// for this function instead of using the PYBIND11_OVERLOAD_XYZ
// macros. This is done so that the Python-side function can
// return a py::bytes instead of a std::vector<uint8_t>.
std::vector<uint8_t> get(const std::string& key) override {
pybind11::gil_scoped_acquire gil;
pybind11::function fn =
pybind11::get_overload(static_cast<const ::c10d::Store*>(this), "get");
TORCH_INTERNAL_ASSERT(fn);
// Cast return value from Python to py::bytes, then implicitly
// convert that to a std::string, so that we can construct a
// std::vector<uint8_t>. There is no API for directly accessing
// the contents of the py::bytes object.
std::string str = pybind11::cast<py::bytes>(fn(key));
return std::vector<uint8_t>(str.begin(), str.end());
}
// Note: this function manually calls the Python-side overload
// for this function instead of using the PYBIND11_OVERLOAD_XYZ
// macros. This is done so that the Python-side function can
// return a py::bytes instead of a std::vector<uint8_t>.
std::vector<uint8_t> compareSet(
const std::string& key,
const std::vector<uint8_t>& expectedValue,
const std::vector<uint8_t>& desiredValue) override {
pybind11::gil_scoped_acquire gil;
pybind11::function fn = pybind11::get_overload(
static_cast<const ::c10d::Store*>(this), "compare_set");
TORCH_INTERNAL_ASSERT(fn);
// Cast return value from Python to py::bytes, then implicitly
// convert that to a std::string, so that we can construct a
// std::vector<uint8_t>. There is no API for directly accessing
// the contents of the py::bytes object.
std::string str =
pybind11::cast<py::bytes>(fn(key, expectedValue, desiredValue));
return std::vector<uint8_t>(str.begin(), str.end());
}
int64_t add(const std::string& key, int64_t value) override {
PYBIND11_OVERLOAD_PURE(int64_t, ::c10d::Store, add, key, value);
}
int64_t getNumKeys() override {
PYBIND11_OVERLOAD_PURE(int64_t, ::c10d::Store, getNumKeys);
}
bool deleteKey(const std::string& key) override {
PYBIND11_OVERLOAD_PURE(bool, ::c10d::Store, deleteKey, key);
}
bool check(const std::vector<std::string>& keys) override {
PYBIND11_OVERLOAD_PURE(bool, ::c10d::Store, check, keys);
}
void wait(const std::vector<std::string>& keys) override {
PYBIND11_OVERLOAD_PURE(void, ::c10d::Store, wait, keys);
}
void wait(
const std::vector<std::string>& keys,
const std::chrono::milliseconds& timeout) override {
PYBIND11_OVERLOAD_PURE(void, ::c10d::Store, wait, keys, timeout);
}
};
// Called from DDP's Python API to create a c10d Python comm hook object.
// The input state and callable comm_hook are Python objects. It later calls
// register_comm_hook function of the reducer input to register the hook.
void _register_comm_hook(
::c10d::Reducer& reducer,
py::object state,
py::object comm_hook) {
reducer.register_comm_hook(std::make_unique<::c10d::PythonCommHook>(
std::move(state), std::move(comm_hook)));
}
// Called from DDP's Python API to create a c10d C++ comm hook.
// The input is an enum hook type. It later calls register_builtin_comm_hook
// function of the reducer input to set the hook type.
void _register_builtin_comm_hook(
::c10d::Reducer& reducer,
::c10d::BuiltinCommHookType comm_hook_type) {
reducer.register_builtin_comm_hook(comm_hook_type);
}
PyObject* c10d_init(PyObject* _unused, PyObject* noargs) {
C10_LOG_API_USAGE_ONCE("c10d.python.import");
auto c10d_module = THPObjectPtr(PyImport_ImportModule("torch.distributed"));
if (!c10d_module) {
throw python_error();
}
auto torch_C_module = THPObjectPtr(PyImport_ImportModule("torch._C"));
if (!torch_C_module) {
throw python_error();
}
auto torch_C_m = py::handle(torch_C_module).cast<py::module>();
auto m =
torch_C_m.def_submodule("_distributed_c10d", "distributed c10d bindings");
auto module = py::handle(m).cast<py::module>();
module
.def(
"_register_comm_hook",
&_register_comm_hook,
py::arg("reducer"),
py::arg("state"),
py::arg("comm_hook"),
py::call_guard<py::gil_scoped_release>())
.def(
"_register_builtin_comm_hook",
&_register_builtin_comm_hook,
py::arg("reducer"),
py::arg("comm_hook_type"));
shared_ptr_class_<::c10d::GradBucket>(
module,
"GradBucket",
R"(
This class mainly passes a flattened gradient tensor
(returned by :meth:`~torch.distributed.GradBucket.buffer`)
to DDP communication hook.
This tensor can be further decomposed into a list of per-parameter tensors within this bucket
(returned by :meth:`~torch.distributed.GradBucket.get_per_parameter_tensors`)
to apply layer-wise operations.
)")
.def(
"index",
&::c10d::GradBucket::getIndex,
py::call_guard<py::gil_scoped_release>(),
R"(
.. warning::
Since the buckets are rebuilt after the first iteration, should not rely on the indices at the beginning of training.
Returns:
The index of a bucket that stores gradients of a few contiguous layers.
All the gradients are bucketized.
)")
.def(
"buffer",
&::c10d::GradBucket::getBuffer,
py::call_guard<py::gil_scoped_release>(),
R"(
Returns:
A flattened 1D ``torch.Tensor`` buffer,
which can be further decomposed into a list of per-parameter tensors within this bucket.
)")
.def(
"gradients",
&::c10d::GradBucket::getGradients,
py::call_guard<py::gil_scoped_release>(),
R"(
Returns:
A list of ``torch.Tensor``. Each tensor in the list corresponds to a gradient.
)")
.def(
"parameters",
&::c10d::GradBucket::getParameters,
py::call_guard<py::gil_scoped_release>(),
R"(
Returns:
A list of ``torch.Tensor``. Each tensor in the list corresponds to a model
parameter.
)")
.def(
"is_last",
&::c10d::GradBucket::isLast,
py::call_guard<py::gil_scoped_release>(),
R"(
Returns:
Whether this bucket is the last bucket to allreduce in an iteration.
This also means that this bucket corresponds to the first few layers in the forward pass.
)")
.def(
"set_buffer",
&::c10d::GradBucket::setBuffer,
py::arg("buffer"),
py::call_guard<py::gil_scoped_release>(),
R"(
Replaces the tensor in the bucket with the input tensor buffer.
)");
py::enum_<::c10d::BuiltinCommHookType>(module, "BuiltinCommHookType", R"(
An enum-like class for built-in communication hooks: ``ALLREDUCE`` and ``FP16_COMPRESS``.)")
