1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
#include <torch/csrc/distributed/rpc/tensorpipe_utils.h>
#ifdef USE_TENSORPIPE
#include <c10/util/irange.h>
#include <tensorpipe/tensorpipe.h>
namespace torch {
namespace distributed {
namespace rpc {
namespace {
// The TensorPipe agent splits the RPC message's information across multiple
// payloads. This allows the agent to provide the data to TensorPipe without
// performing a copy into a single contiguous buffer, and without storing it as
// metadata, which is less efficient.
// First come the rpc::Message::type() and ::id().
constexpr int kTpMessageTypeIdx = 0;
constexpr int kTpMessageIdIdx = 1;
// Then comes the rpc::Message::payload();
constexpr int kTpMessagePayloadIdx = 2;
// Last comes the pickle of rpc::Message::tensors() (with the tensors themselves
// stored as, well, tensors in the tensorpipe::Message).
constexpr int kTpMessagePickleIdx = 3;
inline c10::Device indexToDevice(c10::DeviceIndex index) {
if (index == -1) {
return c10::Device(at::kCPU);
} else {
return c10::Device(at::kCUDA, index);
}
}
class TensorpipeCpuConverter : public TensorpipeDeviceTypeConverter {
public:
c10::optional<std::vector<char>> prepareTensorForSending(
const c10::Storage& storage,
const std::vector<c10::Stream>& /* streams */,
tensorpipe::Message& message) const override {
// Enforce memory copy if tensor is created from torch::from_blob, means
// that the tensor doesn't own the memory.
bool storageHasDeleter = storage.data_ptr().get_context() != nullptr;
if (!storageHasDeleter) {
std::vector<char> storageData(
storage.data<char>(), storage.data<char>() + storage.nbytes());
tensorpipe::CpuBuffer buffer;
buffer.ptr = storageData.data();
tensorpipe::Message::Tensor tensor;
tensor.buffer = buffer;
tensor.length = storageData.size();
message.tensors.push_back(std::move(tensor));
return c10::make_optional(std::move(storageData));
} else {
tensorpipe::CpuBuffer buffer;
buffer.ptr = storage.data<char>();
tensorpipe::Message::Tensor tensor;
tensor.buffer = buffer;
tensor.length = storage.nbytes();
message.tensors.push_back(std::move(tensor));
return c10::nullopt;
}
}
at::DataPtr allocateTensorForReceiving(
int /* deviceIndex */,
size_t length,
const std::vector<c10::Stream>& /* streams */,
tensorpipe::Allocation& allocation) const override {
at::DataPtr dataPtr = at::getCPUAllocator()->allocate(length);
tensorpipe::CpuBuffer buffer;
buffer.ptr = dataPtr.get();
tensorpipe::Allocation::Tensor tensor;
tensor.buffer = buffer;
allocation.tensors.push_back(std::move(tensor));
return dataPtr;
}
};
C10_REGISTER_TENSORPIPE_DEVICE_TYPE_CONVERTER(CPU, TensorpipeCpuConverter);
c10::DeviceType convertDeviceType(const std::string& tpDeviceType) {
if (tpDeviceType == tensorpipe::kCpuDeviceType) {
return c10::kCPU;
} else if (tpDeviceType == tensorpipe::kCudaDeviceType) {
return c10::kCUDA;
} else {
TORCH_INTERNAL_ASSERT(false, "Unrecognized TensorPipe buffer type.");
}
}
} // namespace
// As the vector of streams will typically be very small (1-8 items) we expect
// a linear search to be as fast (or faster?) than if we used a hashmap.
