1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
|
#include <torch/csrc/distributed/c10d/reducer.hpp>
#include <torch/csrc/distributed/c10d/Utils.hpp>
#include <torch/csrc/distributed/c10d/default_comm_hooks.hpp>
#include <functional>
#include <c10/core/DeviceGuard.h>
#include <c10/core/StreamGuard.h>
#include <c10/util/Exception.h>
#include <c10/util/Logging.h>
#include <c10/util/hash.h>
#include <c10/util/irange.h>
#include <torch/csrc/autograd/engine.h>
#include <torch/csrc/autograd/function_hook.h>
#include <torch/csrc/autograd/functions/accumulate_grad.h>
#include <torch/csrc/autograd/profiler.h>
#include <torch/csrc/autograd/utils/grad_layout_contract.h>
#include <torch/csrc/autograd/utils/lambda_post_hook.h>
#include <torch/csrc/distributed/c10d/Ops.hpp>
#include <torch/csrc/distributed/c10d/comm.hpp>
#include <torch/csrc/distributed/c10d/logger.hpp>
#include <torch/csrc/utils/memory.h>
namespace c10d {
namespace {
constexpr int kUnsetDivFactor = -1;
// Macro that wraps TORCH_CHECK with DDP logging.
#define REDUCER_CHECK(cond, logger_, ...) \
if (C10_UNLIKELY_OR_CONST(!(cond))) { \
if (!logger_.expired()) { \
logger_.lock()->set_error_and_log(__VA_ARGS__); \
} \
TORCH_CHECK(false, ##__VA_ARGS__); \
}
} // namespace
C10_DEFINE_TYPED_REGISTRY( // NOLINT
TimerRegistry,
c10::DeviceType,
Timer,
std::unique_ptr,
c10::Device);
namespace {
class CpuTimer : public Timer {
public:
explicit CpuTimer(c10::Device /* unused */) {}
c10::optional<int64_t> measureDifference(Event start, Event end) override {
int64_t start_time = getTimeRef(start);
int64_t end_time = getTimeRef(end);
// If cpu_end_time is not recorded in this iteration,
// avg_time will return invalid value.
// For some cases like DDP runs on non-sync mode, backward compute
// end time can not be recorded in this iteration and thus can not
// calculate the valid avg_time.
// In this case, skip calculating the avg_time and return.
if (end_time < start_time) {
return c10::nullopt;
}
return end_time - start_time;
}
};
C10_REGISTER_TYPED_CLASS(TimerRegistry, c10::kCPU, CpuTimer);
std::vector<at::Tensor> extractTensors(const c10::IValue& result) {
if (result.isPyObject()) {
return result.toPyObjectHolder()->extractTensors();
}
TORCH_INTERNAL_ASSERT(
result.isTensor() || result.isTensorList(),
"expected the hook result is either a Tensor or a TensorList found ",
result.tagKind());
if (result.isTensor()) {
return {result.toTensor()};
}
return result.toTensorVector();
}
} // namespace
Reducer::Reducer(
std::vector<at::Tensor> params,
std::vector<std::vector<size_t>> bucket_indices,
std::vector<size_t> per_bucket_size_limits,
c10::intrusive_ptr<c10d::ProcessGroup> process_group,
std::vector<bool> expect_sparse_gradients,
int64_t bucket_bytes_cap,
bool find_unused_parameters,
bool gradient_as_bucket_view,
std::unordered_map<size_t, std::string> param_names,
int64_t first_bucket_bytes_cap)
: params_(std::move(params)),
process_group_(std::move(process_group)),
expect_sparse_gradients_(std::move(expect_sparse_gradients)),
expect_autograd_hooks_(false),
require_finalize_(false),
next_bucket_(0),
has_marked_unused_parameters_(false),
find_unused_parameters_(find_unused_parameters),
gradient_as_bucket_view_(gradient_as_bucket_view),
local_used_map_reduced_(false),
num_iterations_(0),
num_buckets_ready_(0),
has_rebuilt_bucket_(false),
bucket_bytes_cap_(bucket_bytes_cap),
div_factor_(kUnsetDivFactor),
static_graph_(false),
comm_hook_(nullptr),
ddp_debug_level_(debug_level()),
param_names_(std::move(param_names)),
first_bucket_bytes_cap_(first_bucket_bytes_cap) {
C10_LOG_API_USAGE_ONCE("torch.distributed.ddp.reducer");
TORCH_INTERNAL_ASSERT(
params_.size() >= 1, "Expected at least one parameter.");
if (ddp_debug_level_ != c10d::DebugLevel::Off) {
LOG(INFO) << "Reducer initialized with bucket_bytes_cap: "
<< bucket_bytes_cap_
<< " first_bucket_bytes_cap: " << first_bucket_bytes_cap;
}
// Check whether the module is multi_device_module
{
std::set<int> unique_devices;
for (const auto& v : params_) {
auto device_idx = int(v.device().index());
if (unique_devices.find(device_idx) == unique_devices.end()) {
unique_devices.insert(device_idx);
if (unique_devices.size() > 1) {
is_multi_device_module_ = true;
break;
}
}
}
}
// For CUDA, record events only for single device module.
c10::Device device = params_[0].device();
if (!(device.is_cuda() && is_multi_device_module_)) {
timer_ = TimerRegistry()->Create(device.type(), device);
}
// If `expect_sparse_gradients` is not specified, initialize it such that
// we do not expect sparse gradients for any parameter.
if (expect_sparse_gradients_.empty()) {
expect_sparse_gradients_ = std::vector<bool>(params_.size(), false);
}
TORCH_INTERNAL_ASSERT(expect_sparse_gradients_.size() == params_.size());
// Initialize variable bucketing.
// This can be reinitialized later after capturing runtime information.
{
std::lock_guard<std::mutex> lock(mutex_);
initialize_buckets(std::move(bucket_indices));
}
// All variables are expected to have their `grad_fn` set to the gradient
// accumulation function (since they are leafs in the autograd graph).
// We store pointers to these functions such that we can check if they are
// used in an autograd pass. If they are not, we know their grad tensors
// can be marked as ready for reduction.
{
const auto variable_count = params_.size();
grad_accumulators_.resize(variable_count);
for (const auto variable_index : c10::irange(variable_count)) {
auto& variable = params_[variable_index];
// The gradient accumulator function is lazily initialized once.
// Therefore we can use its presence in the autograd graph as
// evidence that the parameter has participated in an iteration.
auto grad_accumulator = torch::autograd::impl::grad_accumulator(variable);
#ifndef _WIN32
using torch::distributed::autograd::ThreadLocalDistAutogradContext;
#endif
// Hook to execute after the gradient accumulator has executed.
hooks_.emplace_back(
grad_accumulator->add_post_hook(
torch::make_unique<torch::autograd::utils::LambdaPostHook>(
[=](const torch::autograd::variable_list& outputs,
const torch::autograd::variable_list& /* unused */) {
#ifndef _WIN32
this->rpc_context_.set(
ThreadLocalDistAutogradContext::getContextPtr());
#endif
this->autograd_hook(variable_index);
return outputs;
})),
grad_accumulator);
// Map raw function pointer to parameter index.
// This is used later on when the autograd graph is traversed
// to check for parameters for which no gradient is computed, if
// find_unused_parameters=True.
// Note that the mapping of gradient accumulator to variable should be
// one to one as we deduplicate shared parameters before constructing
// Reducer.
if (find_unused_parameters_) {
gradAccToVariableMap_[grad_accumulator.get()] = variable_index;
}
numGradHooksTriggeredMap_[variable_index] = 0;
// The gradient accumulator is stored as weak_ptr in the autograd
// metadata of the variable, so we have to keep it alive here for
// the raw pointer to be valid.
REDUCER_CHECK(
grad_accumulators_[variable_index] == nullptr,
logger_,
c10::str(
"Reducer tried to register duplicate grad accumulator for variable ",
variable_index));
grad_accumulators_[variable_index] = std::move(grad_accumulator);
}
}
// Initialize backward stats vector.
{
const auto variable_count = params_.size();
backward_stats_.resize(variable_count);
}
// See Note [Skip allreducing local_used_map_dev]
if (find_unused_parameters_) {
initialize_local_used_map();
}
}
// Note [Skip allreducing local_used_map_dev]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// If find_unused_parameters_ is set to false, there is no need to allreduce
// local_used_map_dev_, because all parameters will be reduced anyway.
// Therefore, we can avoid allocating memory for local_used_map and
// local_used_map_dev_ if find_unused_parameters_ is false.
// Note [DDP Communication Hook]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// If DDP communication hook is not registered, the reducer reduces the buckets
// by just calling allreduce. If registered, it calls the hook and uses future
// work handle. If registered, reducer also skips dividing grads by world size.
// The reason for this is that the communication hook is expected to completely
// override how we perform communication and the user should have complete
// control over how the grads are handled.
//
// DDP communication hook is an enhancement that provides a hook which can be
// used to override how DDP communicates gradients across ranks, this can be
// used for algorithms like Gradient Compression/GossipGrad. This hook can be
// registered from Python API using `register_comm_hook`. `PythonCommHook`
// enables registering a Python hook and is a subclass of `CommHookInterface`.
// Additionally, there are also some built-in C++ hook implementations that can
// be specified by calling `register_builtin_comm_hook` from Python API.
