File: reducer.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (2198 lines) | stat: -rw-r--r-- 87,878 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
#include <torch/csrc/distributed/c10d/reducer.hpp>

#include <torch/csrc/distributed/c10d/Utils.hpp>
#include <torch/csrc/distributed/c10d/default_comm_hooks.hpp>

#include <functional>

#include <c10/core/DeviceGuard.h>
#include <c10/core/StreamGuard.h>
#include <c10/util/Exception.h>
#include <c10/util/Logging.h>
#include <c10/util/hash.h>
#include <c10/util/irange.h>
#include <torch/csrc/autograd/engine.h>
#include <torch/csrc/autograd/function_hook.h>
#include <torch/csrc/autograd/functions/accumulate_grad.h>
#include <torch/csrc/autograd/profiler.h>
#include <torch/csrc/autograd/utils/grad_layout_contract.h>
#include <torch/csrc/autograd/utils/lambda_post_hook.h>
#include <torch/csrc/distributed/c10d/Ops.hpp>
#include <torch/csrc/distributed/c10d/comm.hpp>
#include <torch/csrc/distributed/c10d/logger.hpp>
#include <torch/csrc/utils/memory.h>

namespace c10d {
namespace {

constexpr int kUnsetDivFactor = -1;

// Macro that wraps TORCH_CHECK with DDP logging.
#define REDUCER_CHECK(cond, logger_, ...)             \
  if (C10_UNLIKELY_OR_CONST(!(cond))) {               \
    if (!logger_.expired()) {                         \
      logger_.lock()->set_error_and_log(__VA_ARGS__); \
    }                                                 \
    TORCH_CHECK(false, ##__VA_ARGS__);                \
  }

} // namespace

C10_DEFINE_TYPED_REGISTRY( // NOLINT
    TimerRegistry,
    c10::DeviceType,
    Timer,
    std::unique_ptr,
    c10::Device);

namespace {

class CpuTimer : public Timer {
 public:
  explicit CpuTimer(c10::Device /* unused */) {}

  c10::optional<int64_t> measureDifference(Event start, Event end) override {
    int64_t start_time = getTimeRef(start);
    int64_t end_time = getTimeRef(end);
    // If cpu_end_time is not recorded in this iteration,
    // avg_time will return invalid value.
    // For some cases like DDP runs on non-sync mode, backward compute
    // end time can not be recorded in this iteration and thus can not
    // calculate the valid avg_time.
    // In this case, skip calculating the avg_time and return.
    if (end_time < start_time) {
      return c10::nullopt;
    }
    return end_time - start_time;
  }
};

C10_REGISTER_TYPED_CLASS(TimerRegistry, c10::kCPU, CpuTimer);

std::vector<at::Tensor> extractTensors(const c10::IValue& result) {
  if (result.isPyObject()) {
    return result.toPyObjectHolder()->extractTensors();
  }
  TORCH_INTERNAL_ASSERT(
      result.isTensor() || result.isTensorList(),
      "expected the hook result is either a Tensor or a TensorList found ",
      result.tagKind());

  if (result.isTensor()) {
    return {result.toTensor()};
  }

  return result.toTensorVector();
}

} // namespace

Reducer::Reducer(
    std::vector<at::Tensor> params,
    std::vector<std::vector<size_t>> bucket_indices,
    std::vector<size_t> per_bucket_size_limits,
    c10::intrusive_ptr<c10d::ProcessGroup> process_group,
    std::vector<bool> expect_sparse_gradients,
    int64_t bucket_bytes_cap,
    bool find_unused_parameters,
    bool gradient_as_bucket_view,
    std::unordered_map<size_t, std::string> param_names,
    int64_t first_bucket_bytes_cap)
    : params_(std::move(params)),
      process_group_(std::move(process_group)),
      expect_sparse_gradients_(std::move(expect_sparse_gradients)),
      expect_autograd_hooks_(false),
      require_finalize_(false),
      next_bucket_(0),
      has_marked_unused_parameters_(false),
      find_unused_parameters_(find_unused_parameters),
      gradient_as_bucket_view_(gradient_as_bucket_view),
      local_used_map_reduced_(false),
      num_iterations_(0),
      num_buckets_ready_(0),
      has_rebuilt_bucket_(false),
      bucket_bytes_cap_(bucket_bytes_cap),
      div_factor_(kUnsetDivFactor),
      static_graph_(false),
      comm_hook_(nullptr),
      ddp_debug_level_(debug_level()),
      param_names_(std::move(param_names)),
      first_bucket_bytes_cap_(first_bucket_bytes_cap) {
  C10_LOG_API_USAGE_ONCE("torch.distributed.ddp.reducer");
  TORCH_INTERNAL_ASSERT(
      params_.size() >= 1, "Expected at least one parameter.");

  if (ddp_debug_level_ != c10d::DebugLevel::Off) {
    LOG(INFO) << "Reducer initialized with bucket_bytes_cap: "
              << bucket_bytes_cap_
              << " first_bucket_bytes_cap: " << first_bucket_bytes_cap;
  }
  // Check whether the module is multi_device_module
  {
    std::set<int> unique_devices;
    for (const auto& v : params_) {
      auto device_idx = int(v.device().index());
      if (unique_devices.find(device_idx) == unique_devices.end()) {
        unique_devices.insert(device_idx);
        if (unique_devices.size() > 1) {
          is_multi_device_module_ = true;
          break;
        }
      }
    }
  }

  // For CUDA, record events only for single device module.
  c10::Device device = params_[0].device();
  if (!(device.is_cuda() && is_multi_device_module_)) {
    timer_ = TimerRegistry()->Create(device.type(), device);
  }

  // If `expect_sparse_gradients` is not specified, initialize it such that
  // we do not expect sparse gradients for any parameter.
  if (expect_sparse_gradients_.empty()) {
    expect_sparse_gradients_ = std::vector<bool>(params_.size(), false);
  }
  TORCH_INTERNAL_ASSERT(expect_sparse_gradients_.size() == params_.size());

  // Initialize variable bucketing.
  // This can be reinitialized later after capturing runtime information.
  {
    std::lock_guard<std::mutex> lock(mutex_);
    initialize_buckets(std::move(bucket_indices));
  }

  // All variables are expected to have their `grad_fn` set to the gradient
  // accumulation function (since they are leafs in the autograd graph).
  // We store pointers to these functions such that we can check if they are
  // used in an autograd pass. If they are not, we know their grad tensors
  // can be marked as ready for reduction.
  {
    const auto variable_count = params_.size();
    grad_accumulators_.resize(variable_count);
    for (const auto variable_index : c10::irange(variable_count)) {
      auto& variable = params_[variable_index];

      // The gradient accumulator function is lazily initialized once.
      // Therefore we can use its presence in the autograd graph as
      // evidence that the parameter has participated in an iteration.
      auto grad_accumulator = torch::autograd::impl::grad_accumulator(variable);

#ifndef _WIN32
      using torch::distributed::autograd::ThreadLocalDistAutogradContext;
#endif
      // Hook to execute after the gradient accumulator has executed.
      hooks_.emplace_back(
          grad_accumulator->add_post_hook(
              torch::make_unique<torch::autograd::utils::LambdaPostHook>(
                  [=](const torch::autograd::variable_list& outputs,
                      const torch::autograd::variable_list& /* unused */) {
#ifndef _WIN32
                    this->rpc_context_.set(
                        ThreadLocalDistAutogradContext::getContextPtr());
#endif
                    this->autograd_hook(variable_index);
                    return outputs;
                  })),
          grad_accumulator);

      // Map raw function pointer to parameter index.
      // This is used later on when the autograd graph is traversed
      // to check for parameters for which no gradient is computed, if
      // find_unused_parameters=True.
      // Note that the mapping of gradient accumulator to variable should be
      // one to one as we deduplicate shared parameters before constructing
      // Reducer.
      if (find_unused_parameters_) {
        gradAccToVariableMap_[grad_accumulator.get()] = variable_index;
      }

      numGradHooksTriggeredMap_[variable_index] = 0;

      // The gradient accumulator is stored as weak_ptr in the autograd
      // metadata of the variable, so we have to keep it alive here for
      // the raw pointer to be valid.
      REDUCER_CHECK(
          grad_accumulators_[variable_index] == nullptr,
          logger_,
          c10::str(
              "Reducer tried to register duplicate grad accumulator for variable ",
              variable_index));

      grad_accumulators_[variable_index] = std::move(grad_accumulator);
    }
  }

  // Initialize backward stats vector.
  {
    const auto variable_count = params_.size();
    backward_stats_.resize(variable_count);
  }

  // See Note [Skip allreducing local_used_map_dev]
  if (find_unused_parameters_) {
    initialize_local_used_map();
  }
}

// Note [Skip allreducing local_used_map_dev]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// If find_unused_parameters_ is set to false, there is no need to allreduce
// local_used_map_dev_, because all parameters will be reduced anyway.
// Therefore, we can avoid allocating memory for local_used_map and
// local_used_map_dev_ if find_unused_parameters_ is false.

// Note [DDP Communication Hook]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// If DDP communication hook is not registered, the reducer reduces the buckets
// by just calling allreduce. If registered, it calls the hook and uses future
// work handle. If registered, reducer also skips dividing grads by world size.
// The reason for this is that the communication hook is expected to completely
// override how we perform communication and the user should have complete
// control over how the grads are handled.
//
// DDP communication hook is an enhancement that provides a hook which can be
// used to override how DDP communicates gradients across ranks, this can be
// used for algorithms like Gradient Compression/GossipGrad. This hook can be
// registered from Python API using `register_comm_hook`. `PythonCommHook`
// enables registering a Python hook and is a subclass of `CommHookInterface`.
// Additionally, there are also some built-in C++ hook implementations that can
// be specified by calling `register_builtin_comm_hook` from Python API.

