1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
|
#include <torch/csrc/distributed/rpc/utils.h>
#include <fmt/format.h>
#include <torch/csrc/autograd/profiler.h>
#include <torch/csrc/distributed/autograd/rpc_messages/cleanup_autograd_context_req.h>
#include <torch/csrc/distributed/autograd/rpc_messages/cleanup_autograd_context_resp.h>
#include <torch/csrc/distributed/autograd/rpc_messages/propagate_gradients_req.h>
#include <torch/csrc/distributed/autograd/rpc_messages/propagate_gradients_resp.h>
#include <torch/csrc/distributed/autograd/rpc_messages/rpc_with_autograd.h>
#include <torch/csrc/distributed/autograd/rpc_messages/rpc_with_profiling_req.h>
#include <torch/csrc/distributed/autograd/rpc_messages/rpc_with_profiling_resp.h>
#include <torch/csrc/distributed/autograd/rpc_messages/rref_backward_req.h>
#include <torch/csrc/distributed/autograd/rpc_messages/rref_backward_resp.h>
#include <torch/csrc/distributed/autograd/utils.h>
#include <torch/csrc/distributed/rpc/profiler/remote_profiler_manager.h>
#include <torch/csrc/distributed/rpc/python_call.h>
#include <torch/csrc/distributed/rpc/python_remote_call.h>
#include <torch/csrc/distributed/rpc/python_resp.h>
#include <torch/csrc/distributed/rpc/rref_proto.h>
#include <torch/csrc/distributed/rpc/script_call.h>
#include <torch/csrc/distributed/rpc/script_remote_call.h>
#include <torch/csrc/distributed/rpc/script_resp.h>
#include <torch/csrc/jit/serialization/pickler.h>
#include <torch/csrc/jit/serialization/unpickler.h>
#include <c10/util/irange.h>
using namespace torch::autograd::profiler;
namespace torch {
namespace distributed {
namespace rpc {
namespace {
void processRemoteProfiledEvents(
autograd::RpcWithProfilingResp& rpcWithProfilingResp) {
// Check if the profiler is enabled
auto enabled = profilerEnabled();
TORCH_CHECK(
enabled,
"Profiler was expected to be enabled. This can happen in callback "
" continutations that run in different threads, and the TLS of the "
" profiler was not propagated.");
std::vector<LegacyEvent> events = rpcWithProfilingResp.getProfiledEvents();
const auto& profilingId = rpcWithProfilingResp.getProfilingId();
auto& remoteProfilerManager = RemoteProfilerManager::getInstance();
auto key = remoteProfilerManager.retrieveRPCProfilingKey(profilingId);
remoteProfilerManager.eraseKey(profilingId);
auto keyPrefixStr = key + rpc::REMOTE_PROFILING_KEY_PREFIX;
std::for_each(
events.begin(), events.end(), [&keyPrefixStr](LegacyEvent& event) {
std::string name = keyPrefixStr + std::string(event.name());
event.setName(at::StringView(name));
});
// Add event list to the thread local profiler.
addEventList(std::move(events));
}
} // namespace
const std::string kRPCErrorPrefix = std::string("RPCErr");
RPCErrorType getRPCErrorType(const JitFuture& jitFuture) {
TORCH_INTERNAL_ASSERT(
jitFuture.hasError(),
"JitFuture of Message passed to getRPCErrorType does not have an error.");
// Attempt to parse for error string given by makeRPCError, otherwise return
// unknown error.
// Note that this function expects errors formatted with makeRPCError().
auto err = jitFuture.tryRetrieveErrorMessage();
size_t pos = err.find(kRPCErrorPrefix);
if (pos != std::string::npos) {
// Parse the RPCErrorType.
auto errStartIdx =
pos + torch::distributed::rpc::kRPCErrorPrefix.size() + 1;
auto errEndIdx = err.find(':', errStartIdx);
if (errEndIdx == std::string::npos) {
// Indicates error was not formatted correctly.