Reducer::~Reducer() noexcept(false) {
// Remove all hooks on variables registered by this Reducer. This is necessary
// to make DDP failure recoverable. Otherwise, multiple Reducer instances
// (from recoveries) will add their hooks to the original model, and those
// hooks will try to invoke methods on a deleted Reducer objects.
for (auto& hook : hooks_) {
auto& key = hook.first;
auto& grad_accumulator = hook.second;
TORCH_INTERNAL_ASSERT(
grad_accumulator->del_post_hook(key),
"Reducer attempts to delete a non-existing hook.");
}
}
bool Reducer::dynamic_graph_find_unused() {
return !static_graph_ && find_unused_parameters_;
}
bool Reducer::static_graph_first_iteration() {
return static_graph_ && num_iterations_ == 1;
}
bool Reducer::static_graph_after_first_iteration() {
return static_graph_ && num_iterations_ > 1;
}
bool Reducer::ddp_graph_static() {
std::lock_guard<std::mutex> lock(mutex_);
return ddp_graph_static_;
}
void Reducer::initialize_local_used_map() {
const auto variable_count = params_.size();
at::TensorOptions options;
options = options.dtype(at::kInt);
// Deliberately don't pin the memory even if local_used_map_dev_ will
// be cuda. See Note [local_used_map_ -> local_used_map_dev copying]
local_used_map_ = at::zeros({static_cast<long>(variable_count)}, options);
// This tensor needs to be on the same device as the replica params because
// backend such as NCCL may not support CPU tensors, and hence it might not
// work if we always put it on CPU.
options = options.device(params_[0].device());
local_used_map_dev_ = at::empty({static_cast<long>(variable_count)}, options);
}
void Reducer::check_grad_layout(
const at::Tensor& grad,
const at::Tensor& bucket_view) {
// Ensure that the gradient type matches the bucket type.
REDUCER_CHECK(
grad.options().type_equal(bucket_view.options()),
logger_,
c10::str("Expected ", bucket_view.toString(), ", got ", grad.toString()));
TORCH_INTERNAL_ASSERT(grad.device() == bucket_view.device());
TORCH_INTERNAL_ASSERT(grad.numel() == bucket_view.numel());
// AccumulateGrad doesn't HAVE to obey the grad layout contract.
// The penalty for disobedience is reduced performance, not numerical
// death. Warnings here help diagnose poor DDP performance.
if (grad.strides() != bucket_view.strides()) {
TORCH_WARN_ONCE(
"Grad strides do not match bucket view strides. "
"This may indicate grad was not created according to the "
"gradient layout contract, or that the param's strides "
"changed since DDP was constructed. This is not an error, "
"but may impair performance.\n"
"grad.sizes() = ",
grad.sizes(),
", strides() = ",
grad.strides(),
"\n",
"bucket_view.sizes() = ",
bucket_view.sizes(),
", strides() = ",
bucket_view.strides());
}
if (!gradient_as_bucket_view_) {
TORCH_INTERNAL_ASSERT(!grad.is_alias_of(bucket_view));
}
}
void Reducer::mark_variable_ready_dense(size_t variable_index) {
const auto& bucket_index = variable_locators_[variable_index];
auto& bucket = buckets_[bucket_index.bucket_index];
auto& variable = bucket.variables[bucket_index.intra_bucket_index];
auto& bucket_view = bucket.bucket_views_in[bucket_index.intra_bucket_index];
// Copy the contents of the gradient tensor to the corresponding part of the
// bucket's flattened gradient tensor.
// If the gradient is not set, we assume it wasn't computed as part of the
// current backwards pass, and we zero the part of the bucket it would
// otherwise hold.
runGradCallbackForVariable(variable, [&](auto& grad) {
if (grad.defined()) {
this->check_grad_layout(grad, bucket_view);
// When gradient_as_bucket_view_ is false, or even when
// gradient_as_bucket_view_ is true, in rare cases users may set grad to
// be None after every iteration. In these cases, grad and bucket_view are
// pointing to different storages and thus need to copy grads to
// bucket_view. If gradient_as_bucket_view_ is set as true, let grad point
// to bucket_view. If grad has already been set as views of buckets in
// previous iterations, no copy is needed.
if (!grad.is_alias_of(bucket_view)) {
if (comm_hook_ == nullptr) {
auto wrapped =
at::native::wrapped_scalar_tensor(double(1.) / div_factor_);
if (!grad.requires_grad()) {
// Divides while copying into the bucket view to save one scan over
// all the input parameters.
at::mul_out(bucket_view, grad, wrapped);
} else {
// If DDP is running with create_graph=True, gradients require_grad
// themselves in order to compute higher order derivatives. However,
// DDP will not sync up these gradients currently (see
// https://github.com/pytorch/pytorch/issues/63812).
C10_LOG_EVERY_N(WARNING, 1000)
<< "Using DistributedDataParallel with create_graph=True "
<< " is not well-supported. The higher-order gradient will "
<< " not be synchronized across ranks, and backpropagation "
<< " through all_reduce operations will not occur. If you require "
<< " DDP to work with higher-order gradients for your use case, "
<< " please ping https://github.com/pytorch/pytorch/issues/63929";
auto div_result = at::mul(grad, wrapped);
bucket_view.copy_(div_result);
}
} else {
bucket_view.copy_(grad);
}
if (gradient_as_bucket_view_) {
// Let grad point to bucket_view buffer.
grad = bucket_view;
// The grad is modified and need to be written back.
return true;
}
} else {
// If grad and bucket view point to the same storage, no need to copy.
if (comm_hook_ == nullptr) {
bucket_view.div_(div_factor_);
}
}
} else {
// Gradient is undefined. When find_unused_parameters=True, ensure it is
// not marked as locally used, otherwise we will be allreducing zero's
// instead of not touching .grad field of parameter.
if (this->dynamic_graph_find_unused() ||
this->static_graph_first_iteration()) {
REDUCER_CHECK(
local_used_map_[variable_index].item<int>() == 0,
logger_,
"Encountered gradient which is undefined, but still allreduced by "
"DDP reducer. This indicates a bug in DDP implementation, please "
"report a bug with a repro to PyTorch.");
}
bucket_view.zero_();
}
// The grad is not modified and doesn't need to be written back.
return false;
});
}
void Reducer::mark_variable_ready_sparse(size_t variable_index) {
const auto& bucket_index = variable_locators_[variable_index];
auto& bucket = buckets_[bucket_index.bucket_index];
auto& variable = bucket.variables[bucket_index.intra_bucket_index];
runGradCallbackForVariable(variable, [&](auto& grad) {
REDUCER_CHECK(
grad.defined(), logger_, "Expected sparse gradient to be defined.");
REDUCER_CHECK(
grad.options().layout() == c10::kSparse,
logger_,
"Expected variable to have sparse gradient.");
// Sparse tensors cannot be grouped together with other sparse tensors in a
// single reduction operation like we can for dense tensors. Therefore, the
// `offsets` and `lengths` vectors in the bucket struct are empty, and
// there is no pre-existing accumulation tensor.
// Directly assign the sparse tensor to the `gradients` field.
bucket.gradients = grad;
// If no DDP comm hook is registered, the allreduce only sums up the
// value, and a separate division is required.
if (comm_hook_ == nullptr) {
bucket.gradients.div_(div_factor_);
}
// The grad is modified in place and needs to be written back.
return true;
});
}
std::vector<c10d::GradBucket> Reducer::get_grad_buckets(
bool return_zero_tensors) const {
std::lock_guard<std::mutex> lock(mutex_);
std::vector<c10d::GradBucket> gradBuckets;
gradBuckets.reserve(buckets_.size());
for (const auto i : c10::irange(buckets_.size())) {
auto& bucket = buckets_[i];
auto variables_for_bucket = get_variables_for_bucket(i, bucket);
gradBuckets.emplace_back(
i,
buckets_.size(),
return_zero_tensors ? at::zeros_like(bucket.gradients)
: bucket.gradients,
bucket.offsets,
bucket.lengths,
bucket.sizes_vec,
variables_for_bucket);
}
return gradBuckets;
}
void Reducer::set_forward_pass_work_handle(
c10::intrusive_ptr<c10d::Work> forwardPassWorkHandle,
bool useStaticWorldSize) {
std::lock_guard<std::mutex> lock(mutex_);
forwardPassWorkHandle_.workHandle = std::move(forwardPassWorkHandle);
forwardPassWorkHandle_.useStaticWorldSize = useStaticWorldSize;
}
at::Tensor Reducer::get_local_used_map_on_device() const {
std::lock_guard<std::mutex> lock(mutex_);
return local_used_map_dev_;
}
void Reducer::push_rebuilt_params_for_all_indices() {
std::lock_guard<std::mutex> lock(mutex_);
if (!should_rebuild_buckets() || !rebuilt_param_indices_.empty()) {
return;
}
const auto variable_count = params_.size();
for (const auto variable_index : c10::irange(variable_count)) {
push_rebuilt_params(variable_index);
}
}
void Reducer::push_rebuilt_params(const size_t& index) {
rebuilt_params_.push_back(params_[index]);
rebuilt_param_indices_.push_back(index);
}
void Reducer::set_divide_factor() {
// If it was scheduled, wait on allreduce in forward pass that tells us
// division factor based on no. of currently participating processes.
if (div_factor_ == kUnsetDivFactor) {
div_factor_ = process_group_->getSize();
auto& workHandle = forwardPassWorkHandle_.workHandle;
if (workHandle && !forwardPassWorkHandle_.useStaticWorldSize) {
workHandle->wait();
// PyProcessGroup::PyWork doesn't expose value, so fetch it from the
// future
auto results = extractTensors(workHandle->getFuture()->value());
// Guard against the results being empty
TORCH_INTERNAL_ASSERT(results.size() > 0);
at::Tensor& res = results.front();
div_factor_ = res.item().to<int>();
}
}
}
// Right now delay_all_reduce is only called when static_graph_=true and
// num_iterations_==1.
void Reducer::delay_all_reduce() {
std::lock_guard<std::mutex> lock(this->mutex_);
if (should_collect_runtime_stats()) {
record_backward_compute_end_time();
record_backward_comm_start_time();
}
// launch all reduce local used map
all_reduce_local_used_map();
// prepare to set unused_parameters_, if it is static graph,
// unused_parameters_ will not change after 1st iteration.
unused_parameters_.clear();
// copy all gradients to buckets
for (const auto variable_index : c10::irange(params_.size())) {
// set unused_parameters_
if (numGradHooksTriggeredMap_[variable_index] == 0) {
unused_parameters_.push_back(variable_index);
}
require_finalize_ = true;
set_divide_factor();
if (expect_sparse_gradients_[variable_index]) {
mark_variable_ready_sparse(variable_index);
} else {
mark_variable_ready_dense(variable_index);
}
}
// To avoid confusion around why static graph is picking up
// some parameters as unused on a rank vs not, we log
// unused parameter names for each rank for better
// debugability when TORCH_DISTRIBUTED_DEBUG is set to
// INFO or DETAIL
if (ddp_debug_level_ != c10d::DebugLevel::Off) {
// construct one string to output
std::ostringstream unused_params_stream;
for (const auto& unused_index : unused_parameters_) {
auto param_name = param_names_.find(unused_index);
TORCH_INTERNAL_ASSERT(
param_name != param_names_.end(),
"Expected to find parameter name from unused parameters map in debug mode.");
// Add the param_name
unused_params_stream << "{" << param_name->second << "," << unused_index
<< "}";
}
// Each rank prints out all the unused parameters detected
if (unused_parameters_.size() > 0) {
LOG(INFO) << "[Rank " << process_group_->getRank() << "]: "
<< "Parameter(s) (in the format of {param_name, index}): "
<< unused_params_stream.str()
<< " is(are) unused during first iteration. Since"
<< " static_graph=True is enabled for DDP, we expect"
<< " this set of unused parameters to remain consistent"
<< " on this rank throughout the training.";
}
}
// launch all reduces for all buckets
for (auto& bucket : buckets_) {
all_reduce_bucket(bucket);
}
finalize_backward();
}
void Reducer::set_logger(std::weak_ptr<c10d::Logger> logger) {
logger_ = logger;
}
// The function `autograd_hook` is called after the gradient for a
// model parameter has been accumulated into its gradient tensor.