Reducer::~Reducer() noexcept(false) {
  // Remove all hooks on variables registered by this Reducer. This is necessary
  // to make DDP failure recoverable. Otherwise, multiple Reducer instances
  // (from recoveries) will add their hooks to the original model, and those
  // hooks will try to invoke methods on a deleted Reducer objects.
  for (auto& hook : hooks_) {
    auto& key = hook.first;
    auto& grad_accumulator = hook.second;

    TORCH_INTERNAL_ASSERT(
        grad_accumulator->del_post_hook(key),
        "Reducer attempts to delete a non-existing hook.");
  }
}

bool Reducer::dynamic_graph_find_unused() {
  return !static_graph_ && find_unused_parameters_;
}

bool Reducer::static_graph_first_iteration() {
  return static_graph_ && num_iterations_ == 1;
}

bool Reducer::static_graph_after_first_iteration() {
  return static_graph_ && num_iterations_ > 1;
}

bool Reducer::ddp_graph_static() {
  std::lock_guard<std::mutex> lock(mutex_);
  return ddp_graph_static_;
}

void Reducer::initialize_local_used_map() {
  const auto variable_count = params_.size();
  at::TensorOptions options;
  options = options.dtype(at::kInt);

  // Deliberately don't pin the memory even if local_used_map_dev_ will
  // be cuda. See Note [local_used_map_ -> local_used_map_dev copying]
  local_used_map_ = at::zeros({static_cast<long>(variable_count)}, options);

  // This tensor needs to be on the same device as the replica params because
  // backend such as NCCL may not support CPU tensors, and hence it might not
  // work if we always put it on CPU.
  options = options.device(params_[0].device());
  local_used_map_dev_ = at::empty({static_cast<long>(variable_count)}, options);
}

void Reducer::check_grad_layout(
    const at::Tensor& grad,
    const at::Tensor& bucket_view) {
  // Ensure that the gradient type matches the bucket type.
  REDUCER_CHECK(
      grad.options().type_equal(bucket_view.options()),
      logger_,
      c10::str("Expected ", bucket_view.toString(), ", got ", grad.toString()));

  TORCH_INTERNAL_ASSERT(grad.device() == bucket_view.device());
  TORCH_INTERNAL_ASSERT(grad.numel() == bucket_view.numel());
  // AccumulateGrad doesn't HAVE to obey the grad layout contract.
  // The penalty for disobedience is reduced performance, not numerical
  // death. Warnings here help diagnose poor DDP performance.
  if (grad.strides() != bucket_view.strides()) {
    TORCH_WARN_ONCE(
        "Grad strides do not match bucket view strides. "
        "This may indicate grad was not created according to the "
        "gradient layout contract, or that the param's strides "
        "changed since DDP was constructed.  This is not an error, "
        "but may impair performance.\n"
        "grad.sizes() = ",
        grad.sizes(),
        ", strides() = ",
        grad.strides(),
        "\n",
        "bucket_view.sizes() = ",
        bucket_view.sizes(),
        ", strides() = ",
        bucket_view.strides());
  }
  if (!gradient_as_bucket_view_) {
    TORCH_INTERNAL_ASSERT(!grad.is_alias_of(bucket_view));
  }
}

void Reducer::mark_variable_ready_dense(size_t variable_index) {
  const auto& bucket_index = variable_locators_[variable_index];
  auto& bucket = buckets_[bucket_index.bucket_index];
  auto& variable = bucket.variables[bucket_index.intra_bucket_index];
  auto& bucket_view = bucket.bucket_views_in[bucket_index.intra_bucket_index];

  // Copy the contents of the gradient tensor to the corresponding part of the
  // bucket's flattened gradient tensor.
  // If the gradient is not set, we assume it wasn't computed as part of the
  // current backwards pass, and we zero the part of the bucket it would
  // otherwise hold.
  runGradCallbackForVariable(variable, [&](auto& grad) {
    if (grad.defined()) {
      this->check_grad_layout(grad, bucket_view);
      // When gradient_as_bucket_view_ is false, or even when
      // gradient_as_bucket_view_ is true, in rare cases users may set grad to
      // be None after every iteration. In these cases, grad and bucket_view are
      // pointing to different storages and thus need to copy grads to
      // bucket_view. If gradient_as_bucket_view_ is set as true, let grad point
      // to bucket_view. If grad has already been set as views of buckets in
      // previous iterations, no copy is needed.
      if (!grad.is_alias_of(bucket_view)) {
        if (comm_hook_ == nullptr) {
          auto wrapped =
              at::native::wrapped_scalar_tensor(double(1.) / div_factor_);
          if (!grad.requires_grad()) {
            // Divides while copying into the bucket view to save one scan over
            // all the input parameters.
            at::mul_out(bucket_view, grad, wrapped);
          } else {
            // If DDP is running with create_graph=True, gradients require_grad
            // themselves in order to compute higher order derivatives. However,
            // DDP will not sync up these gradients currently (see
            // https://github.com/pytorch/pytorch/issues/63812).
            C10_LOG_EVERY_N(WARNING, 1000)
                << "Using DistributedDataParallel with create_graph=True "
                << " is not well-supported. The higher-order gradient will "
                << " not be synchronized across ranks, and backpropagation "
                << " through all_reduce operations will not occur. If you require "
                << " DDP to work with higher-order gradients for your use case, "
                << " please ping https://github.com/pytorch/pytorch/issues/63929";
            auto div_result = at::mul(grad, wrapped);
            bucket_view.copy_(div_result);
          }
        } else {
          bucket_view.copy_(grad);
        }

        if (gradient_as_bucket_view_) {
          // Let grad point to bucket_view buffer.
          grad = bucket_view;
          // The grad is modified and need to be written back.
          return true;
        }
      } else {
        // If grad and bucket view point to the same storage, no need to copy.
        if (comm_hook_ == nullptr) {
          bucket_view.div_(div_factor_);
        }
      }
    } else {
      // Gradient is undefined. When find_unused_parameters=True, ensure it is
      // not marked as locally used, otherwise we will be allreducing zero's
      // instead of not touching .grad field of parameter.
      if (this->dynamic_graph_find_unused() ||
          this->static_graph_first_iteration()) {
        REDUCER_CHECK(
            local_used_map_[variable_index].item<int>() == 0,
            logger_,
            "Encountered gradient which is undefined, but still allreduced by "
            "DDP reducer. This indicates a bug in DDP implementation, please "
            "report a bug with a repro to PyTorch.");
      }
      bucket_view.zero_();
    }
    // The grad is not modified and doesn't need to be written back.
    return false;
  });
}

void Reducer::mark_variable_ready_sparse(size_t variable_index) {
  const auto& bucket_index = variable_locators_[variable_index];
  auto& bucket = buckets_[bucket_index.bucket_index];
  auto& variable = bucket.variables[bucket_index.intra_bucket_index];

  runGradCallbackForVariable(variable, [&](auto& grad) {
    REDUCER_CHECK(
        grad.defined(), logger_, "Expected sparse gradient to be defined.");
    REDUCER_CHECK(
        grad.options().layout() == c10::kSparse,
        logger_,
        "Expected variable to have sparse gradient.");

    // Sparse tensors cannot be grouped together with other sparse tensors in a
    // single reduction operation like we can for dense tensors. Therefore, the
    // `offsets` and `lengths` vectors in the bucket struct are empty, and
    // there is no pre-existing accumulation tensor.
    // Directly assign the sparse tensor to the `gradients` field.
    bucket.gradients = grad;
    // If no DDP comm hook is registered, the allreduce only sums up the
    // value, and a separate division is required.
    if (comm_hook_ == nullptr) {
      bucket.gradients.div_(div_factor_);
    }
    // The grad is modified in place and needs to be written back.
    return true;
  });
}

std::vector<c10d::GradBucket> Reducer::get_grad_buckets(
    bool return_zero_tensors) const {
  std::lock_guard<std::mutex> lock(mutex_);
  std::vector<c10d::GradBucket> gradBuckets;
  gradBuckets.reserve(buckets_.size());
  for (const auto i : c10::irange(buckets_.size())) {
    auto& bucket = buckets_[i];
    auto variables_for_bucket = get_variables_for_bucket(i, bucket);
    gradBuckets.emplace_back(
        i,
        buckets_.size(),
        return_zero_tensors ? at::zeros_like(bucket.gradients)
                            : bucket.gradients,
        bucket.offsets,
        bucket.lengths,
        bucket.sizes_vec,
        variables_for_bucket);
  }
  return gradBuckets;
}

void Reducer::set_forward_pass_work_handle(
    c10::intrusive_ptr<c10d::Work> forwardPassWorkHandle,
    bool useStaticWorldSize) {
  std::lock_guard<std::mutex> lock(mutex_);
  forwardPassWorkHandle_.workHandle = std::move(forwardPassWorkHandle);
  forwardPassWorkHandle_.useStaticWorldSize = useStaticWorldSize;
}

at::Tensor Reducer::get_local_used_map_on_device() const {
  std::lock_guard<std::mutex> lock(mutex_);
  return local_used_map_dev_;
}

void Reducer::push_rebuilt_params_for_all_indices() {
  std::lock_guard<std::mutex> lock(mutex_);
  if (!should_rebuild_buckets() || !rebuilt_param_indices_.empty()) {
    return;
  }
  const auto variable_count = params_.size();
  for (const auto variable_index : c10::irange(variable_count)) {
    push_rebuilt_params(variable_index);
  }
}

void Reducer::push_rebuilt_params(const size_t& index) {
  rebuilt_params_.push_back(params_[index]);
  rebuilt_param_indices_.push_back(index);
}

void Reducer::set_divide_factor() {
  // If it was scheduled, wait on allreduce in forward pass that tells us
  // division factor based on no. of currently participating processes.
  if (div_factor_ == kUnsetDivFactor) {
    div_factor_ = process_group_->getSize();
    auto& workHandle = forwardPassWorkHandle_.workHandle;
    if (workHandle && !forwardPassWorkHandle_.useStaticWorldSize) {
      workHandle->wait();
      // PyProcessGroup::PyWork doesn't expose value, so fetch it from the
      // future
      auto results = extractTensors(workHandle->getFuture()->value());

      // Guard against the results being empty
      TORCH_INTERNAL_ASSERT(results.size() > 0);
      at::Tensor& res = results.front();
      div_factor_ = res.item().to<int>();
    }
  }
}

// Right now delay_all_reduce is only called when static_graph_=true and
// num_iterations_==1.
void Reducer::delay_all_reduce() {
  std::lock_guard<std::mutex> lock(this->mutex_);

  if (should_collect_runtime_stats()) {
    record_backward_compute_end_time();
    record_backward_comm_start_time();
  }

  // launch all reduce local used map
  all_reduce_local_used_map();

  // prepare to set unused_parameters_, if it is static graph,
  // unused_parameters_ will not change after 1st iteration.
  unused_parameters_.clear();

  // copy all gradients to buckets
  for (const auto variable_index : c10::irange(params_.size())) {
    // set unused_parameters_
    if (numGradHooksTriggeredMap_[variable_index] == 0) {
      unused_parameters_.push_back(variable_index);
    }
    require_finalize_ = true;
    set_divide_factor();
    if (expect_sparse_gradients_[variable_index]) {
      mark_variable_ready_sparse(variable_index);
    } else {
      mark_variable_ready_dense(variable_index);
    }
  }