.value("ALLREDUCE", ::c10d::BuiltinCommHookType::ALLREDUCE)
.value("FP16_COMPRESS", ::c10d::BuiltinCommHookType::FP16_COMPRESS);
shared_ptr_class_<::c10d::Reducer>(module, "Reducer")
.def(
py::init<
std::vector<at::Tensor>,
std::vector<std::vector<size_t>>,
std::vector<size_t>,
c10::intrusive_ptr<::c10d::ProcessGroup>,
std::vector<bool>,
int64_t,
bool,
bool,
std::unordered_map<size_t, std::string>,
int64_t>(),
py::arg("params"),
py::arg("bucket_indices"),
py::arg("per_bucket_size_limits"),
py::arg("process_group"),
py::arg("expect_sparse_gradients") = std::vector<bool>(),
py::arg("bucket_bytes_cap") = ::c10d::kDefaultBucketBytesCap,
py::arg("find_unused_parameters") = false,
py::arg("gradient_as_bucket_view") = false,
py::arg("param_to_name_mapping") =
std::unordered_map<size_t, std::string>(),
py::arg("first_bucket_bytes_cap") = ::c10d::kDefaultFirstBucketBytes,
py::call_guard<py::gil_scoped_release>())
.def(
"prepare_for_forward",
&::c10d::Reducer::prepare_for_forward,
py::call_guard<py::gil_scoped_release>())
.def(
"prepare_for_backward",
&::c10d::Reducer::prepare_for_backward,
py::call_guard<py::gil_scoped_release>())
.def(
"prepare_for_backward",
[](::c10d::Reducer& reducer, const at::Tensor& output) -> void {
reducer.prepare_for_backward({output});
},
py::call_guard<py::gil_scoped_release>())
.def("get_backward_stats", &::c10d::Reducer::get_backward_stats)
.def(
"_install_post_backward_futures",
[](::c10d::Reducer& reducer,
const std::vector<std::shared_ptr<jit::PythonFutureWrapper>>&
futs) {
c10::List<c10::intrusive_ptr<c10::ivalue::Future>> futures(
c10::FutureType::create(c10::TensorType::get()));
for (const auto& fut : futs) {
futures.push_back(fut->fut);
}
reducer.install_futures(std::move(futures));
},
py::call_guard<py::gil_scoped_release>())
.def(
"_rebuild_buckets",
&::c10d::Reducer::rebuild_buckets,
py::call_guard<py::gil_scoped_release>())
.def(
"_get_zeros_like_grad_buckets",
[](::c10d::Reducer& reducer) {
return reducer.get_grad_buckets(/* return_zero_tensors */ true);
},
py::call_guard<py::gil_scoped_release>())
.def(
"_push_all_rebuilt_params",
&::c10d::Reducer::push_rebuilt_params_for_all_indices,
py::call_guard<py::gil_scoped_release>())
.def(
"_set_forward_pass_work_handle",
&::c10d::Reducer::set_forward_pass_work_handle,
py::call_guard<py::gil_scoped_release>())
.def(
"_get_local_used_map", &::c10d::Reducer::get_local_used_map_on_device)
.def(
"_set_ddp_runtime_logging_sample_rate",
&::c10d::Reducer::set_ddp_runtime_logging_sample_rate,
py::arg("sample_rate"),
py::call_guard<py::gil_scoped_release>())
.def(
"_set_static_graph",
&::c10d::Reducer::set_static_graph,
py::call_guard<py::gil_scoped_release>())
.def(
"_ddp_graph_static",
&::c10d::Reducer::ddp_graph_static,
py::call_guard<py::gil_scoped_release>())
.def(
"_delay_all_reduce",
&::c10d::Reducer::delay_all_reduce,
py::call_guard<py::gil_scoped_release>())
.def(
"_run_comm_hook",
[](::c10d::Reducer& reducer, ::c10d::GradBucket& bucket)
-> std::shared_ptr<jit::PythonFutureWrapper> {
c10::intrusive_ptr<c10::ivalue::Future> fut =
reducer.run_comm_hook(bucket);
return std::make_shared<jit::PythonFutureWrapper>(fut);
},
py::call_guard<py::gil_scoped_release>())
.def(
"set_logger",
[](::c10d::Reducer& reducer,
const std::shared_ptr<::c10d::Logger> logger) {
std::weak_ptr<::c10d::Logger> logger_weakref = logger;
reducer.set_logger(logger_weakref);
});
shared_ptr_class_<::c10d::Logger>(module, "Logger")
.def(
py::init<std::shared_ptr<::c10d::Reducer>>(),
py::arg("reducer"),
py::call_guard<py::gil_scoped_release>())
.def(
"set_construction_data_and_log",
&::c10d::Logger::set_construction_data_and_log,
py::arg("module_name"),
py::arg("device_ids"),
py::arg("output_device"),
py::arg("broadcast_buffers"),
py::arg("has_sync_bn"),
py::arg("static_graph"),
py::call_guard<py::gil_scoped_release>())
.def(
"set_runtime_stats_and_log",
&::c10d::Logger::set_runtime_stats_and_log,
py::call_guard<py::gil_scoped_release>())
.def(
"set_error_and_log",
[](::c10d::Logger& logger, const std::string& error) {
logger.set_error_and_log(error);
},
py::call_guard<py::gil_scoped_release>())
.def(
"_get_ddp_logging_data",
&::c10d::Logger::get_ddp_logging_data,
py::call_guard<py::gil_scoped_release>())
.def(
"_set_comm_hook_name",
&::c10d::Logger::set_comm_hook,
py::arg("comm_hook"),
py::call_guard<py::gil_scoped_release>())
.def(
"_set_uneven_input_join",
&::c10d::Logger::set_uneven_input_join,
py::call_guard<py::gil_scoped_release>())
.def(
"_set_static_graph",
&::c10d::Logger::set_static_graph,
py::call_guard<py::gil_scoped_release>());
py::enum_<::c10d::DebugLevel>(module, "DebugLevel", R"(
An enum whose values correspond to different debug levels of the
torch.distributed package. Currently supporting OFF, INFO, and DETAIL,
which can be set via the TORCH_DISTRIBUTED_DEBUG environment variable
or via ``set_debug_level()`` function.
)")
.value("OFF", ::c10d::DebugLevel::Off)
.value("INFO", ::c10d::DebugLevel::Info)
.value("DETAIL", ::c10d::DebugLevel::Detail);
module
.def(
"get_debug_level",
::c10d::debug_level,
R"(Gets the debug level of the torch.distributed package.)")
.def(
"set_debug_level",
::c10d::setDebugLevel,
R"(Sets the debug level of the torch.distributed package.)")
.def(
"set_debug_level_from_env",
::c10d::setDebugLevelFromEnvironment,
R"(Sets the debug level of the torch.distributed package from the
``TORCH_DISTRIBUTED_DEBUG`` environment variable.)");
// TODO(crcrpar): Hardening `ReduceOp`.
// While keeping most op types as enum value,
// making `PREMUL_SUM` callable, i.e., allowing for
// `ReduceOp.PREMUL_SUM(scale)` might be better as per @wanchaol.
// https://pybind11.readthedocs.io/en/stable/classes.html#enumerations-and-internal-types
py::class_<::c10d::ReduceOp> reduce_op(module, "ReduceOp", R"(
An enum-like class for available reduction operations: ``SUM``, ``PRODUCT``,
``MIN``, ``MAX``, ``BAND``, ``BOR``, ``BXOR``, and ``PREMUL_SUM``.
``BAND``, ``BOR``, and ``BXOR`` reductions are not available when
using the ``NCCL`` backend.
``AVG`` divides values by the world size before summing across ranks.
``AVG`` is only available with the ``NCCL`` backend,
and only for NCCL versions 2.10 or later.
``PREMUL_SUM`` multiplies inputs by a given scalar locally before reduction.
``PREMUL_SUM`` is only available with the ``NCCL`` backend,
and only available for NCCL versions 2.11 or later. Users are supposed to
use ``torch.distributed._make_nccl_premul_sum``.
Additionally, ``MAX``, ``MIN`` and ``PRODUCT`` are not supported for complex tensors.
The values of this class can be accessed as attributes, e.g., ``ReduceOp.SUM``.
They are used in specifying strategies for reduction collectives, e.g.,
:func:`reduce`, :func:`all_reduce_multigpu`, etc.
This class does not support ``__members__`` property.)");
reduce_op.def(py::init<::c10d::ReduceOp::RedOpType>())
.def_readwrite("op", &::c10d::ReduceOp::op_);
// The following are for some kind of backward compatibility.