return RPCErrorType::UNKNOWN_ERROR;
}
auto errStr = err.substr(errStartIdx, errEndIdx - errStartIdx);
auto errType = static_cast<RPCErrorType>(std::stoi(errStr));
return errType;
} else {
return RPCErrorType::UNKNOWN_ERROR;
}
}
std::string makeRPCError(
const std::string& rpcErrorStr,
RPCErrorType errorType) {
return fmt::format(
"{}:{}:{}",
torch::distributed::rpc::kRPCErrorPrefix,
errorType,
rpcErrorStr);
}
std::unique_ptr<RpcCommandBase> deserializeRequest(const Message& request) {
switch (request.type()) {
case MessageType::SCRIPT_CALL: {
return ScriptCall::fromMessage(request);
}
case MessageType::PYTHON_CALL: {
return PythonCall::fromMessage(request);
}
case MessageType::SCRIPT_REMOTE_CALL: {
return ScriptRemoteCall::fromMessage(request);
}
case MessageType::PYTHON_REMOTE_CALL: {
return PythonRemoteCall::fromMessage(request);
}
case MessageType::SCRIPT_RREF_FETCH_CALL: {
return ScriptRRefFetchCall::fromMessage(request);
}
case MessageType::PYTHON_RREF_FETCH_CALL: {
return PythonRRefFetchCall::fromMessage(request);
}
case MessageType::RREF_USER_DELETE: {
return RRefUserDelete::fromMessage(request);
}
case MessageType::RREF_CHILD_ACCEPT: {
return RRefChildAccept::fromMessage(request);
}
case MessageType::RREF_FORK_REQUEST: {
return RRefForkRequest::fromMessage(request);
}
case MessageType::FORWARD_AUTOGRAD_REQ: {
return autograd::RpcWithAutograd::fromMessage(request);
}
case MessageType::BACKWARD_AUTOGRAD_REQ: {
return autograd::PropagateGradientsReq::fromMessage(request);
}
case MessageType::CLEANUP_AUTOGRAD_CONTEXT_REQ: {
return autograd::CleanupAutogradContextReq::fromMessage(request);
}
case MessageType::RUN_WITH_PROFILING_REQ: {
return autograd::RpcWithProfilingReq::fromMessage(request);
}
case MessageType::RREF_BACKWARD_REQ: {
return autograd::RRefBackwardReq::fromMessage(request);
}
default: {
TORCH_INTERNAL_ASSERT(
false, "Request type ", request.type(), " not supported.");
}
}
}
std::unique_ptr<RpcCommandBase> deserializeResponse(
const Message& response,
MessageType& wrappedMsgType) {
switch (response.type()) {
case MessageType::SCRIPT_RET: {
return ScriptResp::fromMessage(response);
}
case MessageType::PYTHON_RET: {
return PythonResp::fromMessage(response);
}
case MessageType::REMOTE_RET: {
return RemoteRet::fromMessage(response);
}
case MessageType::SCRIPT_RREF_FETCH_RET: {
return ScriptRRefFetchRet::fromMessage(response);
}
case MessageType::PYTHON_RREF_FETCH_RET: {
return PythonRRefFetchRet::fromMessage(response);
}
case MessageType::RREF_ACK: {
return RRefAck::fromMessage(response);
}
case MessageType::FORWARD_AUTOGRAD_RESP: {
std::unique_ptr<RpcCommandBase> rpcPtr =
autograd::RpcWithAutograd::fromMessage(response);
RpcCommandBase& rpc = *rpcPtr;
auto& rpcWithAutograd = static_cast<autograd::RpcWithAutograd&>(rpc);
// Need to reverse the device map for the backward pass of distributed
// autograd.
DeviceMap reverseDeviceMap;
for (const auto& mapEntry : rpcWithAutograd.deviceMap()) {
reverseDeviceMap.insert({mapEntry.second, mapEntry.first});
}
// Attach 'recv' autograd function.
addRecvRpcBackward(
rpcWithAutograd.autogradMetadata(),
rpcWithAutograd.tensors(),
rpcWithAutograd.fromWorkerId(),
reverseDeviceMap);
wrappedMsgType = rpcWithAutograd.wrappedMessageType();
return std::move(rpcWithAutograd).moveWrappedRpc();
}
case MessageType::BACKWARD_AUTOGRAD_RESP: {
return autograd::PropagateGradientsResp::fromMessage(response);
}
case MessageType::CLEANUP_AUTOGRAD_CONTEXT_RESP: {
return autograd::CleanupAutogradContextResp::fromMessage(response);
}
case MessageType::RUN_WITH_PROFILING_RESP: {
std::unique_ptr<RpcCommandBase> rpcPtr =
autograd::RpcWithProfilingResp::fromMessage(response);
RpcCommandBase& rpc = *rpcPtr;
auto& rpcWithProfilingResp =
static_cast<autograd::RpcWithProfilingResp&>(rpc);
// Process remotely profiled events.
processRemoteProfiledEvents(rpcWithProfilingResp);
wrappedMsgType = rpcWithProfilingResp.wrappedMessageType();
auto wrappedRPC = std::move(rpcWithProfilingResp).moveWrappedRpc();
return wrappedRPC;
}
case MessageType::RREF_BACKWARD_RESP: {
return autograd::RRefBackwardResp::fromMessage(response);
}
default: {
TORCH_INTERNAL_ASSERT(
false, "Response type ", response.type(), " not supported.");
}
}
}
IValue deserializeResptoIValueInternal(
RpcCommandBase& rpc,
MessageType messageType) {
switch (messageType) {
case MessageType::SCRIPT_RET: {
auto& ret = static_cast<ScriptResp&>(rpc);
return ret.value();
}
default: {
TORCH_INTERNAL_ASSERT(
false,
"Response type ",
messageType,
" is not supported to be deserialized to IValue.");
}
}
}
IValue deserializeRespToIValue(const Message& message) {
MessageType msgType = message.type();
auto response = deserializeResponse(message, msgType);
return deserializeResptoIValueInternal(*response, msgType);
}
namespace {
// Helper for wireDeserialize() below.
