File: quantization_gpu.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (159 lines) | stat: -rw-r--r-- 5,166 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#include <c10/cuda/CUDAGuard.h>
#include <torch/csrc/distributed/c10d/Utils.hpp>
#include <torch/csrc/distributed/c10d/quantization/quantization_gpu.h>
#include <torch/csrc/distributed/c10d/quantization/quantization_utils.h>
#include <torch/library.h>

// TODO: The kernels are copied from fbgemm_gpu, we should dedup them later

// FP32 -> BF16 kernel
__global__ void _float_to_bfloat16_cuda_kernel(
    const float* __restrict__ input,
    const int nrows,
    const int ncols,
    uint16_t* __restrict__ output) {
  const int row_incre = blockDim.y * gridDim.y;
  const int col_incre = blockDim.x * gridDim.x;
  for (int row = blockIdx.y * blockDim.y + threadIdx.y; row < nrows;
       row += row_incre) {
    const float* input_row = input + row * ncols;
    uint16_t* output_row = output + row * ncols;
    for (int col = blockIdx.x * blockDim.x + threadIdx.x; col < ncols;
         col += col_incre) {
      // Add 2^15 and right shift 16 to do round-nearest
      output_row[col] =
          (*reinterpret_cast<const uint32_t*>(input_row + col) + (1 << 15)) >>
          16;
    }
  }
}

// BF16 -> FP32 kernel
__global__ void _bfloat16_to_float_cuda_kernel(
    const uint16_t* __restrict__ input,
    const int nrows,
    const int ncols,
    float* __restrict__ output) {
  const int row_incre = blockDim.y * gridDim.y;
  const int col_incre = blockDim.x * gridDim.x;
  for (int row = blockIdx.y * blockDim.y + threadIdx.y; row < nrows;
       row += row_incre) {
    for (int col = blockIdx.x * blockDim.x + threadIdx.x; col < ncols;
         col += col_incre) {
      const uint16_t* input_row = input + row * ncols;
      float* output_row = output + row * ncols;
      uint32_t val_fp32 = static_cast<uint32_t>(
                              reinterpret_cast<const uint16_t*>(input_row)[col])
          << 16;
      reinterpret_cast<uint32_t*>(output_row)[col] = val_fp32;
    }
  }
}

namespace torch {
namespace distributed {
namespace c10d {
namespace quantization {

at::Tensor _float_to_bfloat16_cuda(const at::Tensor& input) {
  TENSOR_ON_CUDA_GPU(input);
  // Currently it supports 2D inputs
  TENSOR_NDIM_EQUALS(input, 2);

  at::cuda::OptionalCUDAGuard device_guard;
  device_guard.set_index(input.get_device());

  const int nrows = input.size(0);
  const int ncols = input.size(1);
  const int output_columns = ncols;

  auto output = at::empty(
      {nrows, output_columns},
      input.options().dtype(at::kHalf)); // at::kHalf

  if (nrows == 0 || output_columns == 0) {
    return output;
  }

  // TODO: replace Half by BFloat16, after BFloat16 is supported by Nvidia
  // NCCL input.options().dtype(at::kBFloat16)); // at::kBFloat16

  constexpr int threads_per_block = 256;
  const int blockDim_x = std::min(output_columns, threads_per_block);
  dim3 blockDim(blockDim_x, threads_per_block / blockDim_x);
  const int gridDim_x = (output_columns + blockDim.x - 1) / blockDim.x;
  const int gridDim_y = std::min((nrows + blockDim.y - 1) / blockDim.y, 65535u);
  dim3 gridDim(gridDim_x, gridDim_y);

  _float_to_bfloat16_cuda_kernel<<<
      gridDim,
      blockDim,
      0,
      at::cuda::getCurrentCUDAStream()>>>(
      input.data_ptr<float>(),
      nrows,
      ncols,
      // TODO: replace Half by BFloat16, after BFloat16 is supported by Nvidia
      // NCCL
      reinterpret_cast<uint16_t*>(output.data_ptr<at::Half>()));
  //C10_CUDA_KERNEL_LAUNCH_CHECK();

  return output;
}

at::Tensor _bfloat16_to_float_cuda(const at::Tensor& input) {
  TENSOR_ON_CUDA_GPU(input);
  // Currently it supports 2D inputs
  TENSOR_NDIM_EQUALS(input, 2);

  at::cuda::OptionalCUDAGuard device_guard;
  device_guard.set_index(input.get_device());

  const int nrows = input.size(0);
  const int ncols = input.size(1);
  const int output_columns = ncols;

  auto output = at::empty(
      {nrows, output_columns}, // 4 = sizeof(float)
      input.options().dtype(at::kFloat)); // at::kBytes for uint8_t

  if (nrows == 0 || output_columns == 0) {
    return output;
  }

  constexpr int threads_per_block = 256;

  const int blockDim_x = std::min(output_columns, threads_per_block);
  dim3 blockDim(blockDim_x, threads_per_block / blockDim_x);
  const int gridDim_x = (output_columns + blockDim.x - 1) / blockDim.x;
  const int gridDim_y = std::min((nrows + blockDim.y - 1) / blockDim.y, 65535u);
  dim3 gridDim(gridDim_x, gridDim_y);

  _bfloat16_to_float_cuda_kernel<<<
      gridDim,
      blockDim,
      0,
      at::cuda::getCurrentCUDAStream()>>>(
      // TODO: replace Half by BFloat16, after BFloat16 is supported by Nvidia
      // NCCL
      reinterpret_cast<uint16_t*>(input.data_ptr<at::Half>()),
      nrows,
      ncols,
      output.data_ptr<float>());
  C10_CUDA_KERNEL_LAUNCH_CHECK();

  return output;
}

#define DISPATCH_TO_CUDA(name, function) \
    m.impl(name, torch::dispatch(c10::DispatchKey::CUDA, TORCH_FN(function)))

TORCH_LIBRARY_IMPL(quantization, CUDA, m) {
    DISPATCH_TO_CUDA("_Bfloat16QuantizedToFloat", _bfloat16_to_float_cuda);
    DISPATCH_TO_CUDA("_FloatToBfloat16Quantized", _float_to_bfloat16_cuda);
}

} // namespace quantization
} // namespace c10d
} // namespace distributed
} // namespace torch