const c10::Stream& getStreamForDevice(
const std::vector<c10::Stream>& streams,
const c10::Device& device) {
for (const c10::Stream& stream : streams) {
if (stream.device() == device) {
return stream;
}
}
TORCH_INTERNAL_ASSERT(false, "No stream found for device ", device);
}
std::array<
std::atomic<const TensorpipeDeviceTypeConverter*>,
static_cast<size_t>(DeviceType::COMPILE_TIME_MAX_DEVICE_TYPES)>
device_type_converter_registry;
TensorpipeDeviceTypeConverterRegistrar::TensorpipeDeviceTypeConverterRegistrar(
DeviceType type,
const TensorpipeDeviceTypeConverter* impl) {
device_type_converter_registry[static_cast<size_t>(type)].store(impl);
}
std::tuple<tensorpipe::Message, TensorpipeWriteBuffers> tensorpipeSerialize(
c10::intrusive_ptr<Message> rpcMessage,
std::vector<c10::Device> devices,
const std::vector<c10::Stream>& streams) {
tensorpipe::Message tpMessage;
TensorpipeWriteBuffers buffers;
// Metadata
buffers.type = std::make_unique<MessageType>(rpcMessage->type());
buffers.id = std::make_unique<int64_t>(rpcMessage->id());
// kTpMessageTypeIdx = 0
tpMessage.payloads.push_back(
tensorpipe::Message::Payload{buffers.type.get(), sizeof(MessageType)});
// kTpMessageIdIdx = 1
tpMessage.payloads.push_back(
tensorpipe::Message::Payload{buffers.id.get(), sizeof(int64_t)});
// Payload
buffers.payload = std::move(rpcMessage->payload());
// TensorPipe uses the same Message class for both reading and writing, thus
// it uses non-const pointers even though it doesn't modify them when writing.
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
char* payloadPtr = const_cast<char*>(buffers.payload.data());
// kTpMessagePayloadIdx = 2
tpMessage.payloads.push_back(
tensorpipe::Message::Payload{payloadPtr, buffers.payload.size()});
{
// The function below might allocate new tensors if there are Tensor views.
// Apply stream guard here to include those Tensor allocation operations to
// the streams.
c10::MultiStreamGuard guard(streams);
// Tensors
buffers.tensors = cloneSparseTensors(rpcMessage->tensors()).vec();
}
torch::jit::Pickler pickler([&](const void* buf, size_t sz) -> size_t {
buffers.pickle.insert(
buffers.pickle.end(),
static_cast<const char*>(buf),
static_cast<const char*>(buf) + sz);
return sz;
});
pickler.protocol();
pickler.pushIValue(buffers.tensors);
pickler.stop();
// kTpMessagePickleIdx = 3
tpMessage.payloads.push_back(tensorpipe::Message::Payload{
buffers.pickle.data(), buffers.pickle.size()});
const std::vector<torch::Tensor>& tensorDataVec = pickler.tensorData();
tpMessage.tensors.reserve(tensorDataVec.size());
for (const auto i : c10::irange(tensorDataVec.size())) {
const torch::Tensor& tensor = tensorDataVec[i];
const TensorpipeDeviceTypeConverter* converter =
getDeviceTypeConverter(tensor.device().type());
TORCH_CHECK(
converter != nullptr,
"Attempting to send a Tensor with unexpected device type ",
tensor.device());
TORCH_INTERNAL_ASSERT(tpMessage.tensors.size() == i);
c10::optional<std::vector<char>> maybeCopiedTensor =
converter->prepareTensorForSending(
tensor.storage(), streams, tpMessage);
TORCH_INTERNAL_ASSERT(tpMessage.tensors.size() == i + 1);
tensorpipe::Device targetDevice = devices.empty() || devices[i].is_cpu()
? tensorpipe::Device{tensorpipe::kCpuDeviceType, 0}
: tensorpipe::Device{tensorpipe::kCudaDeviceType, devices[i].index()};
tpMessage.tensors.back().targetDevice = std::move(targetDevice);
if (maybeCopiedTensor.has_value()) {
buffers.copiedTensors.push_back(std::move(maybeCopiedTensor).value());
}
}
return std::make_tuple(std::move(tpMessage), std::move(buffers));
}
std::pair<tensorpipe::Allocation, TensorpipeReadBuffers> tensorpipeAllocate(
const tensorpipe::Descriptor& tpDescriptor,
const std::vector<c10::Stream>& streams) {
tensorpipe::Allocation tpAllocation;
TensorpipeReadBuffers buffers;
TORCH_INTERNAL_ASSERT(
tpDescriptor.payloads.size() == 4,
"message expected to contain 4 payloads, whereas it contained ",
tpDescriptor.payloads.size(),
" payloads");
tpAllocation.payloads.resize(tpDescriptor.payloads.size());
TORCH_INTERNAL_ASSERT(
tpDescriptor.payloads[kTpMessageTypeIdx].length == sizeof(MessageType),
"first payload expected to contain ",
sizeof(MessageType),
" bytes, whereas it contained ",
tpDescriptor.payloads[kTpMessageTypeIdx].length,
" bytes");
buffers.type = std::make_unique<MessageType>();
tpAllocation.payloads[kTpMessageTypeIdx].data = buffers.type.get();
TORCH_INTERNAL_ASSERT(
tpDescriptor.payloads[kTpMessageIdIdx].length == sizeof(int64_t),
"second payload expected to contain ",
sizeof(int64_t),
" bytes, whereas it contained ",
tpDescriptor.payloads[kTpMessageIdIdx].length,
" bytes");
buffers.id = std::make_unique<int64_t>();
tpAllocation.payloads[kTpMessageIdIdx].data = buffers.id.get();
// FIXME The two resizes below zero out the vectors, which is not needed.