// This function is only to be called from the autograd thread.
void Reducer::autograd_hook(size_t index) {
std::lock_guard<std::mutex> lock(this->mutex_);
// Ignore if we don't expect to be called.
// This may be the case if the user wants to accumulate gradients
// for number of iterations before reducing them.
if (!expect_autograd_hooks_) {
return;
}
grad_ready_order_indices_.push_back(index);
// See Note [Skip allreducing local_used_map_dev]
if (dynamic_graph_find_unused() || static_graph_first_iteration()) {
// Since it gets here, this param has been used for this iteration. We want
// to mark it in local_used_map_. During no_sync session, the same var can
// be set multiple times, which is OK as does not affect correctness. As
// long as it is used once during no_sync session, it is marked as used.
// Only set it as locally used if the grad is defined. Otherwise, hooks can
// be fired with undefined grads, such as when not all outputs are used in
// DDP when computing loss. In this case, we don't want to mark it as
// locally used to ensure we don't touch the parameter's .grad field.
auto& variable = get_param_from_index(index);
runGradCallbackForVariable(variable, [&](auto& grad) {
if (grad.defined()) {
local_used_map_[index] = 1;
}
// The gradient is never modified.
return false;
});
}
if (static_graph_first_iteration()) {
numGradHooksTriggeredMap_[index] += 1;
return;
}
// If `find_unused_parameters_` is true there may be model parameters that
// went unused when computing the model output, they won't be part of the
// autograd graph, and won't receive gradients. These parameters are
// discovered in the `prepare_for_backward` function and their indexes stored
// in the `unused_parameters_` vector.
if (!has_marked_unused_parameters_) {
has_marked_unused_parameters_ = true;
for (const auto& unused_index : unused_parameters_) {
mark_variable_ready(unused_index);
}
}
// Rebuild bucket only if 1) it is the first time to rebuild bucket 2)
// static_graph_ is true or find_unused_parameters_ is false,
// 3) this backward pass needs to run allreduce.
// Here, we just dump tensors and their parameter indices into
// rebuilt_params_ and rebuilt_param_indices_ based on gradient arriving
// order, and then at the end of finalize_backward(), buckets will be
// rebuilt based on rebuilt_params_ and rebuilt_param_indices_, and then
// will be broadcasted and initialized.
// If it is static graph, after 1st iteration, check if a variable
// is ready for communication based on numGradHooksTriggeredMap_.
if (static_graph_after_first_iteration()) {
REDUCER_CHECK(
numGradHooksTriggeredMapPerIteration_[index] > 0,
logger_,
"Your training graph has changed in this iteration, ",
"e.g., one parameter is unused in first iteration, but ",
"then got used in the second iteration. this is not ",
"compatible with static_graph set to True.");
if (--numGradHooksTriggeredMapPerIteration_[index] == 0) {
if (should_rebuild_buckets()) {
push_rebuilt_params(index);
}
// Finally mark variable for which this function was originally called.
mark_variable_ready(index);
}
} else {
if (should_rebuild_buckets()) {
push_rebuilt_params(index);
}
// Finally mark variable for which this function was originally called.
mark_variable_ready(index);
}
}
void Reducer::all_reduce_local_used_map() {
// See Note [Skip allreducing local_used_map_dev]
// H2D from local_used_map_ to local_used_map_dev_
if (local_used_map_dev_.is_cuda()) {
// Note [local_used_map_ -> local_used_map_dev copying]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// We do async H2D to avoid the blocking overhead. The async copy and
// allreduce respect the current stream, so will be sequenced
// correctly.
//
// Correct sequencing with respect to host operations is also
// essential. The H2D copy_ is stream ordered, while the host's
// changes to local_used_map_ are host ordered. If a large backlog of
// cuda-stream work pushes the copy_ far into the future, and if no
// blocking calls occur between now and finalize_backward()** such
// that finalize_backward() re-zeroes local_used_map_ on the host
// before the stream executes the copy_, copy_ will read those zeros
// instead of the values we thought we told it to read here. Copying
// local_used_map_ to a pinned temporary (which the pinned caching
// allocator should supply asynchronously) avoids this nasty, rare
// race condition.
//
// ** In the hoped-for case where all params are used, DDP itself
// won't do any blocking work between now and the re-zeroing, so the
// danger is real.
//
// Defensively ensures local_used_map_tmp is distinct from
// local_used_map_
auto local_used_map_tmp = at::native::empty_like(
local_used_map_,
optTypeMetaToScalarType(local_used_map_.options().dtype_opt()),
local_used_map_.options().layout_opt(),
local_used_map_.options().device_opt(),
true /* pinned_memory */);
// Paranoid asserts here because in some workloads, the pinned
// allocator behaves in a way we don't understand, and may be bugged.
// See https://github.com/pytorch/pytorch/pull/54474
TORCH_INTERNAL_ASSERT(local_used_map_tmp.is_pinned());
TORCH_INTERNAL_ASSERT(
local_used_map_tmp.data_ptr() != local_used_map_.data_ptr());
local_used_map_tmp.copy_(local_used_map_);
local_used_map_dev_.copy_(local_used_map_tmp, true);
} else {
local_used_map_dev_.copy_(local_used_map_, true);
}
std::vector<at::Tensor> temp_local_used_map_dev_vec_ = {local_used_map_dev_};
local_used_work_ =
ops::allreduce(process_group_, temp_local_used_map_dev_vec_);
}
at::Tensor& Reducer::get_param_from_index(size_t index) {
const auto& bucket_index = variable_locators_[index];
auto& bucket = buckets_[bucket_index.bucket_index];
// Cannot simply access variable via `bucket.variables[variable_index]` since
// return value is used in `runGradCallbackForVariable()` which does not
// accept const tensors.
auto& variable = bucket.variables[bucket_index.intra_bucket_index];
return variable;
}
void Reducer::checkAndRaiseMarkedTwiceError(size_t index) {
// Something is wrong if all variables contained in this bucket have
// already been marked as ready.
// We don't expect the same variable to be marked ready twice.
bool marked_twice =
perIterationReadyParams_.find(index) != perIterationReadyParams_.end();
if (marked_twice) {
// Report index of param that has been marked twice. In debug mode, also
// report fully qualified parameter name.
auto param_name = param_names_.find(index);
const bool found_param_name = param_name != param_names_.end();
TORCH_INTERNAL_ASSERT(
ddp_debug_level_ == c10d::DebugLevel::Off || found_param_name,
"Expected to find parameter name in debug mode.");
std::string paramInfo = c10::str(
"Parameter at index ",
index,
found_param_name ? c10::str(" with name ", param_name->second) : "",
" has been marked as ready twice. This means that multiple autograd engine ",
" hooks have fired for this particular parameter during this iteration.");
// param_names_ is empty in debug mode.
if (!found_param_name) {
paramInfo += c10::str(
" You can set the environment variable TORCH_DISTRIBUTED_DEBUG to either",
" INFO or DETAIL to print parameter names for further debugging.");
}
std::string common_error = c10::str(
"Expected to mark a variable ready only once. ",
"",
"This error is caused by one of the following reasons: ",
"1) Use of a module parameter outside the `forward` function. ",
"Please make sure model parameters are not shared across multiple ",
"concurrent forward-backward passes. or try to use _set_static_graph() ",
"as a workaround if this module graph does not change ",
"during training loop.",
"2) Reused parameters in multiple reentrant backward passes. For ",
"example, if you use multiple `checkpoint` functions to wrap the ",
"same part of your model, it would result in the same set of ",
"parameters been used by different reentrant backward passes ",
"multiple times, and hence marking a variable ready multiple times. ",
"DDP does not support such use cases in default. You can try to ",
"use _set_static_graph() as a workaround if your module graph ",
"does not change over iterations.");
common_error += c10::str("\n", paramInfo);
REDUCER_CHECK(
has_marked_unused_parameters_,
logger_,
common_error,
"3) Incorrect unused parameter detection. The return value of the ",
"`forward` function is inspected by the distributed data parallel ",
"wrapper to figure out if any of the module's parameters went ",
"unused. For unused parameters, DDP would not expect gradients from ",
"then. However, if an unused parameter becomes part of the autograd ",
"graph at a later point in time (e.g., in a reentrant backward when ",
"using `checkpoint`), the gradient will show up unexpectedly. If all ",
"parameters in the model participate in the backward pass, you can ",
"disable unused parameter detection by passing the keyword argument ",
"`find_unused_parameters=False` to ",
"`torch.nn.parallel.DistributedDataParallel`. If unused parameters ",
"in the model do not change over iterations, You can try to use ",
"_set_static_graph() as a workaround if this module graph does not ",
"change during training loop.");
REDUCER_CHECK(!has_marked_unused_parameters_, logger_, common_error);
}
}
void Reducer::mark_variable_ready(size_t variable_index) {
REDUCER_CHECK(
variable_index < variable_locators_.size(),
logger_,
"Out of range variable index.");
checkAndRaiseMarkedTwiceError(variable_index);
perIterationReadyParams_.insert(variable_index);
backward_stats_[variable_index] =
current_time_in_nanos() - backward_compute_start_time_;
// Any time we mark a variable ready (be it in line due to unused parameters,
// or via an autograd hook), we require a call to the finalize function. If
// this doesn't happen before the next iteration (or call to
// `prepare_for_backwards`), we know something is wrong.
require_finalize_ = true;
const auto& bucket_index = variable_locators_[variable_index];
auto& bucket = buckets_[bucket_index.bucket_index];
set_divide_factor();
if (bucket.expect_sparse_gradient) {
mark_variable_ready_sparse(variable_index);
} else {
mark_variable_ready_dense(variable_index);
}
// TODO(@pietern): Make this work for both CPU/CUDA tensors.