  // To avoid confusion around why static graph is picking up
  // some parameters as unused on a rank vs not, we log
  // unused parameter names for each rank for better
  // debugability when TORCH_DISTRIBUTED_DEBUG is set to
  // INFO or DETAIL
  if (ddp_debug_level_ != c10d::DebugLevel::Off) {
    // construct one string to output
    std::ostringstream unused_params_stream;

    for (const auto& unused_index : unused_parameters_) {
      auto param_name = param_names_.find(unused_index);
      TORCH_INTERNAL_ASSERT(
          param_name != param_names_.end(),
          "Expected to find parameter name from unused parameters map in debug mode.");
      // Add the param_name
      unused_params_stream << "{" << param_name->second << "," << unused_index
                           << "}";
    }

    // Each rank prints out all the unused parameters detected
    if (unused_parameters_.size() > 0) {
      LOG(INFO) << "[Rank " << process_group_->getRank() << "]: "
                << "Parameter(s) (in the format of {param_name, index}): "
                << unused_params_stream.str()
                << " is(are) unused during first iteration. Since"
                << " static_graph=True is enabled for DDP, we expect"
                << " this set of unused parameters to remain consistent"
                << " on this rank throughout the training.";
    }
  }

  // launch all reduces for all buckets
  for (auto& bucket : buckets_) {
    all_reduce_bucket(bucket);
  }

  finalize_backward();
}

void Reducer::set_logger(std::weak_ptr<c10d::Logger> logger) {
  logger_ = logger;
}

// The function `autograd_hook` is called after the gradient for a
// model parameter has been accumulated into its gradient tensor.
// This function is only to be called from the autograd thread.
void Reducer::autograd_hook(size_t index) {
  std::lock_guard<std::mutex> lock(this->mutex_);
  // Ignore if we don't expect to be called.
  // This may be the case if the user wants to accumulate gradients
  // for number of iterations before reducing them.
  if (!expect_autograd_hooks_) {
    return;
  }

  grad_ready_order_indices_.push_back(index);

  // See Note [Skip allreducing local_used_map_dev]
  if (dynamic_graph_find_unused() || static_graph_first_iteration()) {
    // Since it gets here, this param has been used for this iteration. We want
    // to mark it in local_used_map_. During no_sync session, the same var can
    // be set multiple times, which is OK as does not affect correctness. As
    // long as it is used once during no_sync session, it is marked as used.
    // Only set it as locally used if the grad is defined. Otherwise, hooks can
    // be fired  with undefined grads, such as when not all outputs are used in
    // DDP when computing loss. In this case, we don't want to mark it as
    // locally used to ensure we don't touch the parameter's .grad field.
    auto& variable = get_param_from_index(index);
    runGradCallbackForVariable(variable, [&](auto& grad) {
      if (grad.defined()) {
        local_used_map_[index] = 1;
      }
      // The gradient is never modified.
      return false;
    });
  }

  if (static_graph_first_iteration()) {
    numGradHooksTriggeredMap_[index] += 1;
    return;
  }

  // If `find_unused_parameters_` is true there may be model parameters that
  // went unused when computing the model output, they won't be part of the
  // autograd graph, and won't receive gradients. These parameters are
  // discovered in the `prepare_for_backward` function and their indexes stored
  // in the `unused_parameters_` vector.
  if (!has_marked_unused_parameters_) {
    has_marked_unused_parameters_ = true;
    for (const auto& unused_index : unused_parameters_) {
      mark_variable_ready(unused_index);
    }
  }

  // Rebuild bucket only if 1) it is the first time to rebuild bucket 2)
  // static_graph_ is true or find_unused_parameters_ is false,
  // 3) this backward pass needs to run allreduce.
  // Here, we just dump tensors and their parameter indices into
  // rebuilt_params_ and rebuilt_param_indices_ based on gradient arriving
  // order, and then at the end of finalize_backward(), buckets will be
  // rebuilt based on rebuilt_params_ and rebuilt_param_indices_, and then
  // will be broadcasted and initialized.
  // If it is static graph, after 1st iteration, check if a variable
  // is ready for communication based on numGradHooksTriggeredMap_.
  if (static_graph_after_first_iteration()) {
    REDUCER_CHECK(
        numGradHooksTriggeredMapPerIteration_[index] > 0,
        logger_,
        "Your training graph has changed in this iteration, ",
        "e.g., one parameter is unused in first iteration, but ",
        "then got used in the second iteration. this is not ",
        "compatible with static_graph set to True.");
    if (--numGradHooksTriggeredMapPerIteration_[index] == 0) {
      if (should_rebuild_buckets()) {
        push_rebuilt_params(index);
      }
      // Finally mark variable for which this function was originally called.
      mark_variable_ready(index);
    }
  } else {
    if (should_rebuild_buckets()) {
      push_rebuilt_params(index);
    }
    // Finally mark variable for which this function was originally called.
    mark_variable_ready(index);
  }
}

void Reducer::all_reduce_local_used_map() {
  // See Note [Skip allreducing local_used_map_dev]
  // H2D from local_used_map_ to local_used_map_dev_
  if (local_used_map_dev_.is_cuda()) {
    // Note [local_used_map_ -> local_used_map_dev copying]
    // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    // We do async H2D to avoid the blocking overhead. The async copy and
    // allreduce respect the current stream, so will be sequenced
    // correctly.
    //
    // Correct sequencing with respect to host operations is also
    // essential. The H2D copy_ is stream ordered, while the host's
    // changes to local_used_map_ are host ordered. If a large backlog of
    // cuda-stream work pushes the copy_ far into the future, and if no
    // blocking calls occur between now and finalize_backward()** such
    // that finalize_backward() re-zeroes local_used_map_ on the host
    // before the stream executes the copy_, copy_ will read those zeros
    // instead of the values we thought we told it to read here. Copying
    // local_used_map_ to a pinned temporary (which the pinned caching
    // allocator should supply asynchronously) avoids this nasty, rare
    // race condition.
    //
    // ** In the hoped-for case where all params are used, DDP itself
    // won't do any blocking work between now and the re-zeroing, so the
    // danger is real.
    //
    // Defensively ensures local_used_map_tmp is distinct from
    // local_used_map_
    auto local_used_map_tmp = at::native::empty_like(
        local_used_map_,
        optTypeMetaToScalarType(local_used_map_.options().dtype_opt()),
        local_used_map_.options().layout_opt(),
        local_used_map_.options().device_opt(),
        true /* pinned_memory */);
    // Paranoid asserts here because in some workloads, the pinned
    // allocator behaves in a way we don't understand, and may be bugged.
    // See https://github.com/pytorch/pytorch/pull/54474
    TORCH_INTERNAL_ASSERT(local_used_map_tmp.is_pinned());
    TORCH_INTERNAL_ASSERT(
        local_used_map_tmp.data_ptr() != local_used_map_.data_ptr());
    local_used_map_tmp.copy_(local_used_map_);
    local_used_map_dev_.copy_(local_used_map_tmp, true);
  } else {
    local_used_map_dev_.copy_(local_used_map_, true);
  }
  std::vector<at::Tensor> temp_local_used_map_dev_vec_ = {local_used_map_dev_};
  local_used_work_ =
      ops::allreduce(process_group_, temp_local_used_map_dev_vec_);
}

at::Tensor& Reducer::get_param_from_index(size_t index) {
  const auto& bucket_index = variable_locators_[index];
  auto& bucket = buckets_[bucket_index.bucket_index];
  // Cannot simply access variable via `bucket.variables[variable_index]` since
  // return value is used in `runGradCallbackForVariable()` which does not
  // accept const tensors.
  auto& variable = bucket.variables[bucket_index.intra_bucket_index];
  return variable;
}

void Reducer::checkAndRaiseMarkedTwiceError(size_t index) {
  // Something is wrong if all variables contained in this bucket have
  // already been marked as ready.
  // We don't expect the same variable to be marked ready twice.
  bool marked_twice =
      perIterationReadyParams_.find(index) != perIterationReadyParams_.end();

  if (marked_twice) {
    // Report index of param that has been marked twice. In debug mode, also
    // report fully qualified parameter name.
    auto param_name = param_names_.find(index);
    const bool found_param_name = param_name != param_names_.end();
    TORCH_INTERNAL_ASSERT(
        ddp_debug_level_ == c10d::DebugLevel::Off || found_param_name,
        "Expected to find parameter name in debug mode.");
    std::string paramInfo = c10::str(
        "Parameter at index ",
        index,
        found_param_name ? c10::str(" with name ", param_name->second) : "",
        " has been marked as ready twice. This means that multiple autograd engine ",
        " hooks have fired for this particular parameter during this iteration.");
    // param_names_ is empty in debug mode.
    if (!found_param_name) {
      paramInfo += c10::str(
          " You can set the environment variable TORCH_DISTRIBUTED_DEBUG to either",
          " INFO or DETAIL to print parameter names for further debugging.");
    }
    std::string common_error = c10::str(
        "Expected to mark a variable ready only once. ",
        "",
        "This error is caused by one of the following reasons: ",
        "1) Use of a module parameter outside the `forward` function. ",
        "Please make sure model parameters are not shared across multiple ",
        "concurrent forward-backward passes. or try to use _set_static_graph() ",
        "as a workaround if this module graph does not change ",
        "during training loop.",
        "2) Reused parameters in multiple reentrant backward passes. For ",
        "example, if you use multiple `checkpoint` functions to wrap the ",
        "same part of your model, it would result in the same set of ",
        "parameters been used by different reentrant backward passes ",
        "multiple times, and hence marking a variable ready multiple times. ",
        "DDP does not support such use cases in default. You can try to ",
        "use _set_static_graph() as a workaround if your module graph ",
        "does not change over iterations.");

    common_error += c10::str("\n", paramInfo);

    REDUCER_CHECK(
        has_marked_unused_parameters_,
        logger_,
        common_error,
        "3) Incorrect unused parameter detection. The return value of the ",
        "`forward` function is inspected by the distributed data parallel ",
        "wrapper to figure out if any of the module's parameters went ",
        "unused. For unused parameters, DDP would not expect gradients from ",
        "then. However, if an unused parameter becomes part of the autograd ",
        "graph at a later point in time (e.g., in a reentrant backward when ",
        "using `checkpoint`), the gradient will show up unexpectedly. If all ",
        "parameters in the model participate in the backward pass, you can ",
        "disable unused parameter detection by passing the keyword argument ",
        "`find_unused_parameters=False` to ",
        "`torch.nn.parallel.DistributedDataParallel`. If unused parameters ",
        "in the model do not change over iterations, You can try to use ",
        "_set_static_graph() as a workaround if this module graph does not ",
        "change during training loop.");
    REDUCER_CHECK(!has_marked_unused_parameters_, logger_, common_error);
  }
}

void Reducer::mark_variable_ready(size_t variable_index) {
  REDUCER_CHECK(
      variable_index < variable_locators_.size(),
      logger_,
      "Out of range variable index.");

  checkAndRaiseMarkedTwiceError(variable_index);
  perIterationReadyParams_.insert(variable_index);
  backward_stats_[variable_index] =
      current_time_in_nanos() - backward_compute_start_time_;