// Since c10d::ReduceOp had been an `enum class`, users can do comparison and
// take hash of `::c10d::ReduceOp`. To avoid losing these functionality, here
// I define some member methods.
reduce_op
.def(
"__eq__",
[](const ::c10d::ReduceOp& self,
const ::c10d::ReduceOp::RedOpType& other) {
return self == other;
})
.def(
"__eq__",
[](const ::c10d::ReduceOp& self, const ::c10d::ReduceOp& other) {
return self == other.op_;
})
.def("__hash__", [](const ::c10d::ReduceOp& self) {
return static_cast<uint8_t>(self.op_);
});
// note(crcrpar): Deliberately skip
// [`export_values`](https://pybind11.readthedocs.io/en/stable/classes.html#enumerations-and-internal-types)
// here and manually set values in Python side. See note "ReduceOp static
// class attributes to support `isinstance`"
py::enum_<::c10d::ReduceOp::RedOpType>(reduce_op, "RedOpType")
.value("SUM", ::c10d::ReduceOp::RedOpType::SUM)
.value("AVG", ::c10d::ReduceOp::RedOpType::AVG)
.value("PRODUCT", ::c10d::ReduceOp::RedOpType::PRODUCT)
.value("MIN", ::c10d::ReduceOp::RedOpType::MIN)
.value("MAX", ::c10d::ReduceOp::RedOpType::MAX)
.value("BAND", ::c10d::ReduceOp::RedOpType::BAND)
.value("BOR", ::c10d::ReduceOp::RedOpType::BOR)
.value("BXOR", ::c10d::ReduceOp::RedOpType::BXOR)
.value("PREMUL_SUM", ::c10d::ReduceOp::RedOpType::PREMUL_SUM);
// note(crcrpar): This could be removed because users will not pass
// `RedOpType` to reduce collective ops Ref: [Implicit
// conversions](https://pybind11.readthedocs.io/en/stable/advanced/classes.html#implicit-conversions)
// Let us skip the explicit construction of `c10d::ReduceOp` from
// `c10d::ReduceOp::RedOpType` in Python.
py::implicitly_convertible<::c10d::ReduceOp::RedOpType, ::c10d::ReduceOp>();
module
.def(
"_make_nccl_premul_sum",
&::c10d::makeNCCLPreMulSum<double>,
py::arg("factor").noconvert(),
py::return_value_policy::copy, // seems safest
py::call_guard<py::gil_scoped_release>())
.def(
"_make_nccl_premul_sum",
&::c10d::makeNCCLPreMulSum<std::vector<at::Tensor>>,
py::arg("factor").noconvert(),
py::return_value_policy::copy, // seems safest
py::call_guard<py::gil_scoped_release>());
py::class_<::c10d::BroadcastOptions>(module, "BroadcastOptions")
.def(py::init<>())
.def_readwrite("rootRank", &::c10d::BroadcastOptions::rootRank)
.def_readwrite("rootTensor", &::c10d::BroadcastOptions::rootTensor)
.def_readwrite("timeout", &::c10d::BroadcastOptions::timeout);
py::class_<::c10d::AllreduceOptions>(module, "AllreduceOptions")
.def(py::init<>())
.def_readwrite("reduceOp", &::c10d::AllreduceOptions::reduceOp)
.def_readwrite("timeout", &::c10d::AllreduceOptions::timeout);
py::class_<::c10d::AllreduceCoalescedOptions>(
module, "AllreduceCoalescedOptions")
.def(py::init<>())
.def_readwrite("reduceOp", &::c10d::AllreduceCoalescedOptions::reduceOp)
.def_readwrite("timeout", &::c10d::AllreduceCoalescedOptions::timeout);
py::class_<::c10d::ReduceOptions>(module, "ReduceOptions")
.def(py::init<>())
.def_readwrite("reduceOp", &::c10d::ReduceOptions::reduceOp)
.def_readwrite("rootRank", &::c10d::ReduceOptions::rootRank)
.def_readwrite("rootTensor", &::c10d::ReduceOptions::rootTensor)
.def_readwrite("timeout", &::c10d::ReduceOptions::timeout);
py::class_<::c10d::AllgatherOptions>(module, "AllgatherOptions")
.def(py::init<>())
.def_readwrite("timeout", &::c10d::AllgatherOptions::timeout);
py::class_<::c10d::GatherOptions>(module, "GatherOptions")
.def(py::init<>())
.def_readwrite("rootRank", &::c10d::GatherOptions::rootRank)
.def_readwrite("timeout", &::c10d::GatherOptions::timeout);
py::class_<::c10d::ScatterOptions>(module, "ScatterOptions")
.def(py::init<>())
.def_readwrite("rootRank", &::c10d::ScatterOptions::rootRank)
.def_readwrite("timeout", &::c10d::ScatterOptions::timeout);
py::class_<::c10d::ReduceScatterOptions>(module, "ReduceScatterOptions")
.def(py::init<>())
.def_readwrite("reduceOp", &::c10d::ReduceScatterOptions::reduceOp)
.def_readwrite("timeout", &::c10d::ReduceScatterOptions::timeout);
py::class_<::c10d::BarrierOptions>(module, "BarrierOptions")
.def(py::init<>())
.def_readwrite("device_ids", &::c10d::BarrierOptions::device_ids)
.def_readwrite("timeout", &::c10d::BarrierOptions::timeout);
py::class_<::c10d::AllToAllOptions>(module, "AllToAllOptions")
.def(py::init<>())
.def_readwrite("timeout", &::c10d::AllToAllOptions::timeout);
py::class_<::c10d::DistributedBackendOptions>(
module, "_DistributedBackendOptions")
.def(py::init<>())
.def_readwrite("store", &::c10d::DistributedBackendOptions::store)
.def_readwrite(
"group_rank", &::c10d::DistributedBackendOptions::group_rank)
.def_readwrite(
"group_size", &::c10d::DistributedBackendOptions::group_size)
.def_readwrite("timeout", &::c10d::DistributedBackendOptions::timeout)
.def_readwrite("group_id", &::c10d::DistributedBackendOptions::group_id)
.def_readwrite(
"global_ranks_in_group",
&::c10d::DistributedBackendOptions::global_ranks_in_group);
auto store =
py::class_<::c10d::Store, c10::intrusive_ptr<::c10d::Store>, PythonStore>(
module,
"Store",
R"(
Base class for all store implementations, such as the 3 provided by PyTorch
distributed: (:class:`~torch.distributed.TCPStore`, :class:`~torch.distributed.FileStore`,
and :class:`~torch.distributed.HashStore`).
)")
// Default constructor.
.def(py::init<>())
// Convert from std::string to std::vector<uint8>.
.def(
"set",
[](::c10d::Store& store,
const std::string& key,
const std::string& value) {
std::vector<uint8_t> value_(value.begin(), value.end());
store.set(key, value_);
},
py::call_guard<py::gil_scoped_release>(),
R"(
Inserts the key-value pair into the store based on the supplied ``key`` and
``value``. If ``key`` already exists in the store, it will overwrite the old
value with the new supplied ``value``.
Arguments:
key (str): The key to be added to the store.
value (str): The value associated with ``key`` to be added to the store.
Example::
>>> import torch.distributed as dist
>>> from datetime import timedelta
>>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
>>> store.set("first_key", "first_value")
>>> # Should return "first_value"
>>> store.get("first_key")
)")
.def(
"compare_set",
[](::c10d::Store& store,
const std::string& key,
const std::string& expected_value,
const std::string& desired_value) -> py::bytes {
std::vector<uint8_t> expectedValue_(
expected_value.begin(), expected_value.end());
std::vector<uint8_t> desiredValue_(
desired_value.begin(), desired_value.end());
auto value =
store.compareSet(key, expectedValue_, desiredValue_);
return py::bytes(
reinterpret_cast<char*>(value.data()), value.size());
},
py::call_guard<py::gil_scoped_release>(),
R"(
Inserts the key-value pair into the store based on the supplied ``key`` and
performs comparison between ``expected_value`` and ``desired_value`` before inserting. ``desired_value``
will only be set if ``expected_value`` for the ``key`` already exists in the store or if ``expected_value``
is an empty string.
Arguments:
key (str): The key to be checked in the store.
expected_value (str): The value associated with ``key`` to be checked before insertion.
desired_value (str): The value associated with ``key`` to be added to the store.
Example::
>>> import torch.distributed as dist
>>> from datetime import timedelta
>>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
>>> store.set("key", "first_value")
>>> store.compare_set("key", "first_value", "second_value")
>>> # Should return "second_value"
>>> store.get("key")
)")
// Convert from std::vector<uint8_t> to py::bytes.
