1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
#include <c10/util/DeadlockDetection.h>
#include <torch/csrc/distributed/rpc/rpc_agent.h>
namespace torch {
namespace distributed {
namespace rpc {
RegisterWorkerInfoOnce::RegisterWorkerInfoOnce() {
// WorkerInfo needs to be registered exactly once. Since the op registration
// happens in libtorch_python we wrap the class registration in a helper to
// make sure that if there's multiple copies of Python such as used in
// torch::deploy we only ever register it once.
static auto workerInfo = torch::class_<WorkerInfo>("dist_rpc", "WorkerInfo")
.def(torch::init<std::string, int64_t>());
}
constexpr size_t WorkerInfo::MAX_NAME_LEN;
WorkerInfo::WorkerInfo(std::string name, int64_t id)
: WorkerInfo(std::move(name), (worker_id_t)id) {
TORCH_CHECK(
id <= std::numeric_limits<worker_id_t>::max(),
"RPC worker id ",
id,
" out of bound of int16_t.");
}
WorkerInfo::WorkerInfo(std::string name, worker_id_t id)
: name_(std::move(name)), id_(id) {
bool validSize = name_.length() < MAX_NAME_LEN && name_.length() > 0;
bool validChar =
std::find_if(name_.begin(), name_.end(), [](char c) {
return !(std::isalnum(c) || c == '-' || c == '_' || c == ':');
}) == name_.end();
TORCH_CHECK(
validSize && validChar,
"Worker name must match ^[A-Za-z0-9-_:]*$, "
"and must be non-empty and shorter than ",
MAX_NAME_LEN,
" chars, "
"but got ",
name_);
}
// Large Time Duration for waiting on the condition variable until the map is
// population. Cannot use
// std::chrono::time_point<std::chrono::steady_clock>::max() due to a known
// overflow-related bug.
constexpr auto kLargeTimeDuration = std::chrono::hours(10000);
RpcAgent::RpcAgent(
WorkerInfo workerId,
std::unique_ptr<RequestCallback> cb,
std::chrono::milliseconds rpcTimeout)
: workerInfo_(std::move(workerId)),
cb_(std::move(cb)),
rpcTimeout_(rpcTimeout),
profilingEnabled_(false),
rpcAgentRunning_(false) {}
RpcAgent::~RpcAgent() {
if (rpcAgentRunning_.load()) {
shutdown();
}
}
void RpcAgent::start() {
rpcAgentRunning_.store(true);
rpcRetryThread_ = std::thread(&RpcAgent::retryExpiredRpcs, this);
startImpl();
}
void RpcAgent::shutdown() {
TORCH_ASSERT_NO_GIL_WITHOUT_PYTHON_DEP();
std::unique_lock<std::mutex> lock(rpcRetryMutex_);
rpcAgentRunning_.store(false);
lock.unlock();
rpcRetryMapCV_.notify_one();
if (rpcRetryThread_.joinable()) {
rpcRetryThread_.join();
}
// NOLINTNEXTLINE(clang-analyzer-cplusplus.PureVirtualCall)
shutdownImpl();
}
c10::intrusive_ptr<JitFuture> RpcAgent::sendWithRetries(
const WorkerInfo& to,
c10::intrusive_ptr<Message> message,
RpcRetryOptions retryOptions) {
TORCH_CHECK(retryOptions.maxRetries >= 0, "maxRetries cannot be negative.");
TORCH_CHECK(
retryOptions.retryBackoff >= 1,
"maxRetries cannot be exponentially decaying.");
TORCH_CHECK(
retryOptions.rpcRetryDuration.count() >= 0,
"rpcRetryDuration cannot be negative.");
auto originalFuture =
c10::make_intrusive<JitFuture>(at::AnyClassType::get(), getDevices());
steady_clock_time_point newTime =
computeNewRpcRetryTime(retryOptions, /* retryCount */ 0);
auto firstRetryRpc = std::make_shared<RpcRetryInfo>(
to,
message,
originalFuture,
/* retryCount */ 0,
retryOptions);
auto jitFuture = send(to, std::move(message));
jitFuture->addCallback([this, newTime, firstRetryRpc](JitFuture& future) {
rpcRetryCallback(future, newTime, firstRetryRpc);
});
return originalFuture;
}
void RpcAgent::retryExpiredRpcs() {
// Stores the retried futures so callbacks can be added outside the lock.