  // Any time we mark a variable ready (be it in line due to unused parameters,
  // or via an autograd hook), we require a call to the finalize function. If
  // this doesn't happen before the next iteration (or call to
  // `prepare_for_backwards`), we know something is wrong.
  require_finalize_ = true;

  const auto& bucket_index = variable_locators_[variable_index];
  auto& bucket = buckets_[bucket_index.bucket_index];

  set_divide_factor();

  if (bucket.expect_sparse_gradient) {
    mark_variable_ready_sparse(variable_index);
  } else {
    mark_variable_ready_dense(variable_index);
  }

  // TODO(@pietern): Make this work for both CPU/CUDA tensors.
  // When using CPU tensors we don't need to do this.
  // Record event so that we can wait for all of them.
  // auto& event = bucket.events[bucket_index.intra_bucket_index];
  // event.record();

  // Check if this was the final gradient for this bucket.
  if (--bucket.pending == 0) {
    mark_bucket_ready(bucket_index.bucket_index);
  }

  // Run finalizer function and kick off reduction for local_used_map once the
  // final bucket was marked ready.
  if (next_bucket_ == buckets_.size()) {
    if (dynamic_graph_find_unused()) {
      all_reduce_local_used_map();
    }

    torch::autograd::Engine::get_default_engine().queue_callback([=] {
      std::lock_guard<std::mutex> lock(this->mutex_);
      if (should_collect_runtime_stats()) {
        record_backward_compute_end_time();
      }
      // Check that all buckets were completed and had their work kicked off.
      TORCH_INTERNAL_ASSERT(next_bucket_ == buckets_.size());
      if (static_graph_after_first_iteration() && should_rebuild_buckets()) {
        for (const auto& unused_index : unused_parameters_) {
          push_rebuilt_params(unused_index);
        }
      }
      this->finalize_backward();
    });
  }
}

c10::intrusive_ptr<c10::ivalue::Future> Reducer::run_comm_hook(
    GradBucket& grad_bucket) {
  if (comm_hook_ == nullptr) {
    _AllReduceBySumCommHook allreduce_hook(process_group_);
    return allreduce_hook.runHook(grad_bucket);
  } else {
    return comm_hook_->runHook(grad_bucket);
  }
}

void Reducer::all_reduce_bucket(Bucket& bucket) {
  auto variables_for_bucket = get_variables_for_bucket(next_bucket_, bucket);
  // TODO(@pietern): Ensure proper synchronization with the CUDA events
  // that recorded copies into this `gradients` tensor. If these copies are
  // executed on non-default streams, the current stream for the device
  // that holds the `gradients` tensor must wait on these events.
  //
  // As long as autograd uses the default stream for every device,
  // these operations are implicitly sequenced, and we don't need to
  // do any extra synchronization here.
  const auto& tensor = bucket.gradients;

  GradBucket grad_bucket(
      next_bucket_,
      buckets_.size(),
      tensor,
      bucket.offsets,
      bucket.lengths,
      bucket.sizes_vec,
      variables_for_bucket);
  bucket.future_work = run_comm_hook(grad_bucket);
}

std::vector<at::Tensor> Reducer::get_variables_for_bucket(
    size_t bucket_index,
    const Bucket& bucket) const {
  // Check if we have cached mapping previously.
  if (has_rebuilt_bucket_ &&
      cached_variables_for_bucket_.find(bucket_index) !=
          cached_variables_for_bucket_.end()) {
    return cached_variables_for_bucket_[bucket_index];
  }
  std::vector<at::Tensor> variables_for_bucket;
  variables_for_bucket.reserve(bucket.variable_indices.size());
  for (const auto& variable_index : bucket.variable_indices) {
    // Grab bucket index where gradient is located using variable_locators_.
    auto& bucket_index_for_variable = variable_locators_[variable_index];
    // Grab the actual model parameter.
    auto& variable =
        bucket.variables[bucket_index_for_variable.intra_bucket_index];
    variables_for_bucket.emplace_back(variable);
  }

  if (has_rebuilt_bucket_) {
    TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
        cached_variables_for_bucket_.find(bucket_index) ==
        cached_variables_for_bucket_.end());
    cached_variables_for_bucket_.insert(
        {bucket_index, std::move(variables_for_bucket)});
    return cached_variables_for_bucket_[bucket_index];
  } else {
    return variables_for_bucket;
  }
}

// Called when the bucket at the specified index is ready to be reduced.
void Reducer::mark_bucket_ready(size_t bucket_index) {
  TORCH_INTERNAL_ASSERT(bucket_index >= next_bucket_);

  // Buckets are reduced in sequence. Ignore this bucket if
  // it's not its turn to be reduced.
  if (bucket_index > next_bucket_) {
    return;
  }

  // Keep going, until we either:
  // - have kicked off reduction for all buckets, or
  // - found a bucket that's not yet ready for reduction.
  for (; next_bucket_ < buckets_.size() && buckets_[next_bucket_].pending == 0;
       next_bucket_++) {
    num_buckets_ready_++;
    if (num_buckets_ready_ == 1 && should_collect_runtime_stats()) {
      record_backward_comm_start_time();
    }
    auto& bucket = buckets_[next_bucket_];
    all_reduce_bucket(bucket);
  }
}

void Reducer::install_futures(
    c10::List<c10::intrusive_ptr<c10::ivalue::Future>> futs) {
  // Append instead of overwrite so that this method can be called multiple
  // times in one iteration.
  if (!installed_futures_) {
    installed_futures_ = std::move(futs);
  } else {
    installed_futures_->append(futs);
  }
}

void Reducer::initialize_buckets(
    std::vector<std::vector<size_t>> bucket_indices) {
  // If initialize_buckets is called inside DDP constructor, then
  // it does not matter rpc context ptr is nullptr or not, as grad
  // will not be mutated.
  // If initialize_buckets is called during training loop, e.g, inside
  // rebuild_buckets(), since grad could be mutated and be pointed to
  // bucket_view, then it needs to check rpc context ptr is nullptr or not,
  // If rpc context ptr is nullptr, mutate variable.grad(); otherwise,
  // mutate grad in rpc context.
#ifndef _WIN32
  using torch::distributed::autograd::ThreadLocalDistAutogradContext;
  this->rpc_context_.set(ThreadLocalDistAutogradContext::getContextPtr());
#endif

  // This shouldn't be called if we're expecting autograd hooks to fire.
  REDUCER_CHECK(
      !expect_autograd_hooks_,
      logger_,
      "`initialize_buckets` must NOT be called during autograd execution.");

  // Clear current bucket assignment.
  buckets_.clear();
  variable_locators_.clear();

  // Ensure we have a bucket index for every variable.
  variable_locators_.resize(params_.size());

  // Iterate over buckets.
  const auto bucket_count = bucket_indices.size();
  buckets_.reserve(bucket_count);
  for (const auto bucket_index : c10::irange(bucket_count)) {
    Bucket bucket;

    // TODO(@pietern): Validate indices.
    // Must be non-empty, unique, and unique across buckets.
    REDUCER_CHECK(
        bucket_indices[bucket_index].size() > 0,
        logger_,
        "Empty bucket specified.");

    // Variables that expect sparse gradients must have their own bucket.
    if (bucket_indices[bucket_index].size() == 1) {
      const auto variable_index = bucket_indices[bucket_index].front();
      bucket.expect_sparse_gradient = expect_sparse_gradients_[variable_index];
    } else {
      for (const auto variable_index : bucket_indices[bucket_index]) {
        REDUCER_CHECK(
            !expect_sparse_gradients_[variable_index],
            logger_,
            "Buckets with more than one variable cannot include variables ",
            "that expect a sparse gradient.");
      }
    }

    if (bucket.expect_sparse_gradient) {
      const auto variable_index = bucket_indices[bucket_index].front();
      const auto& variable = params_[variable_index];
      TORCH_INTERNAL_ASSERT(bucket_indices[bucket_index].size() == 1);
      bucket.variables = {variable};
    } else {
      at::TensorOptions options;
      // The start index of the variable in the flattened tensor.
      size_t offset = 0;

      // Reserve enough space for the per-variable fields stored in the bucket
      // for efficiency.
      const size_t num_variables = bucket_indices[bucket_index].size();
      bucket.variables.reserve(num_variables);
      bucket.offsets.reserve(num_variables);
      bucket.lengths.reserve(num_variables);
      bucket.sizes_vec.reserve(num_variables);

      // Iterate over bucket variables.
      for (const auto variable_index : bucket_indices[bucket_index]) {
        TORCH_INTERNAL_ASSERT(
            variable_index < params_.size(),
            "Out of range variable index specified.");
        const auto& variable = params_[variable_index];
        if (!options.has_device()) {
          options = options.device(variable.device());
        } else {
          REDUCER_CHECK(
              variable.device() == options.device(),
              logger_,
              "All parameters in a bucket must be ",
              "placed on the same device.");
        }
        if (!options.has_dtype()) {
          options = options.dtype(variable.dtype());
        } else {
          REDUCER_CHECK(
              variable.dtype() == options.dtype(),
              logger_,
              "All parameters in a bucket must have the same dtype.");
        }
        const auto length = variable.numel();
        bucket.variables.push_back(variable);
        bucket.offsets.push_back(offset);
        bucket.lengths.push_back(length);
        bucket.sizes_vec.push_back(variable.sizes());
        offset += length;
      }

      // Allocate the bucket's flattened `gradients` tensor.
      bucket.gradients = at::empty({static_cast<long>(offset)}, options);

      // Note:  "Gradient Layout Contract"
      //
      // Here, create views into the `gradients` tensor for each variable's
      // grad. Views serve as entry points to `copy_()` each grad's data in/out
      // of the flattened `gradients` tensor.
      //
      // Gradients may have dense memory but non-row-major-contiguous strides
      // (e.g. channels_last or channels_last_3d). For coalesced accesses
      // during copy_s, it's beneficial for each view's layout to match its
      // grad's layout.
      //
      // Specifically, we expect torch/csrc/autograd/functions/accumulate_grad.h
      // produces grads that obey the "Gradient Layout Contract":
      //   (1) if variable.is_non_overlapping_and_dense(), the stashed grad's
      //       strides match variable.
      //   (2) else, stashed grad is rowmajor contiguous.
      // and create views to match.
      //
      // If AccumulateGrad breaks the contract, and produces a grad with an
      // unexpected layout, performance will degrade due to poor memory access
      // patterns when copy_ing grad data in and out of its bucket view.
      // However, numerics remain correct, because the bucket view is the same
      // on either end of the raw allreduce.  bucket_view_in.copy(grad)
      // tranposes
      // (+ densifies) to the bucket view's layout, the data is allreduced,
      // then grad.copy_(bucket_view_out) transposes it back to grad's layout.
      //
      // The only way the numerics can go haywire is if the bucket views
      // themselves have different layouts across processes.
      // Bucket views' sizes and strides are set based on param layouts, using
      // the same logic that (we expect) AccumulateGrad uses for their grads.
      // Therefore, the only way a bucket view could have different layouts in
      // different processes is if its param has a different layout in
      // different processes. We can check that param layouts match across
      // processes in Reducer's constructor by allreducing some metadata.
      // Checking just once won't catch if someone messes with
      // param layouts over time, but not messing with params after DDP
      // construction is already a documented constraint.
      initialize_bucket_views(bucket);
    }