// The returned value is not guaranteed to be valid UTF-8.
.def(
"get",
[](::c10d::Store& store, const std::string& key) -> py::bytes {
auto value = [&]() {
py::gil_scoped_release guard;
return store.get(key);
}();
return py::bytes(
reinterpret_cast<char*>(value.data()), value.size());
},
R"(
Retrieves the value associated with the given ``key`` in the store. If ``key`` is not
present in the store, the function will wait for ``timeout``, which is defined
when initializing the store, before throwing an exception.
Arguments:
key (str): The function will return the value associated with this key.
Returns:
Value associated with ``key`` if ``key`` is in the store.
Example::
>>> import torch.distributed as dist
>>> from datetime import timedelta
>>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
>>> store.set("first_key", "first_value")
>>> # Should return "first_value"
>>> store.get("first_key")
)")
.def(
"add",
&::c10d::Store::add,
py::call_guard<py::gil_scoped_release>(),
R"(
The first call to add for a given ``key`` creates a counter associated
with ``key`` in the store, initialized to ``amount``. Subsequent calls to add
with the same ``key`` increment the counter by the specified ``amount``.
Calling :meth:`~torch.distributed.store.add` with a key that has already
been set in the store by :meth:`~torch.distributed.store.set` will result
in an exception.
Arguments:
key (str): The key in the store whose counter will be incremented.
amount (int): The quantity by which the counter will be incremented.
Example::
>>> import torch.distributed as dist
>>> from datetime import timedelta
>>> # Using TCPStore as an example, other store types can also be used
>>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
>>> store.add("first_key", 1)
>>> store.add("first_key", 6)
>>> # Should return 7
>>> store.get("first_key")
)")
.def(
"delete_key",
&::c10d::Store::deleteKey,
py::call_guard<py::gil_scoped_release>(),
R"(
Deletes the key-value pair associated with ``key`` from the store. Returns
`true` if the key was successfully deleted, and `false` if it was not.
.. warning::
The ``delete_key`` API is only supported by the :class:`~torch.distributed.TCPStore` and :class:`~torch.distributed.HashStore`. Using this API
with the :class:`~torch.distributed.FileStore` will result in an exception.
Arguments:
key (str): The key to be deleted from the store
Returns:
`True` if ``key`` was deleted, otherwise `False`.
Example::
>>> import torch.distributed as dist
>>> from datetime import timedelta
>>> # Using TCPStore as an example, HashStore can also be used
>>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
>>> store.set("first_key")
>>> # This should return true
>>> store.delete_key("first_key")
>>> # This should return false
>>> store.delete_key("bad_key")
)")
.def(
"num_keys",
&::c10d::Store::getNumKeys,
py::call_guard<py::gil_scoped_release>(),
R"(
Returns the number of keys set in the store. Note that this number will typically
be one greater than the number of keys added by :meth:`~torch.distributed.store.set`
and :meth:`~torch.distributed.store.add` since one key is used to coordinate all
the workers using the store.
.. warning::
When used with the :class:`~torch.distributed.TCPStore`, ``num_keys`` returns the number of keys written to the underlying file. If the store is destructed and another store is created with the same file, the original keys will be retained.
Returns:
The number of keys present in the store.
Example::
>>> import torch.distributed as dist
>>> from datetime import timedelta
>>> # Using TCPStore as an example, other store types can also be used
>>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
>>> store.set("first_key", "first_value")
>>> # This should return 2
>>> store.num_keys()
)")
.def(
"set_timeout",
&::c10d::Store::setTimeout,
py::call_guard<py::gil_scoped_release>(),
R"(
Sets the store's default timeout. This timeout is used during initialization and in
:meth:`~torch.distributed.store.wait` and :meth:`~torch.distributed.store.get`.
Arguments:
timeout (timedelta): timeout to be set in the store.
Example::
>>> import torch.distributed as dist
>>> from datetime import timedelta
>>> # Using TCPStore as an example, other store types can also be used
>>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
>>> store.set_timeout(timedelta(seconds=10))
>>> # This will throw an exception after 10 seconds
>>> store.wait(["bad_key"])
)")
.def(
"wait",
[](::c10d::Store& store, const std::vector<std::string>& keys) {
store.wait(keys);
},
py::call_guard<py::gil_scoped_release>(),
R"(
Waits for each key in ``keys`` to be added to the store. If not all keys are
set before the ``timeout`` (set during store initialization), then ``wait``
will throw an exception.
Arguments:
keys (list): List of keys on which to wait until they are set in the store.
Example::
>>> import torch.distributed as dist
>>> from datetime import timedelta
>>> # Using TCPStore as an example, other store types can also be used
>>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
>>> # This will throw an exception after 30 seconds
>>> store.wait(["bad_key"])
)")
.def(
"wait",
[](::c10d::Store& store,
const std::vector<std::string>& keys,
const std::chrono::milliseconds& timeout) {
store.wait(keys, timeout);
},
py::call_guard<py::gil_scoped_release>(),
R"(
Waits for each key in ``keys`` to be added to the store, and throws an exception
if the keys have not been set by the supplied ``timeout``.
Arguments:
keys (list): List of keys on which to wait until they are set in the store.
timeout (timedelta): Time to wait for the keys to be added before throwing an exception.
Example::
>>> import torch.distributed as dist
>>> from datetime import timedelta
>>> # Using TCPStore as an example, other store types can also be used
>>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
>>> # This will throw an exception after 10 seconds
>>> store.wait(["bad_key"], timedelta(seconds=10))
)")
.def_property_readonly(
"timeout",
&::c10d::Store::getTimeout,
R"(Gets the timeout of the store.)");
intrusive_ptr_class_<::c10d::FileStore>(
module,
"FileStore",
store,
R"(
A store implementation that uses a file to store the underlying key-value pairs.
Arguments:
file_name (str): path of the file in which to store the key-value pairs
world_size (int, optional): The total number of processes using the store. Default is -1 (a negative value indicates a non-fixed number of store users).
Example::
>>> import torch.distributed as dist
>>> store1 = dist.FileStore("/tmp/filestore", 2)
>>> store2 = dist.FileStore("/tmp/filestore", 2)
>>> # Use any of the store methods from either the client or server after initialization
>>> store1.set("first_key", "first_value")
>>> store2.get("first_key")
)")
.def(
py::init<const std::string&, int>(),
py::arg("file_name"),
py::arg("world_size") = -1)
.def_property_readonly(
"path",
&::c10d::FileStore::getPath,
R"(Gets the path of the file used by FileStore to store key-value pairs.)");
#ifndef _WIN32
intrusive_ptr_class_<::c10d::HashStore>(
module,
"HashStore",
store,
R"(
A thread-safe store implementation based on an underlying hashmap. This store can be used
within the same process (for example, by other threads), but cannot be used across processes.
Example::
>>> import torch.distributed as dist
>>> store = dist.HashStore()
>>> # store can be used from other threads
>>> # Use any of the store methods after initialization
>>> store.set("first_key", "first_value")
)")
.def(py::init<>());
#endif
intrusive_ptr_class_<::c10d::TCPStore>(
module,
"TCPStore",
store,
R"(
A TCP-based distributed key-value store implementation. The server store holds
the data, while the client stores can connect to the server store over TCP and
perform actions such as :meth:`~torch.distributed.store.set` to insert a key-value
pair, :meth:`~torch.distributed.store.get` to retrieve a key-value pair, etc. There
should always be one server store initialized because the client store(s) will wait for
the server to establish a connection.
Arguments:
host_name (str): The hostname or IP Address the server store should run on.
port (int): The port on which the server store should listen for incoming requests.
world_size (int, optional): The total number of store users (number of clients + 1 for the server). Default is None (None indicates a non-fixed number of store users).
is_master (bool, optional): True when initializing the server store and False for client stores. Default is False.
timeout (timedelta, optional): Timeout used by the store during initialization and for methods such as :meth:`~torch.distributed.store.get` and :meth:`~torch.distributed.store.wait`. Default is timedelta(seconds=300)
wait_for_worker (bool, optional): Whether to wait for all the workers to connect with the server store. This is only applicable when world_size is a fixed value. Default is True.