// When using CPU tensors we don't need to do this.
// Record event so that we can wait for all of them.
// auto& event = bucket.events[bucket_index.intra_bucket_index];
// event.record();
// Check if this was the final gradient for this bucket.
if (--bucket.pending == 0) {
mark_bucket_ready(bucket_index.bucket_index);
}
// Run finalizer function and kick off reduction for local_used_map once the
// final bucket was marked ready.
if (next_bucket_ == buckets_.size()) {
if (dynamic_graph_find_unused()) {
all_reduce_local_used_map();
}
torch::autograd::Engine::get_default_engine().queue_callback([=] {
std::lock_guard<std::mutex> lock(this->mutex_);
if (should_collect_runtime_stats()) {
record_backward_compute_end_time();
}
// Check that all buckets were completed and had their work kicked off.
TORCH_INTERNAL_ASSERT(next_bucket_ == buckets_.size());
if (static_graph_after_first_iteration() && should_rebuild_buckets()) {
for (const auto& unused_index : unused_parameters_) {
push_rebuilt_params(unused_index);
}
}
this->finalize_backward();
});
}
}
c10::intrusive_ptr<c10::ivalue::Future> Reducer::run_comm_hook(
GradBucket& grad_bucket) {
if (comm_hook_ == nullptr) {
_AllReduceBySumCommHook allreduce_hook(process_group_);
return allreduce_hook.runHook(grad_bucket);
} else {
return comm_hook_->runHook(grad_bucket);
}
}
void Reducer::all_reduce_bucket(Bucket& bucket) {
auto variables_for_bucket = get_variables_for_bucket(next_bucket_, bucket);
// TODO(@pietern): Ensure proper synchronization with the CUDA events
// that recorded copies into this `gradients` tensor. If these copies are
// executed on non-default streams, the current stream for the device
// that holds the `gradients` tensor must wait on these events.
//
// As long as autograd uses the default stream for every device,
// these operations are implicitly sequenced, and we don't need to
// do any extra synchronization here.
const auto& tensor = bucket.gradients;
GradBucket grad_bucket(
next_bucket_,
buckets_.size(),
tensor,
bucket.offsets,
bucket.lengths,
bucket.sizes_vec,
variables_for_bucket);
bucket.future_work = run_comm_hook(grad_bucket);
}
std::vector<at::Tensor> Reducer::get_variables_for_bucket(
size_t bucket_index,
const Bucket& bucket) const {
// Check if we have cached mapping previously.
if (has_rebuilt_bucket_ &&
cached_variables_for_bucket_.find(bucket_index) !=
cached_variables_for_bucket_.end()) {
return cached_variables_for_bucket_[bucket_index];
}
std::vector<at::Tensor> variables_for_bucket;
variables_for_bucket.reserve(bucket.variable_indices.size());
for (const auto& variable_index : bucket.variable_indices) {
// Grab bucket index where gradient is located using variable_locators_.
auto& bucket_index_for_variable = variable_locators_[variable_index];
// Grab the actual model parameter.
auto& variable =
bucket.variables[bucket_index_for_variable.intra_bucket_index];
variables_for_bucket.emplace_back(variable);
}
if (has_rebuilt_bucket_) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
cached_variables_for_bucket_.find(bucket_index) ==
cached_variables_for_bucket_.end());
cached_variables_for_bucket_.insert(
{bucket_index, std::move(variables_for_bucket)});
return cached_variables_for_bucket_[bucket_index];
} else {
return variables_for_bucket;
}
}
// Called when the bucket at the specified index is ready to be reduced.
void Reducer::mark_bucket_ready(size_t bucket_index) {
TORCH_INTERNAL_ASSERT(bucket_index >= next_bucket_);
// Buckets are reduced in sequence. Ignore this bucket if
// it's not its turn to be reduced.
if (bucket_index > next_bucket_) {
return;
}
// Keep going, until we either:
// - have kicked off reduction for all buckets, or
// - found a bucket that's not yet ready for reduction.
for (; next_bucket_ < buckets_.size() && buckets_[next_bucket_].pending == 0;
next_bucket_++) {
num_buckets_ready_++;
if (num_buckets_ready_ == 1 && should_collect_runtime_stats()) {
record_backward_comm_start_time();
}
auto& bucket = buckets_[next_bucket_];
all_reduce_bucket(bucket);
}
}
void Reducer::install_futures(
c10::List<c10::intrusive_ptr<c10::ivalue::Future>> futs) {
// Append instead of overwrite so that this method can be called multiple
// times in one iteration.
if (!installed_futures_) {
installed_futures_ = std::move(futs);
} else {
installed_futures_->append(futs);
}
}
void Reducer::initialize_buckets(
std::vector<std::vector<size_t>> bucket_indices) {
// If initialize_buckets is called inside DDP constructor, then
// it does not matter rpc context ptr is nullptr or not, as grad
// will not be mutated.
// If initialize_buckets is called during training loop, e.g, inside
// rebuild_buckets(), since grad could be mutated and be pointed to
// bucket_view, then it needs to check rpc context ptr is nullptr or not,
// If rpc context ptr is nullptr, mutate variable.grad(); otherwise,
// mutate grad in rpc context.
#ifndef _WIN32
using torch::distributed::autograd::ThreadLocalDistAutogradContext;
this->rpc_context_.set(ThreadLocalDistAutogradContext::getContextPtr());
#endif
// This shouldn't be called if we're expecting autograd hooks to fire.
REDUCER_CHECK(
!expect_autograd_hooks_,
logger_,
"`initialize_buckets` must NOT be called during autograd execution.");
// Clear current bucket assignment.
buckets_.clear();
variable_locators_.clear();
// Ensure we have a bucket index for every variable.
variable_locators_.resize(params_.size());
// Iterate over buckets.
const auto bucket_count = bucket_indices.size();
buckets_.reserve(bucket_count);
for (const auto bucket_index : c10::irange(bucket_count)) {
Bucket bucket;
// TODO(@pietern): Validate indices.
// Must be non-empty, unique, and unique across buckets.
REDUCER_CHECK(
bucket_indices[bucket_index].size() > 0,
logger_,
"Empty bucket specified.");
// Variables that expect sparse gradients must have their own bucket.
if (bucket_indices[bucket_index].size() == 1) {
const auto variable_index = bucket_indices[bucket_index].front();
bucket.expect_sparse_gradient = expect_sparse_gradients_[variable_index];
} else {
for (const auto variable_index : bucket_indices[bucket_index]) {
REDUCER_CHECK(
!expect_sparse_gradients_[variable_index],
logger_,
"Buckets with more than one variable cannot include variables ",
"that expect a sparse gradient.");
}
}
if (bucket.expect_sparse_gradient) {
const auto variable_index = bucket_indices[bucket_index].front();
const auto& variable = params_[variable_index];
TORCH_INTERNAL_ASSERT(bucket_indices[bucket_index].size() == 1);
bucket.variables = {variable};
} else {
at::TensorOptions options;
// The start index of the variable in the flattened tensor.
size_t offset = 0;
// Reserve enough space for the per-variable fields stored in the bucket
// for efficiency.
const size_t num_variables = bucket_indices[bucket_index].size();
bucket.variables.reserve(num_variables);
bucket.offsets.reserve(num_variables);
bucket.lengths.reserve(num_variables);
bucket.sizes_vec.reserve(num_variables);
// Iterate over bucket variables.
for (const auto variable_index : bucket_indices[bucket_index]) {
TORCH_INTERNAL_ASSERT(
variable_index < params_.size(),
"Out of range variable index specified.");
const auto& variable = params_[variable_index];
if (!options.has_device()) {
options = options.device(variable.device());
} else {
REDUCER_CHECK(
variable.device() == options.device(),
logger_,
"All parameters in a bucket must be ",
"placed on the same device.");
}
if (!options.has_dtype()) {
options = options.dtype(variable.dtype());
} else {
REDUCER_CHECK(
variable.dtype() == options.dtype(),
logger_,
"All parameters in a bucket must have the same dtype.");
}
const auto length = variable.numel();
bucket.variables.push_back(variable);
bucket.offsets.push_back(offset);
bucket.lengths.push_back(length);
bucket.sizes_vec.push_back(variable.sizes());
offset += length;
}
// Allocate the bucket's flattened `gradients` tensor.
bucket.gradients = at::empty({static_cast<long>(offset)}, options);
// Note: "Gradient Layout Contract"
//
// Here, create views into the `gradients` tensor for each variable's
// grad. Views serve as entry points to `copy_()` each grad's data in/out
// of the flattened `gradients` tensor.
//
// Gradients may have dense memory but non-row-major-contiguous strides
// (e.g. channels_last or channels_last_3d). For coalesced accesses
// during copy_s, it's beneficial for each view's layout to match its
// grad's layout.
//
// Specifically, we expect torch/csrc/autograd/functions/accumulate_grad.h
// produces grads that obey the "Gradient Layout Contract":
// (1) if variable.is_non_overlapping_and_dense(), the stashed grad's
// strides match variable.
// (2) else, stashed grad is rowmajor contiguous.
// and create views to match.
//
// If AccumulateGrad breaks the contract, and produces a grad with an
// unexpected layout, performance will degrade due to poor memory access
// patterns when copy_ing grad data in and out of its bucket view.