    // Map participating variables to this bucket.
    size_t intra_bucket_index = 0;
    for (const auto variable_index : bucket_indices[bucket_index]) {
      TORCH_INTERNAL_ASSERT(
          variable_index < variable_locators_.size(),
          "Out of range variable index specified.");
      variable_locators_[variable_index] =
          VariableLocator(bucket_index, intra_bucket_index++);
    }
    bucket.variable_indices = std::move(bucket_indices[bucket_index]);

    buckets_.push_back(std::move(bucket));
  }
}

// (see Note:  "Gradient Layout Contract" in initialize_buckets).
void Reducer::initialize_bucket_views(Reducer::Bucket& bucket) {
  const auto& gradients = bucket.gradients;
  for (const auto i : c10::irange(bucket.variables.size())) {
    auto& v = bucket.variables[i];
    const auto offset = bucket.offsets[i];
    const auto length = bucket.lengths[i];
    if (v.is_non_overlapping_and_dense()) {
      // If the param's memory is dense, match its layout, anticipating
      // the autograd engine (AccumulateGrad) will also create gradients
      // matching its layout.
      bucket.bucket_views_in.push_back(
          gradients.as_strided(v.sizes(), v.strides(), offset));
    } else {
      // Fall back to a C-style contiguous view, again anticipating
      // AccumulateGrad will do the same when stashing grads for non-dense
      // params.
      bucket.bucket_views_in.push_back(
          gradients.narrow(0, offset, length).view(v.sizes()));
    }
    // By default `bucket_views_out` and `bucket_views_in` are
    // essentially the same thing.
    bucket.bucket_views_out = bucket.bucket_views_in;

    // If gradient_as_bucket_view_ is set as true, then there are two cases to
    // handle: initialize_bucket_views could be called inside initialize_buckets
    // when rebuild_buckets, if grad has already been defined/calculated in
    // previous iteration, old grad needs to be copied into new bucket_view and
    // let grad point to the new bucket_view, initialize_bucket_views could also
    // be called inside initialize_buckets during construction. Grads are not
    // defined during construction time, in this case, do not let grad point to
    // bucket_view, because grads should be kept as being undefined for globally
    // unused parameters.
    if (gradient_as_bucket_view_) {
      auto& bucket_view = bucket.bucket_views_in.back();
      runGradCallbackForVariable(v, [&](auto& grad) {
        if (grad.defined() && !grad.is_alias_of(bucket_view)) {
          bucket_view.copy_(grad);
          grad = bucket_view;
          // The grad is modefied and needs to be written back.
          return true;
        }
        // The grad is not modified and does not need to be written back.
        return false;
      });
    }
  }
}

// (see Note:  "Gradient Layout Contract" in initialize_buckets).
void Reducer::populate_bucket_views_out(
    Reducer::Bucket& bucket,
    at::Tensor& tensor) {
  bucket.bucket_views_out.clear();
  for (const auto i : c10::irange(bucket.variables.size())) {
    const auto& v = bucket.variables[i];
    const auto offset = bucket.offsets[i];
    const auto length = bucket.lengths[i];
    if (v.is_non_overlapping_and_dense()) {
      // If the param's memory is dense, match its layout, anticipating
      // the autograd engine (AccumulateGrad) will also create gradients
      // matching its layout.
      bucket.bucket_views_out.push_back(
          tensor.as_strided(v.sizes(), v.strides(), offset));
    } else {
      // Fall back to a C-style contiguous view, again anticipating
      // AccumulateGrad will do the same when stashing grads for non-dense
      // params.
      bucket.bucket_views_out.push_back(
          tensor.narrow(0, offset, length).view(v.sizes()));
    }
  }
}

void Reducer::prepare_for_forward() {
  std::lock_guard<std::mutex> lock(mutex_);
  num_iterations_++;
  if (should_collect_runtime_stats()) {
    record_forward_compute_start_time();
  }
}

void Reducer::reset_bucket_counting() {
  next_bucket_ = 0;
  // Reset num_buckets_ready_ at the beginning of backward computation
  // in each iteration.
  num_buckets_ready_ = 0;

  for (auto& bucket : buckets_) {
    bucket.pending = bucket.variables.size();
  }

  if (static_graph_) {
    numGradHooksTriggeredMapPerIteration_ = numGradHooksTriggeredMap_;
  }
}

// Traverse the autograd graph starting at the specified output.
// All parameters for which we have a pointer to their gradient accumulation
// functions, but don't show up in the autograd graph will be marked ready for
// for reduction as soon as the first autograd hook is called. This is not
// done immediately because the model output may be ignored, and we only
// want to start performing reductions on `torch.autograd.backward()`.
void Reducer::search_unused_parameters(
    const std::vector<torch::autograd::Variable>& outputs) {
  std::unordered_set<torch::autograd::Node*> seen;
  std::vector<torch::autograd::Node*> queue;

  RECORD_FUNCTION(
      "torch.distributed.ddp.reducer::search_unused_parameters",
      std::vector<c10::IValue>());

  // Seed queue with the grad functions of all outputs.
  for (const auto& output : outputs) {
    const auto& grad_fn = output.grad_fn();
    if (grad_fn) {
      queue.push_back(grad_fn.get());
    }
  }

  // Traverse the autograd graph starting at the specified output.
  while (!queue.empty()) {
    auto fn = queue.back();
    queue.pop_back();
    for (const auto& edge : fn->next_edges()) {
      if (auto next_ptr = edge.function.get()) {
        const bool was_inserted = seen.insert(next_ptr).second;
        if (was_inserted) {
          queue.push_back(next_ptr);
        }
      }
    }
  }

  // Find accumulator functions that don't show up in this graph.
  for (const auto& it : gradAccToVariableMap_) {
    // If the accumulator function is present in the graph, we know
    // a gradient will be computed for the corresponding parameter.
    if (seen.count(it.first) == 0) {
      if (ddp_debug_level_ == c10d::DebugLevel::Detail) {
        const auto param_info = param_names_.find(it.second);
        TORCH_INTERNAL_ASSERT(
            param_info != param_names_.end(),
            "Did not find variable index ",
            it.second,
            " in DDP parameter name mapping!");
        const auto param_name = param_info->second;
        LOG(INFO) << "[Rank " << process_group_->getRank() << "]: "
                  << "Parameter " << param_name << " at index " << it.second
                  << " is marked as unused.";
      }
      unused_parameters_.push_back(it.second);
    }
  }

  // Warn user about unnecessary perf hit if all parameters were used in
  // forward.
  if (unused_parameters_.empty()) {
    TORCH_WARN_ONCE(
        "find_unused_parameters=True was specified in DDP constructor, "
        "but did not find any unused parameters in the forward pass. This flag "
        "results in an extra traversal of the autograd graph every iteration, "
        " which can adversely affect performance. If your model indeed never "
        "has any unused parameters in the forward pass, consider turning this "
        "flag off. Note that this warning may be a false positive if your model "
        "has flow control causing later iterations to have unused parameters.");
  }
  if (!static_graph_ && ddp_graph_static_) {
    if (num_iterations_ > 1) {
      // Graph is still static if the set of unused parameters did not change.
      ddp_graph_static_ =
          prev_iteration_unused_parameters_ == unused_parameters_;

      if (!ddp_graph_static_) {
        // Log graph is not static. Logger takes care of ensuring this is done
        // only once to avoid overhead.
        logger_.lock()->log_if_graph_static(false);
      }
    }
    prev_iteration_unused_parameters_ = unused_parameters_;
  }
}

void Reducer::prepare_for_backward(
    const std::vector<torch::autograd::Variable>& outputs) {
  std::lock_guard<std::mutex> lock(mutex_);

  backward_compute_start_time_ = current_time_in_nanos();
  if (should_collect_runtime_stats()) {
    record_backward_compute_start_time();
  }

  // Reset accounting.
  expect_autograd_hooks_ = true;
  // Clear gradient ready order as it can be different in the next iteration.
  grad_ready_order_indices_.clear();

  reset_bucket_counting();

  // Reset unused parameter accounting.
  has_marked_unused_parameters_ = false;
  // Reset per iteration marked ready parameters.
  perIterationReadyParams_.clear();

  // If static graph is not set, search graph to detect unused parameters.
  // When static graph is set, unused_parameters_ will be detected and will
  // not change after 1st iteration.
  // If static_graph_ = false and find_unused_parameters_ is false,
  // we assume that autograd hooks for ALL variables will be called,
  // and we don't have to search the autograd graph for presence of these hooks.
  if (dynamic_graph_find_unused()) {
    unused_parameters_.clear();
    search_unused_parameters(outputs);
  }
}

void Reducer::copy_bucket_to_grad(
    at::Tensor& variable,
    Reducer::Bucket& bucket,
    size_t intra_bucket_index,
    bool global_unused) {
  const auto& bucket_view = bucket.bucket_views_out[intra_bucket_index];
  runGradCallbackForVariable(variable, [&](auto& grad) {
    // If a parameter is globally unused, we keep its grad untouched.
    if (!global_unused) {
      if (!grad.defined()) {
        // Creates grad according to the "Gradient Layout Contract"
        // (see torch/csrc/autograd/functions/accumulate_grad.h)
        grad =
            torch::autograd::utils::clone_obey_contract(bucket_view, variable);
      } else {
        grad.copy_(bucket_view);
      }
      // The grad is modified and needs to be written back.
      return true;
    }
    // The grad is not modified.
    return false;
  });
}

std::vector<std::string> Reducer::getUnmarkedParamsForIteration() {
  std::vector<std::string> unMarkedParamNames;
  for (const auto& it : param_names_) {
    if (perIterationReadyParams_.find(it.first) ==
        perIterationReadyParams_.end()) {
      unMarkedParamNames.push_back(it.second);
    }
  }
  return unMarkedParamNames;
}

std::vector<size_t> Reducer::getUnmarkedParamIndicesForIteration() {
  std::vector<size_t> unmarked_param_indices;
  const auto variable_count = params_.size();
  for (const auto variable_index : c10::irange(variable_count)) {
    if (perIterationReadyParams_.find(variable_index) ==
        perIterationReadyParams_.end()) {
      unmarked_param_indices.push_back(variable_index);
    }
  }
  return unmarked_param_indices;
}