Example::
>>> import torch.distributed as dist
>>> from datetime import timedelta
>>> # Run on process 1 (server)
>>> server_store = dist.TCPStore("127.0.0.1", 1234, 2, True, timedelta(seconds=30))
>>> # Run on process 2 (client)
>>> client_store = dist.TCPStore("127.0.0.1", 1234, 2, False)
>>> # Use any of the store methods from either the client or server after initialization
>>> server_store.set("first_key", "first_value")
>>> client_store.get("first_key")
)")
.def(
py::init([](const std::string& host,
uint16_t port,
c10::optional<int> worldSize,
bool isServer,
std::chrono::milliseconds timeout,
bool waitWorkers,
bool multiTenant) {
c10::optional<std::size_t> numWorkers = c10::nullopt;
if (worldSize.has_value() && worldSize.value() > -1) {
numWorkers = static_cast<std::size_t>(worldSize.value());
}
::c10d::TCPStoreOptions opts{
port, isServer, numWorkers, waitWorkers, timeout, multiTenant};
return c10::make_intrusive<::c10d::TCPStore>(host, opts);
}),
py::arg("host_name"),
py::arg("port"),
py::arg("world_size") = py::none(),
// using noconvert() requires this argument to be True or False
// prevents accidental implicit conversion to bool
py::arg("is_master").noconvert() = false,
py::arg("timeout") =
std::chrono::milliseconds(::c10d::Store::kDefaultTimeout),
py::arg("wait_for_workers") = true,
py::arg("multi_tenant") = false)
.def_property_readonly(
"host",
&::c10d::TCPStore::getHost,
R"(Gets the hostname on which the store listens for requests.)")
.def_property_readonly(
"port",
&::c10d::TCPStore::getPort,
R"(Gets the port number on which the store listens for requests.)");
intrusive_ptr_class_<::c10d::PrefixStore>(
module,
"PrefixStore",
store,
R"(
A wrapper around any of the 3 key-value stores (:class:`~torch.distributed.TCPStore`,
:class:`~torch.distributed.FileStore`, and :class:`~torch.distributed.HashStore`)
that adds a prefix to each key inserted to the store.
Arguments:
prefix (str): The prefix string that is prepended to each key before being inserted into the store.
store (torch.distributed.store): A store object that forms the underlying key-value store.
)")
.def(py::init<const std::string&, c10::intrusive_ptr<::c10d::Store>>())
.def_property_readonly(
"underlying_store",
&::c10d::PrefixStore::getUnderlyingStore,
R"(Gets the underlying store object that PrefixStore wraps around.)");
auto processGroup =
py::class_<
::c10d::ProcessGroup,
c10::intrusive_ptr<::c10d::ProcessGroup>,
::c10d::PyProcessGroup>(module, "ProcessGroup")
.def(py::init<int, int>())
.def("rank", &::c10d::ProcessGroup::getRank)
.def("size", &::c10d::ProcessGroup::getSize)
.def("name", &::c10d::ProcessGroup::getBackendName)
.def(
"broadcast",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
const std::vector<at::Tensor>& tensors,
const ::c10d::BroadcastOptions& opts) {
return ::c10d::ops::broadcast(self, tensors, opts);
},
py::arg("tensors"),
py::arg("opts") = ::c10d::BroadcastOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"broadcast",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
at::Tensor& x,
int rootRank) {
::c10d::BroadcastOptions opts;
opts.rootRank = rootRank;
return ::c10d::ops::broadcast(self, {x}, opts);
},
py::arg("tensor"),
py::arg("root"),
py::call_guard<py::gil_scoped_release>())
.def(
"allreduce",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
const std::vector<at::Tensor>& tensors,
const ::c10d::AllreduceOptions& opts) {
return ::c10d::ops::allreduce(self, tensors, opts);
},
py::arg("tensors"),
py::arg("opts") = ::c10d::AllreduceOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"allreduce",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
std::vector<at::Tensor>& xs,
::c10d::ReduceOp op) {
::c10d::AllreduceOptions opts;
opts.reduceOp = op;
return ::c10d::ops::allreduce(self, xs, opts);
},
py::arg("tensors"),
py::arg("op") = ::c10d::ReduceOp::SUM,
py::call_guard<py::gil_scoped_release>())
.def(
"allreduce",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
at::Tensor& x,
::c10d::ReduceOp op) {
::c10d::AllreduceOptions opts;
opts.reduceOp = op;
std::vector<at::Tensor> xs = {x};
return ::c10d::ops::allreduce(self, xs, opts);
},
py::arg("tensor"),
py::arg("op") = ::c10d::ReduceOp::SUM,
py::call_guard<py::gil_scoped_release>())
.def(
"allreduce_coalesced",
[](::c10d::ProcessGroup& self,
std::vector<at::Tensor>& xs,
::c10d::AllreduceCoalescedOptions opts) {
return self.allreduce_coalesced(xs, opts);
},
py::arg("tensors"),
py::arg("opts") = ::c10d::AllreduceCoalescedOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"reduce",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
const std::vector<at::Tensor>& tensors,
const ::c10d::ReduceOptions& opts) {
return ::c10d::ops::reduce(self, tensors, opts);
},
py::arg("tensors"),
py::arg("opts") = ::c10d::ReduceOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"reduce",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
at::Tensor& x,
int rootRank,
::c10d::ReduceOp op) {
::c10d::ReduceOptions opts;
opts.reduceOp = op;
opts.rootRank = rootRank;
std::vector<at::Tensor> xs = {x};
return ::c10d::ops::reduce(self, xs, opts);
},
py::arg("tensor"),
py::arg("root"),
py::arg("op") = ::c10d::ReduceOp::SUM,
py::call_guard<py::gil_scoped_release>())
.def(
"allgather",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
const std::vector<std::vector<at::Tensor>>& output_tensors,
const std::vector<at::Tensor>& input_tensor,
const ::c10d::AllgatherOptions& opts) {
return ::c10d::ops::allgather(
self, output_tensors, input_tensor, opts);
},
py::arg("output_tensors"),
py::arg("input_tensors"),
py::arg("opts") = ::c10d::AllgatherOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"_allgather_base",
&::c10d::ProcessGroup::_allgather_base,
py::arg("output"),
py::arg("input"),
py::arg("opts") = ::c10d::AllgatherOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"allgather",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
std::vector<at::Tensor>& output,
at::Tensor& input) {
std::vector<std::vector<at::Tensor>> outputs = {output};
std::vector<at::Tensor> inputs = {input};
return ::c10d::ops::allgather(
self, outputs, inputs, ::c10d::AllgatherOptions());
},
py::arg("output_tensors"),
py::arg("input_tensor"),
py::call_guard<py::gil_scoped_release>())
.def(
"allgather_coalesced",
&::c10d::ProcessGroup::allgather_coalesced,
py::arg("output_lists"),
py::arg("input_list"),
py::arg("opts") = ::c10d::AllgatherOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"gather",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
const std::vector<std::vector<at::Tensor>>& output_tensors,
const std::vector<at::Tensor>& input_tensors,
const ::c10d::GatherOptions& opts) {
return ::c10d::ops::gather(
self, output_tensors, input_tensors, opts);
},
py::arg("output_tensors"),
py::arg("input_tensors"),
py::arg("opts") = ::c10d::GatherOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"gather",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
std::vector<at::Tensor>& output,
at::Tensor& input,
int rootRank) {
::c10d::GatherOptions opts;
opts.rootRank = rootRank;
std::vector<std::vector<at::Tensor>> outputs = {output};
std::vector<at::Tensor> inputs = {input};
return ::c10d::ops::gather(self, outputs, inputs, opts);
},
py::arg("output_tensors"),
py::arg("input_tensor"),
py::arg("root"),
py::call_guard<py::gil_scoped_release>())
.def(
"scatter",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
const std::vector<at::Tensor>& output_tensors,
const std::vector<std::vector<at::Tensor>>& input_tensors,
const ::c10d::ScatterOptions& opts) {
return ::c10d::ops::scatter(
self, output_tensors, input_tensors, opts);