// However, numerics remain correct, because the bucket view is the same
// on either end of the raw allreduce. bucket_view_in.copy(grad)
// tranposes
// (+ densifies) to the bucket view's layout, the data is allreduced,
// then grad.copy_(bucket_view_out) transposes it back to grad's layout.
//
// The only way the numerics can go haywire is if the bucket views
// themselves have different layouts across processes.
// Bucket views' sizes and strides are set based on param layouts, using
// the same logic that (we expect) AccumulateGrad uses for their grads.
// Therefore, the only way a bucket view could have different layouts in
// different processes is if its param has a different layout in
// different processes. We can check that param layouts match across
// processes in Reducer's constructor by allreducing some metadata.
// Checking just once won't catch if someone messes with
// param layouts over time, but not messing with params after DDP
// construction is already a documented constraint.
initialize_bucket_views(bucket);
}
// Map participating variables to this bucket.
size_t intra_bucket_index = 0;
for (const auto variable_index : bucket_indices[bucket_index]) {
TORCH_INTERNAL_ASSERT(
variable_index < variable_locators_.size(),
"Out of range variable index specified.");
variable_locators_[variable_index] =
VariableLocator(bucket_index, intra_bucket_index++);
}
bucket.variable_indices = std::move(bucket_indices[bucket_index]);
buckets_.push_back(std::move(bucket));
}
}
// (see Note: "Gradient Layout Contract" in initialize_buckets).
void Reducer::initialize_bucket_views(Reducer::Bucket& bucket) {
const auto& gradients = bucket.gradients;
for (const auto i : c10::irange(bucket.variables.size())) {
auto& v = bucket.variables[i];
const auto offset = bucket.offsets[i];
const auto length = bucket.lengths[i];
if (v.is_non_overlapping_and_dense()) {
// If the param's memory is dense, match its layout, anticipating
// the autograd engine (AccumulateGrad) will also create gradients
// matching its layout.
bucket.bucket_views_in.push_back(
gradients.as_strided(v.sizes(), v.strides(), offset));
} else {
// Fall back to a C-style contiguous view, again anticipating
// AccumulateGrad will do the same when stashing grads for non-dense
// params.
bucket.bucket_views_in.push_back(
gradients.narrow(0, offset, length).view(v.sizes()));
}
// By default `bucket_views_out` and `bucket_views_in` are
// essentially the same thing.
bucket.bucket_views_out = bucket.bucket_views_in;
// If gradient_as_bucket_view_ is set as true, then there are two cases to
// handle: initialize_bucket_views could be called inside initialize_buckets
// when rebuild_buckets, if grad has already been defined/calculated in
// previous iteration, old grad needs to be copied into new bucket_view and
// let grad point to the new bucket_view, initialize_bucket_views could also
// be called inside initialize_buckets during construction. Grads are not
// defined during construction time, in this case, do not let grad point to
// bucket_view, because grads should be kept as being undefined for globally
// unused parameters.
if (gradient_as_bucket_view_) {
auto& bucket_view = bucket.bucket_views_in.back();
runGradCallbackForVariable(v, [&](auto& grad) {
if (grad.defined() && !grad.is_alias_of(bucket_view)) {
bucket_view.copy_(grad);
grad = bucket_view;
// The grad is modefied and needs to be written back.
return true;
}
// The grad is not modified and does not need to be written back.
return false;
});
}
}
}
// (see Note: "Gradient Layout Contract" in initialize_buckets).
void Reducer::populate_bucket_views_out(
Reducer::Bucket& bucket,
at::Tensor& tensor) {
bucket.bucket_views_out.clear();
for (const auto i : c10::irange(bucket.variables.size())) {
const auto& v = bucket.variables[i];
const auto offset = bucket.offsets[i];
const auto length = bucket.lengths[i];
if (v.is_non_overlapping_and_dense()) {
// If the param's memory is dense, match its layout, anticipating
// the autograd engine (AccumulateGrad) will also create gradients
// matching its layout.
bucket.bucket_views_out.push_back(
tensor.as_strided(v.sizes(), v.strides(), offset));
} else {
// Fall back to a C-style contiguous view, again anticipating
// AccumulateGrad will do the same when stashing grads for non-dense
// params.
bucket.bucket_views_out.push_back(
tensor.narrow(0, offset, length).view(v.sizes()));
}
}
}
void Reducer::prepare_for_forward() {
std::lock_guard<std::mutex> lock(mutex_);
num_iterations_++;
if (should_collect_runtime_stats()) {
record_forward_compute_start_time();
}
}
void Reducer::reset_bucket_counting() {
next_bucket_ = 0;
// Reset num_buckets_ready_ at the beginning of backward computation
// in each iteration.
num_buckets_ready_ = 0;
for (auto& bucket : buckets_) {
bucket.pending = bucket.variables.size();
}
if (static_graph_) {
numGradHooksTriggeredMapPerIteration_ = numGradHooksTriggeredMap_;
}
}
// Traverse the autograd graph starting at the specified output.
// All parameters for which we have a pointer to their gradient accumulation
// functions, but don't show up in the autograd graph will be marked ready for
// for reduction as soon as the first autograd hook is called. This is not
// done immediately because the model output may be ignored, and we only
// want to start performing reductions on `torch.autograd.backward()`.
void Reducer::search_unused_parameters(
const std::vector<torch::autograd::Variable>& outputs) {
std::unordered_set<torch::autograd::Node*> seen;
std::vector<torch::autograd::Node*> queue;
RECORD_FUNCTION(
"torch.distributed.ddp.reducer::search_unused_parameters",
std::vector<c10::IValue>());
// Seed queue with the grad functions of all outputs.
for (const auto& output : outputs) {
const auto& grad_fn = output.grad_fn();
if (grad_fn) {
queue.push_back(grad_fn.get());
}
}
// Traverse the autograd graph starting at the specified output.
while (!queue.empty()) {
auto fn = queue.back();
queue.pop_back();
for (const auto& edge : fn->next_edges()) {
if (auto next_ptr = edge.function.get()) {
const bool was_inserted = seen.insert(next_ptr).second;
if (was_inserted) {
queue.push_back(next_ptr);
}
}
}
}
// Find accumulator functions that don't show up in this graph.
for (const auto& it : gradAccToVariableMap_) {
// If the accumulator function is present in the graph, we know
// a gradient will be computed for the corresponding parameter.
if (seen.count(it.first) == 0) {
if (ddp_debug_level_ == c10d::DebugLevel::Detail) {
const auto param_info = param_names_.find(it.second);
TORCH_INTERNAL_ASSERT(
param_info != param_names_.end(),
"Did not find variable index ",
it.second,
" in DDP parameter name mapping!");
const auto param_name = param_info->second;
LOG(INFO) << "[Rank " << process_group_->getRank() << "]: "
<< "Parameter " << param_name << " at index " << it.second
<< " is marked as unused.";
}
unused_parameters_.push_back(it.second);
}
}
// Warn user about unnecessary perf hit if all parameters were used in
// forward.
if (unused_parameters_.empty()) {
TORCH_WARN_ONCE(
"find_unused_parameters=True was specified in DDP constructor, "
"but did not find any unused parameters in the forward pass. This flag "
"results in an extra traversal of the autograd graph every iteration, "
" which can adversely affect performance. If your model indeed never "
"has any unused parameters in the forward pass, consider turning this "
"flag off. Note that this warning may be a false positive if your model "
"has flow control causing later iterations to have unused parameters.");
}
if (!static_graph_ && ddp_graph_static_) {
if (num_iterations_ > 1) {
// Graph is still static if the set of unused parameters did not change.
ddp_graph_static_ =
prev_iteration_unused_parameters_ == unused_parameters_;
if (!ddp_graph_static_) {
// Log graph is not static. Logger takes care of ensuring this is done
// only once to avoid overhead.
logger_.lock()->log_if_graph_static(false);
}
}
prev_iteration_unused_parameters_ = unused_parameters_;
}
}
void Reducer::prepare_for_backward(
const std::vector<torch::autograd::Variable>& outputs) {
std::lock_guard<std::mutex> lock(mutex_);
backward_compute_start_time_ = current_time_in_nanos();
if (should_collect_runtime_stats()) {
record_backward_compute_start_time();
}
// Reset accounting.
expect_autograd_hooks_ = true;
// Clear gradient ready order as it can be different in the next iteration.
grad_ready_order_indices_.clear();
reset_bucket_counting();
// Reset unused parameter accounting.
has_marked_unused_parameters_ = false;
// Reset per iteration marked ready parameters.
perIterationReadyParams_.clear();
// If static graph is not set, search graph to detect unused parameters.
// When static graph is set, unused_parameters_ will be detected and will
// not change after 1st iteration.
// If static_graph_ = false and find_unused_parameters_ is false,
// we assume that autograd hooks for ALL variables will be called,
// and we don't have to search the autograd graph for presence of these hooks.
if (dynamic_graph_find_unused()) {
unused_parameters_.clear();
search_unused_parameters(outputs);
}
}
void Reducer::copy_bucket_to_grad(
at::Tensor& variable,
Reducer::Bucket& bucket,
size_t intra_bucket_index,
bool global_unused) {
const auto& bucket_view = bucket.bucket_views_out[intra_bucket_index];
runGradCallbackForVariable(variable, [&](auto& grad) {
// If a parameter is globally unused, we keep its grad untouched.
if (!global_unused) {
if (!grad.defined()) {
// Creates grad according to the "Gradient Layout Contract"
// (see torch/csrc/autograd/functions/accumulate_grad.h)
grad =
torch::autograd::utils::clone_obey_contract(bucket_view, variable);
} else {
grad.copy_(bucket_view);
}
// The grad is modified and needs to be written back.
return true;
}
// The grad is not modified.
return false;
});
}
std::vector<std::string> Reducer::getUnmarkedParamsForIteration() {
std::vector<std::string> unMarkedParamNames;
for (const auto& it : param_names_) {
if (perIterationReadyParams_.find(it.first) ==
perIterationReadyParams_.end()) {
unMarkedParamNames.push_back(it.second);
}
}
return unMarkedParamNames;
}
std::vector<size_t> Reducer::getUnmarkedParamIndicesForIteration() {
std::vector<size_t> unmarked_param_indices;
const auto variable_count = params_.size();
for (const auto variable_index : c10::irange(variable_count)) {
if (perIterationReadyParams_.find(variable_index) ==
perIterationReadyParams_.end()) {
unmarked_param_indices.push_back(variable_index);
}
}
return unmarked_param_indices;
}
// A bucket with one or more dense tensors needs to be unflattened.
void Reducer::finalize_bucket_dense(Bucket& bucket) {
for (const auto intra_bucket_index : c10::irange(bucket.variables.size())) {
auto& variable = bucket.variables[intra_bucket_index];
bool global_unused = false;
// See Note [Skip allreducing local_used_map_dev]
if (static_graph_ || find_unused_parameters_) {
// Determine if this param has been used globally or not.