// A bucket with one or more dense tensors needs to be unflattened.
void Reducer::finalize_bucket_dense(Bucket& bucket) {
  for (const auto intra_bucket_index : c10::irange(bucket.variables.size())) {
    auto& variable = bucket.variables[intra_bucket_index];

    bool global_unused = false;
    // See Note [Skip allreducing local_used_map_dev]
    if (static_graph_ || find_unused_parameters_) {
      // Determine if this param has been used globally or not.
      //
      // If the variable was used locally, it is also used globally and then
      // we don't need to wait for the reduction. Otherwise we lazily wait for
      // the reduction to complete, only when we see a variable that was
      // unused locally. Then we end up delaying the synchronization point
      // that local_used_work_->wait() implies. If we don't have any unused
      // parameters at all, we can skip waiting for the work to complete
      // altogether, and cause negligible performance overhead for models
      // where all parameters are used. Such lazily waiting means minimizing
      // performance impact for the big majority of models where all
      // parameters are always used. Then we only pay the overhead cost if
      // there is indeed a parameter that is locally unused, because we need
      // to check if it's also globally unused.
      size_t variable_index = bucket.variable_indices[intra_bucket_index];
      // Note: global_unused might not be global yet. As we lazily wait for
      // the reduction to complete, it becomes really global only if we get to
      // the point as below where we wait for the reduction work, make D2H
      // copy, and update global_unused with the real global consensus, i.e.
      // local_used_map_reduced_ is true.
      global_unused = local_used_map_[variable_index].item<int>() == 0;
      if (global_unused && !local_used_map_reduced_) {
        // Wait for local_used_map reduction to complete.
        local_used_work_->wait();
        // D2H from local_used_map_dev_ to local_used_map_
        // Blocking copy, if local_used_map_dev_ is cuda
        local_used_map_.copy_(local_used_map_dev_);

        global_unused = local_used_map_[variable_index].item<int>() == 0;
        local_used_map_reduced_ = true;
      }
    }

    if (!gradient_as_bucket_view_) {
      RECORD_FUNCTION(
          "torch.distributed.ddp.reducer::copy_bucket_to_grad",
          std::vector<c10::IValue>({variable}));
      copy_bucket_to_grad(variable, bucket, intra_bucket_index, global_unused);
    } else {
      const auto& bucket_view_out = bucket.bucket_views_out[intra_bucket_index];
      auto& bucket_view_in = bucket.bucket_views_in[intra_bucket_index];
      // If a communication hook is registered, then `bucket_view_out` stores
      // the allreduced results in a newly allocated tensor, so we copy
      // `bucket_view_out` back to `bucket_view_in` for this gradient.
      if (!bucket_view_in.is_alias_of(bucket_view_out)) {
        bucket_view_in.copy_(bucket_view_out);
      }
      runGradCallbackForVariable(variable, [&](auto& grad) {
        // If a parameter is globally unused, we keep its grad untouched.
        if (!global_unused) {
          // If grad is globally used but locally unused, let grad point to
          // bucket_view_in
          if (!grad.defined()) {
            grad = bucket_view_in;
          } else {
            if (!grad.is_alias_of(bucket_view_in)) {
              REDUCER_CHECK(
                  false,
                  logger_,
                  "Detected at least one parameter gradient is not the "
                  "expected DDP bucket view with gradient_as_bucket_view=True. "
                  "This may happen (for example) if multiple allreduce hooks "
                  "were registered onto the same parameter. If you hit this error, "
                  "please file an issue with a minimal repro.");
            }
          }
          // The grad is modified and needs to be written back.
          return true;
        }
        // The grad is not modified.
        return false;
      });
    }
  }
}

void Reducer::finalize_backward() {
  // No longer expect autograd hooks to fire after this function returns.
  TORCH_INTERNAL_ASSERT(expect_autograd_hooks_);
  expect_autograd_hooks_ = false;

  // No longer require call to finalize after this function returns.
  TORCH_INTERNAL_ASSERT(require_finalize_);
  require_finalize_ = false;

  // Wait for asynchronous reduction to complete, and unflatten the bucket's
  // flattened `gradients` tensor.
  for (auto& bucket : buckets_) {
    // See Note [DDP Communication Hook]
    TORCH_INTERNAL_ASSERT(
        bucket.future_work,
        "Expected bucket.future_work not to be null. "
        "This may indicate that communication hook was not properly installed.");
    bucket.future_work->wait();
    auto future_result = comm_hook_ == nullptr
        ? detail::parseCppCommHookResult(bucket.future_work->value())
        : comm_hook_->parseHookResult(bucket.future_work->value());
    if (bucket.expect_sparse_gradient) {
      bucket.gradients.copy_(future_result);
    } else {
      // Reinitialize only `bucket_views_out` with the future_result by
      // following the same logic in `initialize_buckets`.
      populate_bucket_views_out(bucket, future_result);
    }

    // Unset allreduce division factor, as it may change in next backwards pass
    // when running with DDP join mode.
    div_factor_ = kUnsetDivFactor;

    if (!bucket.expect_sparse_gradient) {
      // We don't need to finalize the sparse bucket since the sparse grad and
      // the bucket essentially point to the same storage. As a result, once
      // the allreduce is done, the sparse grads are automatically updated.
      finalize_bucket_dense(bucket);
    }
  }

  if (installed_futures_ != c10::nullopt) {
    c10::collectAll(*installed_futures_)->wait();
    installed_futures_ = c10::nullopt;
  }

  // See Note [Skip allreducing local_used_maps_dev]
  if (dynamic_graph_find_unused() || static_graph_first_iteration()) {
    // Due to the lazy wait, it is possible that reduction of the current
    // iteration is still going when the one for next iteration gets kicked off.
    // For such case, we want to wait explicitly to make sure the reduction does
    // complete before kicking off next one. Otherwise the previous one may
    // interfere, write to the device-side memory and clobber the content of
    // local_unused_maps_dev_.
    if (!local_used_map_reduced_) {
      local_used_work_->wait();
    }
  }

  if (dynamic_graph_find_unused()) {
    // Reset unused parameter accounting.
    // See Note [local_used_map_ -> local_used_map_dev copying]
    local_used_map_.fill_(0);
    local_used_map_reduced_ = false;
  }

  if (should_collect_runtime_stats()) {
    record_backward_comm_end_time();
  }
}

void Reducer::runGradCallbackForVariable(
    at::Tensor& variable,
    GradCallback&& cb) {
#ifdef _WIN32
  cb(variable.mutable_grad());
#else
  auto context_ptr = rpc_context_.context_ptr.load();
  if (context_ptr == nullptr) {
    cb(variable.mutable_grad());
  } else {
    // Under distributed autograd
    context_ptr->runGradCallbackForVariable(variable, std::move(cb));
  }
#endif
}

#ifndef _WIN32
void Reducer::RpcContext::set(ContextPtr&& new_context_ptr) {
  // We should set 'new_context_ptr' even if it's nullptr. That means the
  // reducer is under a local backward run.
  const auto new_context_raw_ptr = new_context_ptr.get();
  if (context_ptr.exchange(new_context_raw_ptr) != new_context_raw_ptr) {
    // Set the shared ptr to the context only if it's set first time.
    // All call sites should use the same context ptr.
    // Use an atomic to avoid data race from multiple threads.
    context_ptr_holder = std::move(new_context_ptr);
  }
}
#endif

void Reducer::sync_bucket_indices(
    std::vector<std::vector<size_t>>& bucket_indices) {
  auto num_buckets = bucket_indices.size();
  std::vector<size_t> bucket_sizes;
  bucket_sizes.reserve(num_buckets);
  int64_t total_size = 0;
  for (const auto i : c10::irange(num_buckets)) {
    auto bucket_size = bucket_indices.at(i).size();
    bucket_sizes.push_back(bucket_size);
    total_size += bucket_size;
  }

  at::TensorOptions options;
  options = options.dtype(at::kInt);
  options = options.device(params_[0].device());

  // Group indices and num_bucket together into indices_tensor
  // Broadcast this tensor first, as its size is equal among all processes
  auto indices_tensor = at::empty({total_size + 1}, at::kInt);
  auto indices_accessor = indices_tensor.accessor<int, 1>();
  auto indices_accessor_Index = 0;
  for (const auto i : c10::irange(num_buckets)) {
    const auto& bucket_size = bucket_indices.at(i).size();
    for (const auto j : c10::irange(bucket_size)) {
      indices_accessor[indices_accessor_Index++] = bucket_indices[i][j];
    }
  }
  indices_accessor[indices_accessor_Index] = num_buckets;

  // Copy CPU tensor to device tensor, as the process_group_ could be NCCL and
  // it can only broadcast device tensors.
  auto indices_tensor_device = at::empty({total_size + 1}, options);
  indices_tensor_device.copy_(indices_tensor, /*non_blocking=*/true);
  std::vector<at::Tensor> indices_tensor_list = {indices_tensor_device};
  ops::broadcast(process_group_, indices_tensor_list)->wait();
  indices_tensor.copy_(indices_tensor_list.front(), /*non_blocking=*/false);

  // Update num_buckets after receiving it from rank 0
  num_buckets = indices_accessor[indices_accessor_Index];

  // Broadcast bucket_sizes
  auto bucket_sizes_tensor = at::empty({(int64_t)num_buckets}, at::kInt);
  auto bucket_sizes_accessor = bucket_sizes_tensor.accessor<int, 1>();
  for (const auto i : c10::irange(num_buckets)) {
    // For rank != 0, it is possible that local num buckets bucket_sizes.size()
    // is smaller than broadcasted num_buckets
    bucket_sizes_accessor[i] =
        bucket_sizes.at(std::min(i, (bucket_sizes.size() - 1)));
  }
  auto bucket_sizes_tensor_device = at::empty({(int64_t)num_buckets}, options);
  bucket_sizes_tensor_device.copy_(bucket_sizes_tensor, /*non_blocking=*/true);
  std::vector<at::Tensor> bucket_sizes_tensor_list = {
      bucket_sizes_tensor_device};
  ops::broadcast(process_group_, bucket_sizes_tensor_list)->wait();
  bucket_sizes_tensor.copy_(
      bucket_sizes_tensor_list.front(), /*non_blocking=*/false);