},
py::arg("output_tensors"),
py::arg("input_tensors"),
py::arg("opts") = ::c10d::ScatterOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"scatter",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
at::Tensor& output,
std::vector<at::Tensor>& input,
int rootRank) {
::c10d::ScatterOptions opts;
opts.rootRank = rootRank;
std::vector<std::vector<at::Tensor>> inputs = {input};
std::vector<at::Tensor> outputs = {output};
return ::c10d::ops::scatter(self, outputs, inputs, opts);
},
py::arg("output_tensor"),
py::arg("input_tensors"),
py::arg("root"),
py::call_guard<py::gil_scoped_release>())
.def(
"reduce_scatter",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
const std::vector<at::Tensor>& output_tensors,
const std::vector<std::vector<at::Tensor>>& input_tensors,
const ::c10d::ReduceScatterOptions& opts) {
return ::c10d::ops::reduce_scatter(
self, output_tensors, input_tensors, opts);
},
py::arg("output_tensors"),
py::arg("input_tensors"),
py::arg("opts") = ::c10d::ReduceScatterOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"reduce_scatter",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
at::Tensor& output,
std::vector<at::Tensor>& input,
::c10d::ReduceOp op) {
std::vector<at::Tensor> outputs = {output};
std::vector<std::vector<at::Tensor>> inputs = {input};
::c10d::ReduceScatterOptions opts;
opts.reduceOp = op;
return ::c10d::ops::reduce_scatter(self, outputs, inputs, opts);
},
py::arg("output_tensors"),
py::arg("input_tensor"),
py::arg("op") = ::c10d::ReduceOp::SUM,
py::call_guard<py::gil_scoped_release>())
.def(
"_reduce_scatter_base",
&::c10d::ProcessGroup::_reduce_scatter_base,
py::arg("outputTensor"),
py::arg("inputTensor"),
py::arg("opts") = ::c10d::ReduceScatterOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"alltoall_base",
&::c10d::ProcessGroup::alltoall_base,
py::arg("output_tensor"),
py::arg("input_tensor"),
py::arg("output_split_sizes"),
py::arg("input_split_sizes"),
py::arg("opts") = ::c10d::AllToAllOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"alltoall_base",
[](::c10d::ProcessGroup& self,
at::Tensor& output,
at::Tensor& input,
std::vector<int64_t> outputSplitSizes,
std::vector<int64_t> inputSplitSizes) {
return self.alltoall_base(
output,
input,
outputSplitSizes,
inputSplitSizes,
::c10d::AllToAllOptions());
},
py::arg("output"),
py::arg("input"),
py::arg("output_split_sizes"),
py::arg("input_split_sizes"),
py::call_guard<py::gil_scoped_release>())
.def(
"alltoall",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
const std::vector<at::Tensor>& output_tensors,
const std::vector<at::Tensor>& input_tensors,
const ::c10d::AllToAllOptions& opts) {
return ::c10d::ops::alltoall(
self, output_tensors, input_tensors, opts);
},
py::arg("output_tensor"),
py::arg("input_tensor"),
py::arg("opts") = ::c10d::AllToAllOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"alltoall",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
std::vector<at::Tensor>& output,
std::vector<at::Tensor>& input) {
return ::c10d::ops::alltoall(
self, output, input, ::c10d::AllToAllOptions());
},
py::arg("output"),
py::arg("input"),
py::call_guard<py::gil_scoped_release>())
.def(
"send",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
const std::vector<at::Tensor>& tensors,
int64_t dstRank,
int64_t tag) {
return ::c10d::ops::send(self, tensors, dstRank, tag);
},
py::arg("tensors"),
py::arg("dstRank"),
py::arg("tag"),
py::call_guard<py::gil_scoped_release>())
.def(
"recv",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
const std::vector<at::Tensor>& tensors,
int64_t srcRank,
int64_t tag) {
return ::c10d::ops::recv(self, tensors, srcRank, tag);
},
py::arg("tensors"),
py::arg("srcRank"),
py::arg("tag"),
py::call_guard<py::gil_scoped_release>())
.def(
"recv_anysource",
&::c10d::ProcessGroup::recvAnysource,
py::call_guard<py::gil_scoped_release>())
.def(
"barrier",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
const ::c10d::BarrierOptions& opts) {
return ::c10d::ops::barrier(self, opts);
},
py::arg("opts") = ::c10d::BarrierOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"_set_sequence_number_for_group",
&::c10d::ProcessGroup::setSequenceNumberForGroup,
py::call_guard<py::gil_scoped_release>())
.def(
"_get_sequence_number_for_group",
&::c10d::ProcessGroup::getSequenceNumberForGroup,
py::call_guard<py::gil_scoped_release>())
.def(
"monitored_barrier",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
const std::chrono::milliseconds& timeout,
bool waitAllRanks) {
::c10d::BarrierOptions opts;
opts.timeout = timeout;
return self->monitoredBarrier(opts, waitAllRanks);
},
py::arg("timeout") = ::c10d::kUnsetTimeout,
py::arg("wait_all_ranks") = false,
py::call_guard<py::gil_scoped_release>())
.def(
"_get_backend_name",
&::c10d::ProcessGroup::getBackendName,
py::call_guard<py::gil_scoped_release>())
.def(
"_start_coalescing",
&::c10d::ProcessGroup::startCoalescing,
py::call_guard<py::gil_scoped_release>())
.def(
"_end_coalescing",
&::c10d::ProcessGroup::endCoalescing,
py::arg("reqs"),
py::call_guard<py::gil_scoped_release>());
// base ProcessGroup::Options binding
auto processGroupOptions =
intrusive_ptr_class_<::c10d::ProcessGroup::Options>(
processGroup,
"Options",
R"(
Base class for all processs group options implementations, such as the nccl
options :class:`~torch.distributed.ProcessGroupNCCL.Options`).
)")
.def_readonly("backend", &::c10d::ProcessGroup::Options::backend)
.def_readwrite("_timeout", &::c10d::ProcessGroup::Options::timeout);
#ifndef _WIN32
module.def(
"_round_robin_process_groups",
[](std::vector<c10::intrusive_ptr<::c10d::ProcessGroup>> processGroups)
-> c10::intrusive_ptr<::c10d::ProcessGroup> {
if (processGroups.size() == 0) {
throw std::invalid_argument("Specify at least 1 process group");
}
const auto& first = processGroups.front();
return c10::make_intrusive<::c10d::ProcessGroupRoundRobin>(
first->getRank(), first->getSize(), std::move(processGroups));
},
py::arg("process_groups"),
py::call_guard<py::gil_scoped_release>());
#endif
#ifdef USE_C10D_GLOO
static const std::string GLOO_SOCKET_IFNAME_ENV = "GLOO_SOCKET_IFNAME";
auto processGroupGloo =
intrusive_ptr_no_gil_destructor_class_<::c10d::ProcessGroupGloo>(
module, "ProcessGroupGloo", processGroup);
shared_ptr_class_<::gloo::transport::Device>(processGroupGloo, "Device");
intrusive_ptr_class_<::c10d::ProcessGroupGloo::Options>(
processGroupGloo, "_Options", processGroupOptions)
.def(py::init<>())
.def_readwrite("_devices", &::c10d::ProcessGroupGloo::Options::devices)
.def_readwrite("_threads", &::c10d::ProcessGroupGloo::Options::threads);
processGroupGloo
.def_static(
"create_device",
[](const std::string& hostname, const std::string& interface)
-> std::shared_ptr<::gloo::transport::Device> {
if (!hostname.empty()) {
return ::c10d::ProcessGroupGloo::createDeviceForHostname(
hostname);
}
if (!interface.empty()) {
return ::c10d::ProcessGroupGloo::createDeviceForInterface(
interface);
}
throw std::invalid_argument(
"Specify either `hostname` or `interface` argument.");
},
py::arg("hostname") = "",
py::arg("interface") = "")
.def_static(
"create_default_device",
&::c10d::ProcessGroupGloo::createDefaultDevice);
processGroupGloo
.def(
py::init<
const c10::intrusive_ptr<::c10d::Store>&,
int,
int,
c10::intrusive_ptr<::c10d::ProcessGroupGloo::Options>>(),
py::call_guard<py::gil_scoped_release>())
.def(
py::init([](const c10::intrusive_ptr<::c10d::Store>& store,
int rank,
int size,
std::chrono::milliseconds timeout) {
auto options = ::c10d::ProcessGroupGloo::Options::create();
// Use interfaces listed in "GLOO_SOCKET_IFNAME", if set.
