1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
#include <torch/csrc/distributed/c10d/quantization/quantization.h>
#include <torch/csrc/distributed/c10d/quantization/quantization_utils.h>
#include <torch/library.h>
namespace torch {
namespace distributed {
namespace c10d {
namespace quantization {
// TODO: The kernels are copied from fbgemm_gpu, we should dedup them later
void FloatToBFloat16Quantized_ref(
const float* const input,
const size_t nrows,
const size_t ncols,
uint16_t* const output) {
for (const auto row : c10::irange(nrows)) {
const float* input_row = input + row * ncols;
uint16_t* output_row = output + row * ncols;
for (const auto col : c10::irange(ncols)) {
output_row[col] =
(*reinterpret_cast<const uint32_t*>(input_row + col) + (1 << 15)) >>
16;
}
}
}
void BFloat16QuantizedToFloat_ref(
const at::BFloat16* const input,
const size_t nrows,
const size_t ncols,
float* const output) {
const int32_t output_columns = ncols;
for (const auto row : c10::irange(nrows)) {
const at::BFloat16* input_row = input + row * ncols;
float* output_row = output + row * output_columns;
for (const auto col : c10::irange(ncols)) {
uint32_t val_fp32 = static_cast<uint32_t>(
reinterpret_cast<const uint16_t*>(input_row)[col])
<< 16;
reinterpret_cast<uint32_t*>(output_row)[col] = val_fp32;
}
}
}
at::Tensor _float_to_bfloat16_cpu(const at::Tensor& input) {
TENSOR_ON_CPU(input);
// Currently it supports 2D inputs
TENSOR_NDIM_EQUALS(input, 2);
const auto input_sizes = input.sizes();
const int32_t nrows = input_sizes[0];
const int32_t ncols = input_sizes[1];
const int32_t output_columns = ncols;
auto output =
at::empty({nrows, output_columns}, input.options().dtype(at::kHalf));
FloatToBFloat16Quantized_ref(
input.data_ptr<float>(),
nrows,
ncols,
reinterpret_cast<uint16_t*>(output.data_ptr<at::Half>()));
return output;
}
at::Tensor _bfloat16_to_float_cpu(const at::Tensor& input) {
TENSOR_ON_CPU(input);
// Currently it supports 2D inputs
TENSOR_NDIM_EQUALS(input, 2);
const auto input_sizes = input.sizes();
const int32_t nrows = input_sizes[0];
const int32_t ncols = input_sizes[1];
const int32_t output_columns = ncols;
auto output = at::empty(
{nrows, output_columns}, // 4 = sizeof(float)
input.options().dtype(at::kFloat)); //
BFloat16QuantizedToFloat_ref(
reinterpret_cast<at::BFloat16*>(input.data_ptr<at::Half>()),
nrows,
ncols,
output.data_ptr<float>());
return output;
}
TORCH_LIBRARY(quantization, m) {
m.def("_Bfloat16QuantizedToFloat(Tensor input) -> Tensor");
m.def("_FloatToBfloat16Quantized(Tensor input) -> Tensor");
}
TORCH_LIBRARY_IMPL(quantization, CPU, m) {
m.impl("_Bfloat16QuantizedToFloat", _bfloat16_to_float_cpu);
m.impl("_FloatToBfloat16Quantized", _float_to_bfloat16_cpu);
}
} // namespace quantization
} // namespace c10d
} // namespace distributed
} // namespace torch
|