  // Clear bucket_indices first, and then update bucket_indices using received
  // num_buckets, bucket_sizes_tensor and indices_tensor from rank 0
  bucket_indices.clear();
  bucket_indices.reserve(num_buckets);
  indices_accessor_Index = 0;
  for (const auto i : c10::irange(num_buckets)) {
    const auto& bucket_size = bucket_sizes_accessor[i];
    std::vector<size_t> bucket;
    bucket.reserve(bucket_size);
    for (const auto j : c10::irange(bucket_size)) {
      (void)j;
      bucket.push_back(indices_accessor[indices_accessor_Index++]);
    }
    bucket_indices.emplace_back(std::move(bucket));
  }
}

bool Reducer::rebuild_buckets() {
  // Ensure reduction for previous backwards pass is finished. If user's model
  // has unused parameters for example, this will raise an error recommending to
  // run with find_unused_parameters=True, instead of the size mismatch
  // exception below.
  std::lock_guard<std::mutex> lock(mutex_);
  ensure_prior_reduction_finished();
  if (!should_rebuild_buckets() || rebuilt_params_.empty()) {
    return false;
  }

  TORCH_INTERNAL_ASSERT(
      rebuilt_params_.size() == rebuilt_param_indices_.size(),
      c10::str(
          "rebuilt parameter tensors size is not same as rebuilt parameter indices size: ",
          rebuilt_params_.size(),
          " versus ",
          rebuilt_param_indices_.size()));
  TORCH_INTERNAL_ASSERT(
      params_.size() == rebuilt_param_indices_.size(),
      c10::str(
          "rebuilt parameter indices size is not same as original model parameters size.",
          "Original model param size is: ",
          params_.size(),
          " versus rebuilt params size of: ",
          rebuilt_param_indices_.size()));
  std::vector<std::vector<size_t>> rebuilt_bucket_indices;
  std::vector<size_t> bucket_size_limits;
  bucket_size_limits.push_back(first_bucket_bytes_cap_);
  bucket_size_limits.push_back(bucket_bytes_cap_);
  std::vector<size_t> per_bucket_size_limits;
  auto ddp_set_last_bucket_as_small =
      (parse_env("DDP_SET_LAST_BUCKET_CAP").compare("1") == 0);

  if (ddp_set_last_bucket_as_small) {
    // Reverse so that first_bucket_bytes_cap_ (smaller bucket) becomes the last
    // bucket. We cannot simply pass in {bucket_bytes_cap_,
    // first_bucket_bytes_cap} as the bucket order as we would immediately
    // advance to the 2nd element after the first bucket, whereas we only want
    // the last bucket to have a smaller size.
    std::reverse(rebuilt_params_.begin(), rebuilt_params_.end());
    std::reverse(rebuilt_param_indices_.begin(), rebuilt_param_indices_.end());
  }
  std::tie(rebuilt_bucket_indices, per_bucket_size_limits) =
      compute_bucket_assignment_by_size(
          rebuilt_params_,
          bucket_size_limits,
          expect_sparse_gradients_,
          rebuilt_param_indices_,
          logger_);

  if (ddp_set_last_bucket_as_small) {
    // Reverse again because buckets were rebuilt in the opposite of gradient
    // ready order.
    std::reverse(rebuilt_bucket_indices.begin(), rebuilt_bucket_indices.end());
    std::reverse(per_bucket_size_limits.begin(), per_bucket_size_limits.end());
  }

  if (ddp_debug_level_ != c10d::DebugLevel::Off) {
    TORCH_INTERNAL_ASSERT(
        rebuilt_bucket_indices.size() == per_bucket_size_limits.size())
    LOG(INFO) << rebuilt_bucket_indices.size()
              << " buckets rebuilt with size limits: "
              << c10::Join(", ", per_bucket_size_limits) << " bytes.";
  }

  // For rebuilt bucket indices, it needs to be synced across all ranks.
  // Broadcast the newly rebuilt bucket indices from rank 0 in default.
  // After syncing up rebuilt bucket indices, initialize buckets for reducer.
  sync_bucket_indices(rebuilt_bucket_indices);

  has_rebuilt_bucket_ = true;
  rebuilt_params_.clear();
  rebuilt_param_indices_.clear();

  initialize_buckets(std::move(rebuilt_bucket_indices));

  return true;
}

// See Note [DDP Communication Hook]
void Reducer::register_comm_hook(std::unique_ptr<CommHookInterface> iface) {
  REDUCER_CHECK(
      comm_hook_ == nullptr,
      logger_,
      "register_comm_hook or register_builtin_comm_hook can only be called once.");

  comm_hook_ = std::move(iface);
}

// See Note [DDP Communication Hook]
void Reducer::register_builtin_comm_hook(
    c10d::BuiltinCommHookType comm_hook_type) {
  REDUCER_CHECK(
      comm_hook_ == nullptr,
      logger_,
      "register_builtin_comm_hook or register_comm_hook can only be called once.");

  switch (comm_hook_type) {
    case c10d::BuiltinCommHookType::ALLREDUCE:
      comm_hook_ = std::make_unique<c10d::AllReduceCommHook>(process_group_);
      LOG(INFO) << "Built-in communication hook ALLREDUCE is registered.";
      break;
    case c10d::BuiltinCommHookType::FP16_COMPRESS:
      comm_hook_ = std::make_unique<c10d::FP16CompressCommHook>(process_group_);
      LOG(INFO) << "Built-in communication hook FP16_COMPRESS is registered.";
      break;
    default:
      TORCH_WARN_ONCE(
          "Unknown built-in DDP comm hook type is provided. No comm hook will be used.");
  }
}

void Reducer::ensure_prior_reduction_finished() {
  // Check that any prior reduction has finished.
  // The variable `require_finalize_` is true until all gradients
  // have been computed and reduction of all buckets has been kicked off.
  if (require_finalize_) {
    // Collect unmarked parameter indices, additionally, in debug mode retrieve
    // parameter names.
    auto unmarked_param_indices = getUnmarkedParamIndicesForIteration();
    // We should have some unmarked parameter indices, otherwise we would not
    // have run into this error branch.
    TORCH_INTERNAL_ASSERT(unmarked_param_indices.size() > 0);
    const std::string unmarkedParamIndices =
        c10::Join(", ", unmarked_param_indices);

    std::string kBaseErrorMsg =
        "Expected to have finished reduction in the prior iteration before "
        "starting a new one. "
        ""
        "This error indicates that your module has parameters that were "
        "not used in producing loss. ";
    std::string kOutputsNotUsedInLossErrorMsg =
        "making sure all "
        "`forward` function outputs participate in calculating loss. ";
    std::string kDDPBugErrorMsg =
        "\nIf you already have done the above, then the distributed "
        "data parallel module wasn't able to locate the output tensors in the "
        "return value of your module's `forward` function. "
        "Please include the loss function and the structure of the return "
        "value of `forward` of your module when reporting this issue (e.g. "
        "list, dict, iterable).";

    if (static_graph_) {
      kBaseErrorMsg =
          "Expected to have finished reduction in the prior iteration before "
          "starting a new one. "
          "This error indicates that your training graph has changed "
          "in this iteration, e.g., one parameter is used in first "
          "iteration, but then got unused in the second iteration. "
          "this is not compatible with static_graph set to True.";
    } else if (!find_unused_parameters_) {
      // Parameters may have been unused in forward pass, or not all outputs
      // were used in producing loss.
      kBaseErrorMsg +=
          "You can enable unused parameter detection by passing the "
          "keyword argument `find_unused_parameters=True` to "
          "`torch.nn.parallel.DistributedDataParallel`, and by \n";
      kBaseErrorMsg += kOutputsNotUsedInLossErrorMsg;
      kBaseErrorMsg += kDDPBugErrorMsg;
    } else {
      // Note that it does not really matter whether unused_parameters_.empty(),
      // since user may have enabled detection but this particular iteration
      // could have used or not used all parameters.
      kBaseErrorMsg +=
          "Since `find_unused_parameters=True` is enabled, this likely "
          " means that not all `forward` outputs participate in computing loss. You can fix this by ";
      kBaseErrorMsg += kOutputsNotUsedInLossErrorMsg;
      kBaseErrorMsg += kDDPBugErrorMsg;
    }

    const std::string unmarked_param_indices_info = c10::str(
        "\n",
        "Parameter indices which did not receive grad for rank ",
        process_group_->getRank(),
        ": ",
        unmarked_param_indices);

    if (ddp_debug_level_ == DebugLevel::Off) {
      // Without debug mode, log unmarked_param_indices, as well as
      // recommendation to use debug mode to print parameter names.
      kBaseErrorMsg += unmarked_param_indices_info;
      kBaseErrorMsg +=
          "\n In addition, you can set the environment variable "
          "TORCH_DISTRIBUTED_DEBUG to either INFO or DETAIL to print out information "
          "about which particular parameters did not receive gradient on this rank "
          "as part of this error";
    } else {
      // Retrieve set of parameter names that did not receive gradient.
      auto unmarkedParams = getUnmarkedParamsForIteration();
      TORCH_INTERNAL_ASSERT(unmarkedParams.size() > 0);
      for (const auto& s : unmarkedParams) {
        LOG(INFO) << "[Rank " << process_group_->getRank() << "] "
                  << "Parameter: " << s
                  << " did not get gradient in backwards pass.";
      }
      const std::string unmarkedParamInfo = c10::Join(", ", unmarkedParams);
      // In debug mode, log param names and indices that went unused.
      kBaseErrorMsg += c10::str(
          "\n",
          "Parameters which did not receive grad for rank ",
          process_group_->getRank(),
          ": ",
          unmarkedParamInfo);
      kBaseErrorMsg += unmarked_param_indices_info;
    }
    REDUCER_CHECK(false, logger_, kBaseErrorMsg);
  }
}

void Reducer::set_ddp_runtime_logging_sample_rate(int sample_rate) {
  ddp_runtime_logging_sample_rate_ = sample_rate;
}

int Reducer::get_ddp_runtime_logging_sample_rate() {
  return ddp_runtime_logging_sample_rate_;
}

bool Reducer::should_collect_runtime_stats() {
  if (num_iterations_ > 0 &&
      (num_iterations_ <= 10 ||
       num_iterations_ % get_ddp_runtime_logging_sample_rate() == 0)) {
    return true;
  }
  return false;
}

void Reducer::record_forward_compute_start_time() {
  if (timer_) {
    timer_->record(Timer::Event::kForwardStart);
  }
}

void Reducer::record_backward_compute_start_time() {
  if (timer_) {
    timer_->record(Timer::Event::kBackwardComputeStart);
  }
}

void Reducer::record_backward_compute_end_time() {
  if (timer_) {
    timer_->record(Timer::Event::kBackwardComputeEnd);
  }
}

void Reducer::record_backward_comm_start_time() {
  if (timer_) {
    timer_->record(Timer::Event::kBackwardCommStart);
  }
}

void Reducer::record_backward_comm_end_time() {
  if (timer_) {
    timer_->record(Timer::Event::kBackwardCommEnd);
  }
}

void Reducer::set_static_graph() {
  std::lock_guard<std::mutex> lock(mutex_);
  REDUCER_CHECK(
      num_iterations_ == 0,
      logger_,
      "set_static_graph() should be called before training loop starts "
      "and after DistributedDataParallel is constructed.");
  static_graph_ = true;
  // when static_graph_ is set as true, always initialize_local_used_map
  // and detect the global unused parameters in the first iteration.
  initialize_local_used_map();
}

namespace {

// Tensors may be coalesced into buckets. Buckets must contain tensors of
// the same type, on the same device, so a bucket can identified by a
// composite key of a tensor's type identifier and its device.
struct BucketKey {
  BucketKey(c10::ScalarType type, c10::Device device)
      : type(type), device(device) {}

  const c10::ScalarType type;
  const c10::Device device;