std::vector<
std::pair<c10::intrusive_ptr<JitFuture>, std::shared_ptr<RpcRetryInfo>>>
futures;
// Stores futures and exception messages for non-retriable error-ed futures.
std::vector<std::pair<c10::intrusive_ptr<JitFuture>, std::string>>
errorFutures;
while (rpcAgentRunning_.load()) {
std::unique_lock<std::mutex> lock(rpcRetryMutex_);
// We must continue sleeping as long as the RPC Agent is running and when
// either the Retry Map is empty, or when the Retry Map's earliest expiring
// RPC is set to be retried in the future.
steady_clock_time_point earliestTimeout =
std::chrono::steady_clock::now() + kLargeTimeDuration;
for (;;) {
if (!rpcAgentRunning_.load())
return;
if (std::chrono::steady_clock::now() >= earliestTimeout)
break;
if (!rpcRetryMap_.empty()) {
earliestTimeout = rpcRetryMap_.begin()->first;
}
rpcRetryMapCV_.wait_until(lock, earliestTimeout);
}
// Updating these since something may have been added to the map while this
// thread was sleeping.
earliestTimeout = rpcRetryMap_.begin()->first;
auto& earliestRpcList = rpcRetryMap_.begin()->second;
// We iterate through all the RPC's set to be retried at the current
// timepoint, resend those RPC's, and add the RPC's and their futures to
// a list to later attach callbacks. These callbacks either schedule
// the RPC for a future retry or marks it with success/error depending on
// the outcome of the current send. Then, we clean up the rpcRetryMap_.
for (auto it = earliestRpcList.begin(); it != earliestRpcList.end();
/* no increment */) {
auto& earliestRpc = *it;
c10::intrusive_ptr<JitFuture> jitFuture;
// send() will throw an exception if an RPC is retried while the agent is
// shutdown. We must catch this exception and mark the original future
// with an error, since this RPC never succeeded and can no longer be
// retried.
try {
jitFuture = send(earliestRpc->to_, earliestRpc->message_);
futures.emplace_back(jitFuture, earliestRpc);
} catch (std::exception& e) {
// We must store the futures and exception messages here and only mark
// the futures with an error after releasing the lock.
errorFutures.emplace_back(earliestRpc->originalFuture_, e.what());
}
// A callback will be attached to all futures for the retries in this
// list. Thus they will either be rescheduled for future retries or they
// will be marked as complete. We can safely delete them from the retry
// Map for the current timepoint.
it = earliestRpcList.erase(it);
}
// If there are no more RPC's set to be retried at the current timepoint,
// we can remove the corresponsing unordered_set from the retry map.
if (earliestRpcList.empty()) {
rpcRetryMap_.erase(earliestTimeout);
}
lock.unlock();
// We attach callbacks to the futures outside of the lock to prevent
// potential deadlocks.
for (const auto& it : futures) {
auto jitFuture = it.first;
auto earliestRpc = it.second;
steady_clock_time_point newTime = computeNewRpcRetryTime(
earliestRpc->options_, earliestRpc->retryCount_);
earliestRpc->retryCount_++;
jitFuture->addCallback([this, newTime, earliestRpc](JitFuture& future) {
rpcRetryCallback(future, newTime, earliestRpc);
});
}
futures.clear();
// For exceptions caught while retrying RPC's above, we set those futures
// with errors now that we have released the lock.
for (const auto& it : errorFutures) {
auto errorFuture = it.first;
auto errorMsg = it.second;
errorFuture->setError(
std::make_exception_ptr(std::runtime_error(errorMsg)));
}
errorFutures.clear();
}
}
void RpcAgent::rpcRetryCallback(
JitFuture& jitFuture,
steady_clock_time_point newTime,
std::shared_ptr<RpcRetryInfo> earliestRpc) {
if (jitFuture.hasError()) {
// Adding one since we want to include the original send as well and not
// just the retry count.