char* ifnameEnv = getenv(GLOO_SOCKET_IFNAME_ENV.c_str());
if (ifnameEnv && strlen(ifnameEnv) > 1) {
for (const auto& iface : split(',', ifnameEnv)) {
options->devices.push_back(
::c10d::ProcessGroupGloo::createDeviceForInterface(iface));
}
} else {
// If no hostname is specified, this function looks up
// the machine's hostname and returns a device instance
// associated with the address that the hostname resolves to.
options->devices.push_back(
::c10d::ProcessGroupGloo::createDefaultDevice());
}
options->timeout = timeout;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
options->threads = options->devices.size() * 2;
return c10::make_intrusive<::c10d::ProcessGroupGloo>(
store, rank, size, options);
}),
py::arg("store"),
py::arg("rank"),
py::arg("size"),
py::arg("timeout") = kProcessGroupDefaultTimeout,
py::call_guard<py::gil_scoped_release>())
.def_property_readonly("options", &::c10d::ProcessGroupGloo::getOptions);
// ProcessGroupWrapper is a wrapper pg that includes a helper gloo process
// group. It can be used to validate collective calls across processes by
// checking the op type and input tensor shapes.
auto processGroupWrapper =
intrusive_ptr_no_gil_destructor_class_<::c10d::ProcessGroupWrapper>(
module, "_ProcessGroupWrapper", processGroup)
.def(
py::init([](const c10::intrusive_ptr<::c10d::ProcessGroup>& pg,
const c10::intrusive_ptr<::c10d::ProcessGroupGloo>&
gloo_pg) {
return c10::make_intrusive<::c10d::ProcessGroupWrapper>(
pg, gloo_pg);
}),
py::arg("pg"),
py::arg("gloo_pg"),
py::call_guard<py::gil_scoped_release>())
.def_property_readonly(
"wrapped_pg", &::c10d::ProcessGroupWrapper::getWrappedPg);
#endif
#ifdef USE_C10D_NCCL
auto processGroupNCCL =
intrusive_ptr_no_gil_destructor_class_<::c10d::ProcessGroupNCCL>(
module, "ProcessGroupNCCL", processGroup)
.def(
py::init<
const c10::intrusive_ptr<::c10d::Store>&,
int,
int,
c10::intrusive_ptr<::c10d::ProcessGroupNCCL::Options>>(),
py::call_guard<py::gil_scoped_release>())
.def(
py::init([](const c10::intrusive_ptr<::c10d::Store>& store,
int rank,
int size,
const std::chrono::milliseconds& timeout) {
auto options = ::c10d::ProcessGroupNCCL::Options::create();
options->is_high_priority_stream = false;
options->timeout = timeout;
return c10::make_intrusive<::c10d::ProcessGroupNCCL>(
store, rank, size, options);
}),
py::arg("store"),
py::arg("rank"),
py::arg("size"),
py::arg("timeout") = kProcessGroupDefaultTimeout,
py::call_guard<py::gil_scoped_release>())
.def_property_readonly(
"options", &::c10d::ProcessGroupNCCL::getOptions)
.def_property_readonly(
"is_ucc_available", &::c10d::ProcessGroupNCCL::isUCCAvailable);
intrusive_ptr_class_<::c10d::ProcessGroupNCCL::Options>(
processGroupNCCL,
"Options",
processGroupOptions,
R"(
ProcessGroup options for the NCCL backend
Arguments:
is_high_priority_stream (bool, optional): flag to enable/disable process
group to pick up high priority cuda streams. It lets CUDA driver
to prioritize NCCL kernels when there are compute kernels waiting.
Default is False.
Example::
>>> import torch.distributed as dist
>>>
>>> nccl_options = dist.ProcessGroupNCCL.Options(is_high_priority_stream=True)
>>> # initialize a nccl process group with the options just created
>>> dist.init_process_group("nccl", pg_options=nccl_options)
)")
.def(py::init<bool>(), py::arg("is_high_priority_stream") = false)
.def_readwrite(
"is_high_priority_stream",
&::c10d::ProcessGroupNCCL::Options::is_high_priority_stream);
processGroupNCCL.def_static(
"_group_start", []() { ::c10d::ProcessGroupNCCL::groupStart(); });
processGroupNCCL.def_static(
"_group_end", []() { ::c10d::ProcessGroupNCCL::groupEnd(); });
#endif
#ifdef USE_C10D_MPI
auto processGroupMPI =
intrusive_ptr_no_gil_destructor_class_<::c10d::ProcessGroupMPI>(
module, "ProcessGroupMPI", processGroup);
// Define static create function instead of a constructor, because
// this function may return null. This happens if this process is not
// part of a sub group that is to be created.
processGroupMPI.def_static(
"create",
[](std::vector<int> ranks) {
return ::c10d::ProcessGroupMPI::createProcessGroupMPI(ranks);
},
py::call_guard<py::gil_scoped_release>());
#endif
#ifdef USE_C10D_UCC
auto processGroupUCC =
intrusive_ptr_no_gil_destructor_class_<::c10d::ProcessGroupUCC>(
module, "ProcessGroupUCC", processGroup)
.def(
py::init([](const c10::intrusive_ptr<::c10d::Store>& store,
int rank,
int size,
const std::chrono::milliseconds& timeout) {
return c10::make_intrusive<::c10d::ProcessGroupUCC>(
store, rank, size, timeout);
}),
py::arg("store"),
py::arg("rank"),
py::arg("size"),
py::arg("timeout") = kProcessGroupDefaultTimeout,
py::call_guard<py::gil_scoped_release>());
#endif
py::class_<
::c10d::Work,
c10::intrusive_ptr<::c10d::Work>,
::c10d::PyProcessGroup::PyWork>(module, "Work")
.def(py::init<>())
.def("is_completed", &::c10d::Work::isCompleted)
.def(
"is_success",
[](::c10d::Work& work) -> bool {
TORCH_WARN_ONCE(
fmt::format(kDeprecationWarning, "Work::is_success"));
return work.isSuccess();
})
.def(
"exception",
[](::c10d::Work& work) -> std::exception_ptr {
TORCH_WARN_ONCE(
fmt::format(kDeprecationWarning, "Work::exception"));
return work.exception();
})
.def(
"source_rank",
[](::c10d::Work& work) -> int {
TORCH_WARN_ONCE(
fmt::format(kDeprecationWarning, "Work::source_rank"));
return work.sourceRank();
})
.def("_source_rank", &::c10d::Work::sourceRank)
.def(
"result",
[](::c10d::Work& work) -> std::vector<at::Tensor> {
return work.result();
})
.def(
"synchronize",
[](::c10d::Work& work) -> void {
TORCH_WARN_ONCE(
fmt::format(kDeprecationWarning, "Work::synchronize"));
work.synchronize();
})
.def(
"wait",
&::c10d::Work::wait,
py::arg("timeout") = kNoTimeout,
py::call_guard<py::gil_scoped_release>())
.def(
"get_future",
[](::c10d::Work& work) -> std::shared_ptr<jit::PythonFutureWrapper> {
return std::make_shared<jit::PythonFutureWrapper>(work.getFuture());
},
R"(
Returns:
A ``torch.futures.Future`` object which is associated with the completion of
the ``Work``. As an example, a future object can be retrieved
by ``fut = process_group.allreduce(tensors).get_future()``.