  // See torch/csrc/utils/hash.h for dispatch code.
  static size_t hash(const BucketKey& key) {
    return c10::get_hash(key.type, key.device);
  }
};

inline bool operator==(const BucketKey& lhs, const BucketKey& rhs) {
  return lhs.type == rhs.type && lhs.device == rhs.device;
}

} // namespace

std::tuple<std::vector<std::vector<size_t>>, std::vector<size_t>>
compute_bucket_assignment_by_size(
    const std::vector<at::Tensor>& tensors,
    const std::vector<size_t>& bucket_size_limits,
    const std::vector<bool>& expect_sparse_gradient,
    const std::vector<int64_t>& tensor_indices,
    const c10::optional<std::weak_ptr<c10d::Logger>>& logger) {
  // Either expect_sparse_gradient is not specified or it has as many elements
  // as the vector with tensors.
  TORCH_INTERNAL_ASSERT(
      expect_sparse_gradient.empty() ||
      (tensors.size() == expect_sparse_gradient.size()));
  TORCH_INTERNAL_ASSERT(tensors.size() > 0);
  // Store bucket indices and their sizes together, because we later sort the
  // resulting indices by minimum tensor index and want to keep sizes
  // consistent.
  std::vector<std::tuple<std::vector<size_t>, size_t>> result;
  // Sparse tensors go in their own bucket, so they do not have an enforced size
  // limit.
  size_t kNoSizeLimit = 0;
  result.reserve(tensors.size());

  // Keep iterator into the size_limit vector by tensor type and device.
  // This is done so that we can use the consecutive bucket limits per type.
  std::unordered_map<
      BucketKey,
      std::vector<size_t>::const_iterator,
      c10::hash<BucketKey>>
      bucket_size_limit_iterators;

  // Keep vector of indices and size accumulator by tensor type and device.
  std::unordered_map<BucketKey, BucketAccumulator, c10::hash<BucketKey>>
      buckets;

  for (const auto i : c10::irange(tensors.size())) {
    const auto& tensor = tensors[i];
    auto msg = std::string("No support for sparse tensors.");
    if (logger.has_value()) {
      REDUCER_CHECK(!tensor.is_sparse(), logger.value(), msg);
    } else {
      TORCH_CHECK(!tensor.is_sparse(), msg);
    }

    // when tensor_indices is empty, the index of tensors[i] assigned to
    // bucket is i, otherwise the tensor index is tensor_indices[i].
    auto tensor_index = i;
    if (!tensor_indices.empty()) {
      tensor_index = tensor_indices[i];
    }
    // If we expect a sparse gradient to be produced for this tensor, it cannot
    // be grouped together with other gradients and gets its own bucket.
    if (!expect_sparse_gradient.empty() &&
        expect_sparse_gradient[tensor_index]) {
      result.emplace_back(std::vector<size_t>({tensor_index}), kNoSizeLimit);
      continue;
    }

    auto key = BucketKey(tensor.scalar_type(), tensor.device());
    auto& bucket = buckets[key];
    bucket.indices.push_back(tensor_index);
    bucket.size += tensor.numel() * tensor.element_size();

    // Initialize bucket size limit iterator if necessary.
    if (bucket_size_limit_iterators.count(key) == 0) {
      bucket_size_limit_iterators[key] = bucket_size_limits.begin();
    }

    auto& bucket_size_limit_iterator = bucket_size_limit_iterators[key];
    const auto bucket_size_limit = *bucket_size_limit_iterator;
    bucket.size_limit = bucket_size_limit;
    if (bucket.size >= bucket_size_limit) {
      result.emplace_back(std::move(bucket.indices), bucket.size_limit);
      bucket = BucketAccumulator();

      // Advance to the next bucket size limit for this type/device.
      auto next = bucket_size_limit_iterator + 1;
      if (next != bucket_size_limits.end()) {
        bucket_size_limit_iterator = next;
      }
    }
  }

  // Add remaining buckets.
  for (auto& it : buckets) {
    auto& bucket = it.second;
    if (!bucket.indices.empty()) {
      result.emplace_back(std::move(bucket.indices), bucket.size_limit);
    }
  }

  // If tensor_indices is not empty, the order of the tensors is in the gradient
  // ready order, so no need to sort.
  // If tensor_indices is empty, sort resulting buckets by the minimum tensor
  // index they include. We assume that the order of the tensors is the order in
  // which they are used (or the reverse order in which their gradients are
  // produced). This sorting step ensures that the buckets are ready in
  // consecutive order.
  if (tensor_indices.empty()) {
    std::sort(
        result.begin(),
        result.end(),
        [](const std::tuple<std::vector<size_t>, size_t>& a,
           const std::tuple<std::vector<size_t>, size_t>& b) {
          auto indices_a = std::get<0>(a);
          auto indices_b = std::get<0>(b);
          const auto amin =
              std::min_element(indices_a.begin(), indices_a.end());
          const auto bmin =
              std::min_element(indices_b.begin(), indices_b.end());
          return *amin < *bmin;
        });
  }

  // Return bucket indices and size limits as separate entries in tuple, as some
  // APIs only need to consume bucket indices.
  std::vector<std::vector<size_t>> bucket_indices;
  bucket_indices.reserve(result.size());
  std::vector<size_t> per_bucket_size_limits;
  per_bucket_size_limits.reserve(result.size());
  for (const auto& bucket_indices_with_size : result) {
    bucket_indices.emplace_back(std::get<0>(bucket_indices_with_size));
    per_bucket_size_limits.emplace_back(std::get<1>(bucket_indices_with_size));
  }
  return std::make_tuple(bucket_indices, per_bucket_size_limits);
}

// Verifies corresponding params in the model replica have the same
// sizes/strides across processes.
void verify_params_across_processes(
    const c10::intrusive_ptr<c10d::ProcessGroup>& process_group,
    const std::vector<at::Tensor>& params,
    const c10::optional<std::weak_ptr<c10d::Logger>>& logger) {
  // First verify number of parameters to avoid inconsistent inputs into
  // broadcast which can cause a crash.
  // See https://github.com/pytorch/pytorch/issues/73547

  at::TensorOptions param_size_options;
  param_size_options = param_size_options.dtype(at::kLong);
  param_size_options = param_size_options.device(params[0].device());
  // Note: Not using tensor building API because of
  // https://github.com/pytorch/pytorch/issues/74114
  at::Tensor param_size_tensor =
      at::tensor({static_cast<int64_t>(params.size())}, param_size_options);

  // Allgather and verify parameter size.
  std::vector<std::vector<at::Tensor>> param_size_output_tensors;
  param_size_output_tensors.emplace_back(std::vector<at::Tensor>{});
  auto world_size = process_group->getSize();
  for (size_t i = 0; i < world_size; ++i) {
    param_size_output_tensors.front().emplace_back(
        at::empty_like(param_size_tensor));
  }

  std::vector<at::Tensor> param_size_vec{param_size_tensor};
  ops::allgather(process_group, param_size_output_tensors, param_size_vec)
      ->wait();
  auto result_size_tensors = param_size_output_tensors.front();
  for (size_t i = 0; i < world_size; ++i) {
    auto param_size_for_rank = result_size_tensors[i][0].item<int>();
    TORCH_CHECK(
        param_size_for_rank == params.size(),
        c10::str(
            "DDP expects same model across all ranks, but Rank ",
            process_group->getRank(),
            " has ",
            params.size(),
            " params, while rank ",
            i,
            " has inconsistent ",
            param_size_for_rank,
            " params."));
  }

  // Continue with parameter shape verification.
  size_t i = 0;
  for (const auto& t : params) {
    i += 2 * t.dim();
  }
  at::TensorOptions options;
  options = options.dtype(at::kLong);
  auto metadata = at::empty({static_cast<long>(i)}, options);

  // Technically, process 0 is the broadcast source, so only process 0 needs
  // to populate metadata.  But no harm keeping work aligned across processes.
  auto metadata_accessor = metadata.accessor<int64_t, 1>();
  i = 0;
  for (const auto& t : params) {
    for (const auto& sz : t.sizes()) {
      metadata_accessor[i++] = sz;
    }
    for (const auto& str : t.strides()) {
      metadata_accessor[i++] = str;
    }
  }

  auto metadata_dev = metadata.clone().to(params[0].device());
  std::vector<at::Tensor> vec{metadata_dev};
  ops::broadcast(process_group, vec)->wait();

  // Technically, process 0 doesn't need to double-check metadata, because it
  // was the source.  But no harm keeping work aligned.
  auto control = at::empty({static_cast<long>(i)}, options);
  control.copy_(metadata_dev, /*non_blocking=*/false);
  auto control_accessor = control.accessor<int64_t, 1>();
  i = 0;
  for (const auto p : c10::irange(params.size())) {
    const auto& t = params[p];
    for (const auto& sz : t.sizes()) {
      auto msg = c10::str(
          "[",
          process_group->getRank(),
          "]: params[",
          p,
          "] in this process",
          " with sizes ",
          t.sizes(),
          " appears not to match sizes of the same param in process 0.");
      if (logger.has_value()) {
        REDUCER_CHECK(sz == control_accessor[i++], logger.value(), msg)
      } else {
        TORCH_CHECK(sz == control_accessor[i++], msg)
      }
    }
    for (const auto& str : t.strides()) {
      auto msg = c10::str(
          "params[",
          p,
          "] in this process",
          " with sizes ",
          t.sizes(),
          " appears not to match strides of the same param in process 0.");
      if (logger.has_value()) {
        REDUCER_CHECK(str == control_accessor[i++], logger.value(), msg)
      } else {
        TORCH_CHECK(str == control_accessor[i++], msg)
      }
    }
  }
}

} // namespace c10d