LOG(INFO) << "Send try " << (earliestRpc->retryCount_ + 1) << " failed";
if (!rpcAgentRunning_.load()) {
// If the RPC Agent has shutdown, we cannot retry messages. Thus we mark
// the future with an error since the RPC was never completed
// successfully.
std::string errorMessage = c10::str(
"RPC Agent is no longer running on Node ",
RpcAgent::getWorkerInfo().id_,
". Cannot retry message.");
earliestRpc->originalFuture_->setError(jitFuture.exception_ptr());
} else if (earliestRpc->retryCount_ < earliestRpc->options_.maxRetries) {
// If the previous future completed with an error and we haven't
// completed maxRetries send attempts, we move the earliestRpc
// struct to a new time point in the retry map (effectively
// scheduling it for a future retry.)
{
std::lock_guard<std::mutex> retryMapLock(rpcRetryMutex_);
rpcRetryMap_[newTime].emplace(std::move(earliestRpc));
}
// The retry thread waits for the map to be populated. Thus we notify
// once an item has been added.
rpcRetryMapCV_.notify_one();
} else {
// We have completed maxRetries send attempts. We're now marking
// the future with an error.
std::string errorMessage = c10::str(
"The RPC has not succeeded after the specified number of max retries (",
earliestRpc->options_.maxRetries,
").");
earliestRpc->originalFuture_->setError(
std::make_exception_ptr(std::runtime_error(errorMessage)));
}
} else {
// This try succeeded, so we can make the original future as complete.
earliestRpc->originalFuture_->markCompleted(
jitFuture.value(), jitFuture.storages());
}
}
const WorkerInfo& RpcAgent::getWorkerInfo() const {
return workerInfo_;
}
std::shared_ptr<RpcAgent> RpcAgent::currentRpcAgent_ = nullptr;
bool RpcAgent::isCurrentRpcAgentSet() {
return std::atomic_load(¤tRpcAgent_) != nullptr;
}
std::shared_ptr<RpcAgent> RpcAgent::getCurrentRpcAgent() {
std::shared_ptr<RpcAgent> agent = std::atomic_load(¤tRpcAgent_);
TORCH_CHECK(
agent,
"Current RPC agent is not set! Did you initialize the RPC "
"framework (e.g. by calling `rpc.init_rpc`)?");
return agent;
}
void RpcAgent::setCurrentRpcAgent(std::shared_ptr<RpcAgent> rpcAgent) {
if (rpcAgent) {
std::shared_ptr<RpcAgent> previousAgent;
// Use compare_exchange so that we don't actually perform the exchange if
// that would trigger the assert just below. See:
// https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
std::atomic_compare_exchange_strong(
¤tRpcAgent_, &previousAgent, std::move(rpcAgent));
TORCH_INTERNAL_ASSERT(
previousAgent == nullptr, "Current RPC agent is set!");
} else {
// We can't use compare_exchange (we don't know what value to expect) but we
// don't need to, as the only case that would trigger the assert is if we
// replaced nullptr with nullptr, which we can just do as it has no effect.
std::shared_ptr<RpcAgent> previousAgent =
std::atomic_exchange(¤tRpcAgent_, std::move(rpcAgent));
TORCH_INTERNAL_ASSERT(
previousAgent != nullptr, "Current RPC agent is not set!");
}
}
void RpcAgent::setTypeResolver(std::shared_ptr<TypeResolver> typeResolver) {
typeResolver_ = std::move(typeResolver);
}
std::shared_ptr<TypeResolver> RpcAgent::getTypeResolver() {
TORCH_INTERNAL_ASSERT(typeResolver_, "Type resolver is not set!");
return typeResolver_;
}
void RpcAgent::enableGILProfiling(bool flag) {
profilingEnabled_ = flag;
}
bool RpcAgent::isGILProfilingEnabled() {
return profilingEnabled_.load();
}
DeviceMap RpcAgent::getDeviceMap(const WorkerInfo& /* unused */) const {
// Default implementation has no device map.
return {};
}
const std::vector<c10::Device>& RpcAgent::getDevices() const {
// By default the agent is CPU-only.
static const std::vector<c10::Device> noDevices = {};
return noDevices;
}
std::unordered_map<std::string, std::string> RpcAgent::getDebugInfo() {
/* This would later include more info other than metrics for eg: may include
stack traces for the threads owned by the agent */
// Default implementation: return getMetrics().
return getMetrics();
}
std::ostream& operator<<(std::ostream& os, const WorkerInfo& workerInfo) {
return os << "WorkerInfo(id=" << workerInfo.id_
<< ", name=" << workerInfo.name_ << ")";
}
} // namespace rpc
} // namespace distributed
} // namespace torch
|