buffers.payload.resize(tpDescriptor.payloads[kTpMessagePayloadIdx].length);
tpAllocation.payloads[kTpMessagePayloadIdx].data = buffers.payload.data();
buffers.pickle.resize(tpDescriptor.payloads[kTpMessagePickleIdx].length);
tpAllocation.payloads[kTpMessagePickleIdx].data = buffers.pickle.data();
size_t numTensors = tpDescriptor.tensors.size();
tpAllocation.tensors.reserve(numTensors);
for (const auto tensorIdx : c10::irange(numTensors)) {
const tensorpipe::Descriptor::Tensor& tensor =
tpDescriptor.tensors[tensorIdx];
TORCH_INTERNAL_ASSERT(tensor.targetDevice.has_value());
c10::DeviceType targetDeviceType =
convertDeviceType(tensor.targetDevice->type);
const TensorpipeDeviceTypeConverter* converter =
getDeviceTypeConverter(targetDeviceType);
TORCH_INTERNAL_ASSERT(
converter != nullptr,
"Attempting to receive a Tensor with unexpected device type ",
targetDeviceType);
TORCH_INTERNAL_ASSERT(tpAllocation.tensors.size() == tensorIdx);
at::DataPtr dataPtr = converter->allocateTensorForReceiving(
tensor.targetDevice->index, tensor.length, streams, tpAllocation);
TORCH_INTERNAL_ASSERT(tpAllocation.tensors.size() == tensorIdx + 1);
buffers.tensors.push_back(std::move(dataPtr));
}
return {std::move(tpAllocation), std::move(buffers)};
}
c10::intrusive_ptr<Message> tensorpipeDeserialize(
tensorpipe::Descriptor&& tpDescriptor,
TensorpipeReadBuffers&& buffers) {
// Tensors
std::vector<at::Tensor> tensors;
const char* pickleData = buffers.pickle.data();
size_t pickleLen = buffers.pickle.size();
size_t picklePos = 0;
auto pickleReadFunc = [&](char* buf, size_t n) -> size_t {
if (picklePos >= pickleLen || n == 0) {
return 0;
}
size_t toCopy = std::min(picklePos + n, pickleLen) - picklePos;
memcpy(buf, pickleData + picklePos, toCopy);
picklePos += toCopy;
return toCopy;
};
auto tensorReadFunc = [&](const std::string& ename) -> at::DataPtr {
unsigned long index = std::stoul(ename);
return std::move(buffers.tensors.at(index));
};
// No need to pass typeResolver here, as it always processes string and
// tensors only
torch::jit::Unpickler unpickler(
pickleReadFunc,
nullptr,
nullptr,
tensorReadFunc,
{},
/* use_storage_device*/ true);
auto ival = unpickler.parse_ivalue();
for (auto&& t : ival.toTensorList()) {
tensors.emplace_back(std::move(t));
}
for (const auto i : c10::irange(tpDescriptor.tensors.size())) {
auto& tensor = tpDescriptor.tensors[i];
if (tensor.targetDevice.has_value() &&
tensor.targetDevice->type == tensorpipe::kCudaDeviceType) {
TORCH_INTERNAL_ASSERT(
tensors[i].device() == indexToDevice(tensor.targetDevice->index),
"Tensor ",
i,
" in message ",
*buffers.id,
" was expected to be received on device ",
tensor.targetDevice->index,
", but got it on ",
tensors[i].device());
}
}
return c10::make_intrusive<Message>(
std::move(buffers.payload),
std::move(tensors),
*buffers.type,
*buffers.id);
}
} // namespace rpc
} // namespace distributed
} // namespace torch
#endif // USE_TENSORPIPE
|