Example::
Below is an example of a simple allreduce DDP communication hook that uses
``get_future` API to retrieve a Future associated with the completion of
``allreduce``.
>>> def allreduce(process_group: dist.ProcessGroup, bucket: dist.GradBucket): -> torch.futures.Future
>>> group_to_use = process_group if process_group is not None else torch.distributed.group.WORLD
>>> tensor = bucket.buffer().div_(group_to_use.size())
>>> return torch.distributed.all_reduce(tensor, group=group_to_use, async_op=True).get_future()
>>> ddp_model.register_comm_hook(state=None, hook=allreduce)
.. warning ::
``get_future`` API supports NCCL, and partially GLOO and MPI backends
(no support for peer-to-peer operations like send/recv) and will return a ``torch.futures.Future``.
In the example above, ``allreduce`` work will be done on GPU using NCCL backend,
``fut.wait()`` will return after synchronizing the appropriate NCCL streams
with PyTorch's current device streams to ensure we can have asynchronous CUDA
execution and it does not wait for the entire operation to complete on GPU. Note that
``CUDAFuture`` does not support ``NCCL_BLOCKING_WAIT`` flag or NCCL's ``barrier()``.
In addition, if a callback function was added by ``fut.then()``, it will wait until
``WorkNCCL``'s NCCL streams synchronize with ``ProcessGroupNCCL``'s dedicated callback
stream and invoke the callback inline after running the callback on the callback stream.
``fut.then()`` will return another ``CUDAFuture`` that holds the return value of the
callback and a ``CUDAEvent`` that recorded the callback stream.
1. For CPU work, ``fut.done()`` returns true when work has been complted and value()
tensors are ready.
2. For GPU work, ``fut.done()`` returns true only whether the operation has been enqueued.
3. For mixed CPU-GPU work (e.g. sending GPU tensors with GLOO), ``fut.done()`` returns
true when tensors have arrived on respective nodes, but not yet necessarily synched on
respective GPUs (similarly to GPU work).
)");
py::class_<c10::DDPLoggingData>(module, "DDPLoggingData")
.def(py::init<>())
.def_readwrite("strs_map", &c10::DDPLoggingData::strs_map)
.def_readwrite("ints_map", &c10::DDPLoggingData::ints_map);
module.def(
"_compute_bucket_assignment_by_size",
[](const std::vector<at::Tensor>& tensors,
const std::vector<size_t>& bucket_size_limits,
const std::vector<bool>& expect_sparse_gradient,
const std::vector<int64_t>& tensor_indices,
const c10::optional<std::shared_ptr<::c10d::Logger>>& logger) {
if (logger.has_value()) {
std::weak_ptr<::c10d::Logger> logger_weakref = logger.value();
return ::c10d::compute_bucket_assignment_by_size(
tensors,
bucket_size_limits,
expect_sparse_gradient,
tensor_indices,
{logger_weakref});
} else {
return ::c10d::compute_bucket_assignment_by_size(
tensors,
bucket_size_limits,
expect_sparse_gradient,
tensor_indices,
{});
}
},
py::arg("tensors"),
py::arg("bucket_size"),
py::arg("expect_sparse_gradient") = std::vector<bool>(),
py::arg("tensor_indices") = std::vector<int64_t>(),
py::arg("logger") = c10::optional<std::shared_ptr<::c10d::Logger>>{},
py::call_guard<py::gil_scoped_release>());
module.def(
"_verify_params_across_processes",
[](const c10::intrusive_ptr<::c10d::ProcessGroup>& process_group,
const std::vector<at::Tensor>& params,
const c10::optional<std::shared_ptr<::c10d::Logger>>& logger) {
if (logger.has_value()) {
std::weak_ptr<::c10d::Logger> logger_weakref = logger.value();
verify_params_across_processes(
process_group, params, {logger_weakref});
} else {
verify_params_across_processes(process_group, params, {});
}
},
py::arg("process_group"),
py::arg("params"),
py::arg("logger") = c10::optional<std::shared_ptr<::c10d::Logger>>{},
py::call_guard<py::gil_scoped_release>());
module.def(
"_broadcast_coalesced",
// Define a lambda such that the pybind11 prototype can take a std::vector
// for the tensor list argument, but still pass it to the underlying
// function as a c10::ArrayRef.
[](c10::intrusive_ptr<::c10d::ProcessGroup> process_group,
std::vector<at::Tensor> tensors, // NOLINT
size_t buffer_size,
int rank) {
broadcast_coalesced(
std::move(process_group), tensors, buffer_size, rank);
},
py::arg("process_group"),
py::arg("tensors"),
py::arg("buffer_size"),
// The source of truth rank to broadcast the tensors from.
py::arg("src") = 0,
py::call_guard<py::gil_scoped_release>());
module.def(
"_test_python_store",
// Define a function that takes a c10d store and runs a few tests.
// This is used by the PythonStore tests, which we cannot test from the
// Python side of the world. Calling Python functions on a Python object
// completely bypasses pybind11. We need to test that the overloaded
// functions call into Python and behave like we expect.
[](c10::intrusive_ptr<::c10d::Store> store) {
auto add = [&store](const std::string& key, int64_t value) {
store->add(key, value);
};
auto set = [&store](const std::string& key, const std::string& value) {
std::vector<uint8_t> value_(value.begin(), value.end());
store->set(key, value_);
};
auto get = [&store](const std::string& key) {
auto value = store->get(key);
return std::string(value.begin(), value.end());
};
add("key", 1);
add("key", 2);
add("key", 3);
set("key0", "value0");
add("key3", 1);
set("key1", "value1");
add("key3", 2);
set("key2", "value2");
add("key3", 3);
add("key3", 4);
add("key3", 3);
add("key3", 2);
if (get("key") != "6") {
TORCH_CHECK(false, "assertion failed");
}
if (get("key0") != "value0") {
TORCH_CHECK(false, "assertion failed");
}
if (get("key1") != "value1") {
TORCH_CHECK(false, "assertion failed");
}
if (get("key2") != "value2") {
TORCH_CHECK(false, "assertion failed");
}
if (get("key3") != "15") {
TORCH_CHECK(false, "assertion failed");
}
},
py::call_guard<py::gil_scoped_release>());
module.attr("_DEFAULT_FIRST_BUCKET_BYTES") = ::c10d::kDefaultFirstBucketBytes;
module.attr("_DEFAULT_PG_TIMEOUT") = py::cast(kProcessGroupDefaultTimeout);
module.attr("_DEFAULT_NO_TIMEOUT") = py::cast(kNoTimeout);
module.def(
"_create_work_from_future",
[](std::shared_ptr<jit::PythonFutureWrapper> future) {
return ::c10d::Work::create_from_future(future->fut);
},
py::arg("future"),
R"(
Arguments:
future(str): The future to wrap.
Returns:
A ``Work`` object which is associated with the completion of
the ``torch.futures.Future``.
This is the prefered way of constructing Work objects when writing a custom ProcessGroup
in python.
Example::
>>> class SingleRankProcessGroup(torch.distributed.ProcessGroup):
>>> def broadcast(self, tensor_list, opts):
>>> fut = torch.futures.Future()
>>> fut.set_result(tensor_list)
>>> return torch._C._distributed_c10d._create_work_from_future(fut)
.. warning ::
This API is experimental and subject to change.
The returned Work object has multiple limitations:
- synchronize() does nothing. Use ``torch.futures.Future`` based synchronization.
- wait() ignored timeout argument.
- sourceRank() raises.
- abort() raises.
The provided Future object result must be a Tensor or a list of Tensors.
)");
Py_RETURN_TRUE;
}
#undef PROCESS_GROUP_DEPRECATION_WARNING
} // namespace
// c10d methods on torch._C
static PyMethodDef methods[] = { // NOLINT
{"_c10d_init", c10d_init, METH_NOARGS, nullptr},
{nullptr, nullptr, 0, nullptr}};
PyMethodDef* python_functions() {
return methods;
}
} // namespace c10d
} // namespace distributed
} // namespace torch
|