//
// If the variable was used locally, it is also used globally and then
// we don't need to wait for the reduction. Otherwise we lazily wait for
// the reduction to complete, only when we see a variable that was
// unused locally. Then we end up delaying the synchronization point
// that local_used_work_->wait() implies. If we don't have any unused
// parameters at all, we can skip waiting for the work to complete
// altogether, and cause negligible performance overhead for models
// where all parameters are used. Such lazily waiting means minimizing
// performance impact for the big majority of models where all
// parameters are always used. Then we only pay the overhead cost if
// there is indeed a parameter that is locally unused, because we need
// to check if it's also globally unused.
size_t variable_index = bucket.variable_indices[intra_bucket_index];
// Note: global_unused might not be global yet. As we lazily wait for
// the reduction to complete, it becomes really global only if we get to
// the point as below where we wait for the reduction work, make D2H
// copy, and update global_unused with the real global consensus, i.e.
// local_used_map_reduced_ is true.
global_unused = local_used_map_[variable_index].item<int>() == 0;
if (global_unused && !local_used_map_reduced_) {
// Wait for local_used_map reduction to complete.
local_used_work_->wait();
// D2H from local_used_map_dev_ to local_used_map_
// Blocking copy, if local_used_map_dev_ is cuda
local_used_map_.copy_(local_used_map_dev_);
global_unused = local_used_map_[variable_index].item<int>() == 0;
local_used_map_reduced_ = true;
}
}
if (!gradient_as_bucket_view_) {
RECORD_FUNCTION(
"torch.distributed.ddp.reducer::copy_bucket_to_grad",
std::vector<c10::IValue>({variable}));
copy_bucket_to_grad(variable, bucket, intra_bucket_index, global_unused);
} else {
const auto& bucket_view_out = bucket.bucket_views_out[intra_bucket_index];
auto& bucket_view_in = bucket.bucket_views_in[intra_bucket_index];
// If a communication hook is registered, then `bucket_view_out` stores
// the allreduced results in a newly allocated tensor, so we copy
// `bucket_view_out` back to `bucket_view_in` for this gradient.
if (!bucket_view_in.is_alias_of(bucket_view_out)) {
bucket_view_in.copy_(bucket_view_out);
}
runGradCallbackForVariable(variable, [&](auto& grad) {
// If a parameter is globally unused, we keep its grad untouched.
if (!global_unused) {
// If grad is globally used but locally unused, let grad point to
// bucket_view_in
if (!grad.defined()) {
grad = bucket_view_in;
} else {
if (!grad.is_alias_of(bucket_view_in)) {
REDUCER_CHECK(
false,
logger_,
"Detected at least one parameter gradient is not the "
"expected DDP bucket view with gradient_as_bucket_view=True. "
"This may happen (for example) if multiple allreduce hooks "
"were registered onto the same parameter. If you hit this error, "
"please file an issue with a minimal repro.");
}
}
// The grad is modified and needs to be written back.
return true;
}
// The grad is not modified.
return false;
});
}
}
}
void Reducer::finalize_backward() {
// No longer expect autograd hooks to fire after this function returns.
TORCH_INTERNAL_ASSERT(expect_autograd_hooks_);
expect_autograd_hooks_ = false;
// No longer require call to finalize after this function returns.
TORCH_INTERNAL_ASSERT(require_finalize_);
require_finalize_ = false;
// Wait for asynchronous reduction to complete, and unflatten the bucket's
// flattened `gradients` tensor.
for (auto& bucket : buckets_) {
// See Note [DDP Communication Hook]
TORCH_INTERNAL_ASSERT(
bucket.future_work,
"Expected bucket.future_work not to be null. "
"This may indicate that communication hook was not properly installed.");
bucket.future_work->wait();
auto future_result = comm_hook_ == nullptr
? detail::parseCppCommHookResult(bucket.future_work->value())
: comm_hook_->parseHookResult(bucket.future_work->value());
if (bucket.expect_sparse_gradient) {
bucket.gradients.copy_(future_result);
} else {
// Reinitialize only `bucket_views_out` with the future_result by
// following the same logic in `initialize_buckets`.
populate_bucket_views_out(bucket, future_result);
}
// Unset allreduce division factor, as it may change in next backwards pass
// when running with DDP join mode.
div_factor_ = kUnsetDivFactor;
if (!bucket.expect_sparse_gradient) {
// We don't need to finalize the sparse bucket since the sparse grad and
// the bucket essentially point to the same storage. As a result, once
// the allreduce is done, the sparse grads are automatically updated.
finalize_bucket_dense(bucket);
}
}
if (installed_futures_ != c10::nullopt) {
c10::collectAll(*installed_futures_)->wait();
installed_futures_ = c10::nullopt;
}
// See Note [Skip allreducing local_used_maps_dev]
if (dynamic_graph_find_unused() || static_graph_first_iteration()) {
// Due to the lazy wait, it is possible that reduction of the current
// iteration is still going when the one for next iteration gets kicked off.
// For such case, we want to wait explicitly to make sure the reduction does
// complete before kicking off next one. Otherwise the previous one may
// interfere, write to the device-side memory and clobber the content of
// local_unused_maps_dev_.
if (!local_used_map_reduced_) {
local_used_work_->wait();
}
}
if (dynamic_graph_find_unused()) {
// Reset unused parameter accounting.
// See Note [local_used_map_ -> local_used_map_dev copying]
local_used_map_.fill_(0);
local_used_map_reduced_ = false;
}
if (should_collect_runtime_stats()) {
record_backward_comm_end_time();
}
}
void Reducer::runGradCallbackForVariable(
at::Tensor& variable,
GradCallback&& cb) {
#ifdef _WIN32
cb(variable.mutable_grad());
#else
auto context_ptr = rpc_context_.context_ptr.load();
if (context_ptr == nullptr) {
cb(variable.mutable_grad());
} else {
// Under distributed autograd
context_ptr->runGradCallbackForVariable(variable, std::move(cb));
}
#endif
}
#ifndef _WIN32
void Reducer::RpcContext::set(ContextPtr&& new_context_ptr) {
// We should set 'new_context_ptr' even if it's nullptr. That means the
// reducer is under a local backward run.
const auto new_context_raw_ptr = new_context_ptr.get();
if (context_ptr.exchange(new_context_raw_ptr) != new_context_raw_ptr) {
// Set the shared ptr to the context only if it's set first time.
// All call sites should use the same context ptr.
// Use an atomic to avoid data race from multiple threads.
context_ptr_holder = std::move(new_context_ptr);
}
}
#endif
void Reducer::sync_bucket_indices(
std::vector<std::vector<size_t>>& bucket_indices) {
auto num_buckets = bucket_indices.size();
std::vector<size_t> bucket_sizes;
bucket_sizes.reserve(num_buckets);
int64_t total_size = 0;
for (const auto i : c10::irange(num_buckets)) {
auto bucket_size = bucket_indices.at(i).size();
bucket_sizes.push_back(bucket_size);
total_size += bucket_size;
}
at::TensorOptions options;
options = options.dtype(at::kInt);
options = options.device(params_[0].device());
// Group indices and num_bucket together into indices_tensor
// Broadcast this tensor first, as its size is equal among all processes
auto indices_tensor = at::empty({total_size + 1}, at::kInt);
auto indices_accessor = indices_tensor.accessor<int, 1>();
auto indices_accessor_Index = 0;
for (const auto i : c10::irange(num_buckets)) {
const auto& bucket_size = bucket_indices.at(i).size();
for (const auto j : c10::irange(bucket_size)) {
indices_accessor[indices_accessor_Index++] = bucket_indices[i][j];
}
}
indices_accessor[indices_accessor_Index] = num_buckets;
// Copy CPU tensor to device tensor, as the process_group_ could be NCCL and
// it can only broadcast device tensors.
auto indices_tensor_device = at::empty({total_size + 1}, options);
indices_tensor_device.copy_(indices_tensor, /*non_blocking=*/true);
std::vector<at::Tensor> indices_tensor_list = {indices_tensor_device};
ops::broadcast(process_group_, indices_tensor_list)->wait();
indices_tensor.copy_(indices_tensor_list.front(), /*non_blocking=*/false);
// Update num_buckets after receiving it from rank 0
num_buckets = indices_accessor[indices_accessor_Index];
// Broadcast bucket_sizes
auto bucket_sizes_tensor = at::empty({(int64_t)num_buckets}, at::kInt);
auto bucket_sizes_accessor = bucket_sizes_tensor.accessor<int, 1>();
for (const auto i : c10::irange(num_buckets)) {
// For rank != 0, it is possible that local num buckets bucket_sizes.size()
// is smaller than broadcasted num_buckets
bucket_sizes_accessor[i] =
bucket_sizes.at(std::min(i, (bucket_sizes.size() - 1)));
}
auto bucket_sizes_tensor_device = at::empty({(int64_t)num_buckets}, options);
bucket_sizes_tensor_device.copy_(bucket_sizes_tensor, /*non_blocking=*/true);
std::vector<at::Tensor> bucket_sizes_tensor_list = {
bucket_sizes_tensor_device};
ops::broadcast(process_group_, bucket_sizes_tensor_list)->wait();
bucket_sizes_tensor.copy_(
bucket_sizes_tensor_list.front(), /*non_blocking=*/false);
// Clear bucket_indices first, and then update bucket_indices using received
// num_buckets, bucket_sizes_tensor and indices_tensor from rank 0
bucket_indices.clear();
bucket_indices.reserve(num_buckets);
indices_accessor_Index = 0;
for (const auto i : c10::irange(num_buckets)) {
const auto& bucket_size = bucket_sizes_accessor[i];
std::vector<size_t> bucket;
bucket.reserve(bucket_size);
for (const auto j : c10::irange(bucket_size)) {
(void)j;
bucket.push_back(indices_accessor[indices_accessor_Index++]);
}
bucket_indices.emplace_back(std::move(bucket));
}
}
bool Reducer::rebuild_buckets() {
// Ensure reduction for previous backwards pass is finished. If user's model
// has unused parameters for example, this will raise an error recommending to
// run with find_unused_parameters=True, instead of the size mismatch
// exception below.
std::lock_guard<std::mutex> lock(mutex_);
ensure_prior_reduction_finished();
if (!should_rebuild_buckets() || rebuilt_params_.empty()) {
return false;
}
TORCH_INTERNAL_ASSERT(
rebuilt_params_.size() == rebuilt_param_indices_.size(),
c10::str(
"rebuilt parameter tensors size is not same as rebuilt parameter indices size: ",
rebuilt_params_.size(),
" versus ",
rebuilt_param_indices_.size()));
TORCH_INTERNAL_ASSERT(
params_.size() == rebuilt_param_indices_.size(),
c10::str(
"rebuilt parameter indices size is not same as original model parameters size.",
"Original model param size is: ",
params_.size(),
" versus rebuilt params size of: ",
rebuilt_param_indices_.size()));
std::vector<std::vector<size_t>> rebuilt_bucket_indices;
std::vector<size_t> bucket_size_limits;
bucket_size_limits.push_back(first_bucket_bytes_cap_);
bucket_size_limits.push_back(bucket_bytes_cap_);
std::vector<size_t> per_bucket_size_limits;
auto ddp_set_last_bucket_as_small =
(parse_env("DDP_SET_LAST_BUCKET_CAP").compare("1") == 0);
if (ddp_set_last_bucket_as_small) {
// Reverse so that first_bucket_bytes_cap_ (smaller bucket) becomes the last
// bucket. We cannot simply pass in {bucket_bytes_cap_,
// first_bucket_bytes_cap} as the bucket order as we would immediately
// advance to the 2nd element after the first bucket, whereas we only want
// the last bucket to have a smaller size.
std::reverse(rebuilt_params_.begin(), rebuilt_params_.end());
std::reverse(rebuilt_param_indices_.begin(), rebuilt_param_indices_.end());
}
std::tie(rebuilt_bucket_indices, per_bucket_size_limits) =
compute_bucket_assignment_by_size(
rebuilt_params_,
bucket_size_limits,
expect_sparse_gradients_,
rebuilt_param_indices_,
logger_);
if (ddp_set_last_bucket_as_small) {
// Reverse again because buckets were rebuilt in the opposite of gradient
// ready order.
std::reverse(rebuilt_bucket_indices.begin(), rebuilt_bucket_indices.end());
std::reverse(per_bucket_size_limits.begin(), per_bucket_size_limits.end());
}
if (ddp_debug_level_ != c10d::DebugLevel::Off) {
TORCH_INTERNAL_ASSERT(
rebuilt_bucket_indices.size() == per_bucket_size_limits.size())
LOG(INFO) << rebuilt_bucket_indices.size()
<< " buckets rebuilt with size limits: "
<< c10::Join(", ", per_bucket_size_limits) << " bytes.";
}
// For rebuilt bucket indices, it needs to be synced across all ranks.
// Broadcast the newly rebuilt bucket indices from rank 0 in default.
// After syncing up rebuilt bucket indices, initialize buckets for reducer.
sync_bucket_indices(rebuilt_bucket_indices);
has_rebuilt_bucket_ = true;
rebuilt_params_.clear();
rebuilt_param_indices_.clear();
initialize_buckets(std::move(rebuilt_bucket_indices));
return true;
}
// See Note [DDP Communication Hook]
void Reducer::register_comm_hook(std::unique_ptr<CommHookInterface> iface) {
REDUCER_CHECK(
comm_hook_ == nullptr,
logger_,
"register_comm_hook or register_builtin_comm_hook can only be called once.");
comm_hook_ = std::move(iface);
}
// See Note [DDP Communication Hook]
void Reducer::register_builtin_comm_hook(
c10d::BuiltinCommHookType comm_hook_type) {
REDUCER_CHECK(
comm_hook_ == nullptr,
logger_,
"register_builtin_comm_hook or register_comm_hook can only be called once.");
switch (comm_hook_type) {
case c10d::BuiltinCommHookType::ALLREDUCE:
comm_hook_ = std::make_unique<c10d::AllReduceCommHook>(process_group_);
LOG(INFO) << "Built-in communication hook ALLREDUCE is registered.";
break;
case c10d::BuiltinCommHookType::FP16_COMPRESS:
comm_hook_ = std::make_unique<c10d::FP16CompressCommHook>(process_group_);
LOG(INFO) << "Built-in communication hook FP16_COMPRESS is registered.";
break;
default:
TORCH_WARN_ONCE(
"Unknown built-in DDP comm hook type is provided. No comm hook will be used.");
}
}
void Reducer::ensure_prior_reduction_finished() {
// Check that any prior reduction has finished.
// The variable `require_finalize_` is true until all gradients
// have been computed and reduction of all buckets has been kicked off.
if (require_finalize_) {
// Collect unmarked parameter indices, additionally, in debug mode retrieve
// parameter names.
auto unmarked_param_indices = getUnmarkedParamIndicesForIteration();
// We should have some unmarked parameter indices, otherwise we would not
// have run into this error branch.
TORCH_INTERNAL_ASSERT(unmarked_param_indices.size() > 0);
const std::string unmarkedParamIndices =
c10::Join(", ", unmarked_param_indices);
std::string kBaseErrorMsg =
"Expected to have finished reduction in the prior iteration before "
"starting a new one. "
""
"This error indicates that your module has parameters that were "
"not used in producing loss. ";
std::string kOutputsNotUsedInLossErrorMsg =
"making sure all "
"`forward` function outputs participate in calculating loss. ";
std::string kDDPBugErrorMsg =
"\nIf you already have done the above, then the distributed "
"data parallel module wasn't able to locate the output tensors in the "
"return value of your module's `forward` function. "
"Please include the loss function and the structure of the return "
"value of `forward` of your module when reporting this issue (e.g. "
"list, dict, iterable).";
if (static_graph_) {
kBaseErrorMsg =
"Expected to have finished reduction in the prior iteration before "
"starting a new one. "
"This error indicates that your training graph has changed "
"in this iteration, e.g., one parameter is used in first "
"iteration, but then got unused in the second iteration. "
"this is not compatible with static_graph set to True.";
} else if (!find_unused_parameters_) {
// Parameters may have been unused in forward pass, or not all outputs
// were used in producing loss.
kBaseErrorMsg +=
"You can enable unused parameter detection by passing the "
"keyword argument `find_unused_parameters=True` to "
"`torch.nn.parallel.DistributedDataParallel`, and by \n";
kBaseErrorMsg += kOutputsNotUsedInLossErrorMsg;
kBaseErrorMsg += kDDPBugErrorMsg;
} else {
// Note that it does not really matter whether unused_parameters_.empty(),
// since user may have enabled detection but this particular iteration
// could have used or not used all parameters.
kBaseErrorMsg +=
"Since `find_unused_parameters=True` is enabled, this likely "
" means that not all `forward` outputs participate in computing loss. You can fix this by ";
kBaseErrorMsg += kOutputsNotUsedInLossErrorMsg;
kBaseErrorMsg += kDDPBugErrorMsg;
}
const std::string unmarked_param_indices_info = c10::str(
"\n",
"Parameter indices which did not receive grad for rank ",
process_group_->getRank(),
": ",
unmarked_param_indices);
if (ddp_debug_level_ == DebugLevel::Off) {
// Without debug mode, log unmarked_param_indices, as well as
// recommendation to use debug mode to print parameter names.
kBaseErrorMsg += unmarked_param_indices_info;
kBaseErrorMsg +=
"\n In addition, you can set the environment variable "
"TORCH_DISTRIBUTED_DEBUG to either INFO or DETAIL to print out information "
"about which particular parameters did not receive gradient on this rank "
"as part of this error";
} else {
// Retrieve set of parameter names that did not receive gradient.
auto unmarkedParams = getUnmarkedParamsForIteration();
TORCH_INTERNAL_ASSERT(unmarkedParams.size() > 0);
for (const auto& s : unmarkedParams) {
LOG(INFO) << "[Rank " << process_group_->getRank() << "] "
<< "Parameter: " << s
<< " did not get gradient in backwards pass.";
}
const std::string unmarkedParamInfo = c10::Join(", ", unmarkedParams);
// In debug mode, log param names and indices that went unused.
kBaseErrorMsg += c10::str(
"\n",
"Parameters which did not receive grad for rank ",
process_group_->getRank(),
": ",
unmarkedParamInfo);
kBaseErrorMsg += unmarked_param_indices_info;
}
REDUCER_CHECK(false, logger_, kBaseErrorMsg);
}
}
void Reducer::set_ddp_runtime_logging_sample_rate(int sample_rate) {
ddp_runtime_logging_sample_rate_ = sample_rate;
}
int Reducer::get_ddp_runtime_logging_sample_rate() {
return ddp_runtime_logging_sample_rate_;
}
bool Reducer::should_collect_runtime_stats() {
if (num_iterations_ > 0 &&
(num_iterations_ <= 10 ||
num_iterations_ % get_ddp_runtime_logging_sample_rate() == 0)) {
return true;
}
return false;
}
void Reducer::record_forward_compute_start_time() {
if (timer_) {
timer_->record(Timer::Event::kForwardStart);
}
}
void Reducer::record_backward_compute_start_time() {
if (timer_) {
timer_->record(Timer::Event::kBackwardComputeStart);
}
}
void Reducer::record_backward_compute_end_time() {
if (timer_) {
timer_->record(Timer::Event::kBackwardComputeEnd);
}
}
void Reducer::record_backward_comm_start_time() {
if (timer_) {
timer_->record(Timer::Event::kBackwardCommStart);
}
}
void Reducer::record_backward_comm_end_time() {
if (timer_) {
timer_->record(Timer::Event::kBackwardCommEnd);
}
}
void Reducer::set_static_graph() {
std::lock_guard<std::mutex> lock(mutex_);
REDUCER_CHECK(
num_iterations_ == 0,
logger_,
"set_static_graph() should be called before training loop starts "
"and after DistributedDataParallel is constructed.");
static_graph_ = true;
// when static_graph_ is set as true, always initialize_local_used_map
// and detect the global unused parameters in the first iteration.
initialize_local_used_map();
}
namespace {
// Tensors may be coalesced into buckets. Buckets must contain tensors of
// the same type, on the same device, so a bucket can identified by a
// composite key of a tensor's type identifier and its device.
struct BucketKey {
BucketKey(c10::ScalarType type, c10::Device device)
: type(type), device(device) {}
const c10::ScalarType type;
const c10::Device device;
// See torch/csrc/utils/hash.h for dispatch code.
static size_t hash(const BucketKey& key) {
return c10::get_hash(key.type, key.device);
}
};
inline bool operator==(const BucketKey& lhs, const BucketKey& rhs) {
return lhs.type == rhs.type && lhs.device == rhs.device;
}
} // namespace
std::tuple<std::vector<std::vector<size_t>>, std::vector<size_t>>
compute_bucket_assignment_by_size(
const std::vector<at::Tensor>& tensors,
const std::vector<size_t>& bucket_size_limits,
const std::vector<bool>& expect_sparse_gradient,
const std::vector<int64_t>& tensor_indices,
const c10::optional<std::weak_ptr<c10d::Logger>>& logger) {
// Either expect_sparse_gradient is not specified or it has as many elements
// as the vector with tensors.
TORCH_INTERNAL_ASSERT(
expect_sparse_gradient.empty() ||
(tensors.size() == expect_sparse_gradient.size()));
TORCH_INTERNAL_ASSERT(tensors.size() > 0);
// Store bucket indices and their sizes together, because we later sort the
// resulting indices by minimum tensor index and want to keep sizes
// consistent.
std::vector<std::tuple<std::vector<size_t>, size_t>> result;
// Sparse tensors go in their own bucket, so they do not have an enforced size
// limit.
size_t kNoSizeLimit = 0;
result.reserve(tensors.size());
// Keep iterator into the size_limit vector by tensor type and device.
// This is done so that we can use the consecutive bucket limits per type.
std::unordered_map<
BucketKey,
std::vector<size_t>::const_iterator,
c10::hash<BucketKey>>
bucket_size_limit_iterators;
// Keep vector of indices and size accumulator by tensor type and device.
std::unordered_map<BucketKey, BucketAccumulator, c10::hash<BucketKey>>
buckets;
for (const auto i : c10::irange(tensors.size())) {
const auto& tensor = tensors[i];
auto msg = std::string("No support for sparse tensors.");
if (logger.has_value()) {
REDUCER_CHECK(!tensor.is_sparse(), logger.value(), msg);
} else {
TORCH_CHECK(!tensor.is_sparse(), msg);
}
// when tensor_indices is empty, the index of tensors[i] assigned to
// bucket is i, otherwise the tensor index is tensor_indices[i].
auto tensor_index = i;
if (!tensor_indices.empty()) {
tensor_index = tensor_indices[i];
}
// If we expect a sparse gradient to be produced for this tensor, it cannot
// be grouped together with other gradients and gets its own bucket.
if (!expect_sparse_gradient.empty() &&
expect_sparse_gradient[tensor_index]) {
result.emplace_back(std::vector<size_t>({tensor_index}), kNoSizeLimit);
continue;
}
auto key = BucketKey(tensor.scalar_type(), tensor.device());
auto& bucket = buckets[key];
bucket.indices.push_back(tensor_index);
bucket.size += tensor.numel() * tensor.element_size();
// Initialize bucket size limit iterator if necessary.
if (bucket_size_limit_iterators.count(key) == 0) {
bucket_size_limit_iterators[key] = bucket_size_limits.begin();
}
auto& bucket_size_limit_iterator = bucket_size_limit_iterators[key];
const auto bucket_size_limit = *bucket_size_limit_iterator;
bucket.size_limit = bucket_size_limit;
if (bucket.size >= bucket_size_limit) {
result.emplace_back(std::move(bucket.indices), bucket.size_limit);
bucket = BucketAccumulator();
// Advance to the next bucket size limit for this type/device.
auto next = bucket_size_limit_iterator + 1;
if (next != bucket_size_limits.end()) {
bucket_size_limit_iterator = next;
}
}
}
// Add remaining buckets.
for (auto& it : buckets) {
auto& bucket = it.second;
if (!bucket.indices.empty()) {
result.emplace_back(std::move(bucket.indices), bucket.size_limit);
}
}
// If tensor_indices is not empty, the order of the tensors is in the gradient
// ready order, so no need to sort.
// If tensor_indices is empty, sort resulting buckets by the minimum tensor
// index they include. We assume that the order of the tensors is the order in
// which they are used (or the reverse order in which their gradients are
// produced). This sorting step ensures that the buckets are ready in
// consecutive order.
if (tensor_indices.empty()) {
std::sort(
result.begin(),
result.end(),
[](const std::tuple<std::vector<size_t>, size_t>& a,
const std::tuple<std::vector<size_t>, size_t>& b) {
auto indices_a = std::get<0>(a);
auto indices_b = std::get<0>(b);
const auto amin =
std::min_element(indices_a.begin(), indices_a.end());
const auto bmin =
std::min_element(indices_b.begin(), indices_b.end());
return *amin < *bmin;
});
}
// Return bucket indices and size limits as separate entries in tuple, as some
// APIs only need to consume bucket indices.
std::vector<std::vector<size_t>> bucket_indices;
bucket_indices.reserve(result.size());
std::vector<size_t> per_bucket_size_limits;
per_bucket_size_limits.reserve(result.size());
for (const auto& bucket_indices_with_size : result) {
bucket_indices.emplace_back(std::get<0>(bucket_indices_with_size));
per_bucket_size_limits.emplace_back(std::get<1>(bucket_indices_with_size));
}
return std::make_tuple(bucket_indices, per_bucket_size_limits);
}
// Verifies corresponding params in the model replica have the same
// sizes/strides across processes.
void verify_params_across_processes(
const c10::intrusive_ptr<c10d::ProcessGroup>& process_group,
const std::vector<at::Tensor>& params,
const c10::optional<std::weak_ptr<c10d::Logger>>& logger) {
// First verify number of parameters to avoid inconsistent inputs into
// broadcast which can cause a crash.
// See https://github.com/pytorch/pytorch/issues/73547
at::TensorOptions param_size_options;
param_size_options = param_size_options.dtype(at::kLong);
param_size_options = param_size_options.device(params[0].device());
// Note: Not using tensor building API because of
// https://github.com/pytorch/pytorch/issues/74114
at::Tensor param_size_tensor =
at::tensor({static_cast<int64_t>(params.size())}, param_size_options);
// Allgather and verify parameter size.
std::vector<std::vector<at::Tensor>> param_size_output_tensors;
param_size_output_tensors.emplace_back(std::vector<at::Tensor>{});
auto world_size = process_group->getSize();
for (size_t i = 0; i < world_size; ++i) {
param_size_output_tensors.front().emplace_back(
at::empty_like(param_size_tensor));
}
std::vector<at::Tensor> param_size_vec{param_size_tensor};
ops::allgather(process_group, param_size_output_tensors, param_size_vec)
->wait();
auto result_size_tensors = param_size_output_tensors.front();
for (size_t i = 0; i < world_size; ++i) {
auto param_size_for_rank = result_size_tensors[i][0].item<int>();
TORCH_CHECK(
param_size_for_rank == params.size(),
c10::str(
"DDP expects same model across all ranks, but Rank ",
process_group->getRank(),
" has ",
params.size(),
" params, while rank ",
i,
" has inconsistent ",
param_size_for_rank,
" params."));
}
// Continue with parameter shape verification.
size_t i = 0;
for (const auto& t : params) {
i += 2 * t.dim();
}
at::TensorOptions options;
options = options.dtype(at::kLong);
auto metadata = at::empty({static_cast<long>(i)}, options);
// Technically, process 0 is the broadcast source, so only process 0 needs
// to populate metadata. But no harm keeping work aligned across processes.
auto metadata_accessor = metadata.accessor<int64_t, 1>();
i = 0;
for (const auto& t : params) {
for (const auto& sz : t.sizes()) {
metadata_accessor[i++] = sz;
}
for (const auto& str : t.strides()) {
metadata_accessor[i++] = str;
}
}
auto metadata_dev = metadata.clone().to(params[0].device());
std::vector<at::Tensor> vec{metadata_dev};
ops::broadcast(process_group, vec)->wait();
// Technically, process 0 doesn't need to double-check metadata, because it
// was the source. But no harm keeping work aligned.
auto control = at::empty({static_cast<long>(i)}, options);
control.copy_(metadata_dev, /*non_blocking=*/false);
auto control_accessor = control.accessor<int64_t, 1>();
i = 0;
for (const auto p : c10::irange(params.size())) {
const auto& t = params[p];
for (const auto& sz : t.sizes()) {
auto msg = c10::str(
"[",
process_group->getRank(),
"]: params[",
p,
"] in this process",
" with sizes ",
t.sizes(),
" appears not to match sizes of the same param in process 0.");
if (logger.has_value()) {
REDUCER_CHECK(sz == control_accessor[i++], logger.value(), msg)
} else {
TORCH_CHECK(sz == control_accessor[i++], msg)
}
}
for (const auto& str : t.strides()) {
auto msg = c10::str(
"params[",
p,
"] in this process",
" with sizes ",
t.sizes(),
" appears not to match strides of the same param in process 0.");
if (logger.has_value()) {
REDUCER_CHECK(str == control_accessor[i++], logger.value(), msg)
} else {
TORCH_CHECK(str == control_accessor[i++], msg)
}
}
}
}
} // namespace c10d
|