//
// The format we use below looks like:
// section_name_1 size_1\n
// section_name_2 size_2\n
// ..
// \n
// [sections in order]
//
// Sections themselves include:
// - "payload" - the payload bits
// - "meta" - metadata for the unpickler
// - "0" ... - tensor sections for the unpickler
//
// Note that per the header comments, the format is subject to change,
// and is best used for rpcs, rather than persistent disk storage.
std::unordered_map<std::string, std::pair<const char*, size_t>>
parseWireSections(const void* data, size_t data_size) {
const char* ptr = static_cast<const char*>(data);
const char* endp = ptr + data_size;
std::vector<std::pair<std::string, size_t>> headerEnts;
bool ok = false;
while (ptr != endp) {
if (*ptr == '\n') {
ok = true; // The only "correct" exit point.
++ptr;
break;
}
// Parse name
const char* namePtr = ptr;
while (ptr != endp && *ptr != ' ') {
ptr++;
}
if (ptr == endp) {
break;
}
std::string name(namePtr, ptr - namePtr);
if (++ptr == endp) {
break; // past the ' '
}
// Parse size
const char* sizePtr = ptr;
while (ptr != endp && *ptr != '\n') {
ptr++;
}
if (ptr == endp) {
break;
}
size_t sz = c10::stoll(std::string(sizePtr, ptr - sizePtr));
headerEnts.emplace_back(std::make_pair(name, sz));
++ptr; // past the '\n'
}
if (!ok) {
TORCH_CHECK(false, "failed parse");
}
std::unordered_map<std::string, std::pair<const char*, size_t>> out;
for (const auto& headerEnt : headerEnts) {
out[headerEnt.first] = {ptr, headerEnt.second};
ptr += headerEnt.second;
}
if (ptr != endp) {
TORCH_CHECK(false, "failed bounds");
}
return out;
}
static const char* kMeta = "meta";
static const char* kPayload = "payload";
}; // namespace
c10::List<at::Tensor> cloneSparseTensors(
const std::vector<at::Tensor>& tensors) {
// Sanity-check: If the majority of bits don't need to go over the wire,
// force a clone(). Some Tensors are effectively small views, only using
// ~1% of the underlying Storage.
auto worthRecopying = [](const at::Tensor& t) -> bool {
if (!t.has_storage()) {
return false; // avoid throwing below.
}
auto storageSize = t.storage().nbytes();
auto usefulSize = t.element_size() * t.numel();
constexpr size_t kMinMultiple = 2;
constexpr size_t kMinRecopyBytes = 8 * 1024;
return storageSize >= kMinRecopyBytes &&
storageSize >= usefulSize * kMinMultiple;
};
c10::List<at::Tensor> pTensors;
pTensors.reserve(tensors.size());
for (const auto& t : tensors) {
pTensors.push_back(worthRecopying(t) ? t.clone() : t);
}
return pTensors;
}
std::string wireSerialize(
const std::vector<char>& payload,
const std::vector<at::Tensor>& tensors) {
for (const auto& tensor : tensors) {
TORCH_CHECK(
tensor.device().is_cpu(),
"ProcessGroup RPC backend only supports",
" CPU tensors, please move your tensors to CPU before sending ",
"them over RPC. Found tensor on device: ",
tensor.device());
}
struct Ent {
std::string name;
const char* data;
size_t size;
};
std::vector<Ent> entries;
std::string metaEntry;
std::vector<at::Tensor> tensorData;
if (!payload.empty()) {
entries.push_back({kPayload, payload.data(), payload.size()});
}
if (!tensors.empty()) {
torch::jit::Pickler pickler([&](const void* buf, size_t sz) -> size_t {
metaEntry.append(static_cast<const char*>(buf), sz);
return sz;
});
pickler.protocol();
pickler.pushIValue(cloneSparseTensors(tensors));
pickler.stop();
tensorData = pickler.tensorData();
entries.push_back({kMeta, metaEntry.data(), metaEntry.size()});
for (const auto i : c10::irange(tensorData.size())) {
// Construct WritableTensorData for each tensor in the pickler tensorData
// Since tensorData is in function scope, and getWritableTensorData just
// record the tensors, the data() pointers stay valid for CPU tensors
// Note that RPC serde doesn't support CUDA tensors yet, if we should
// support CUDA tensor, we need to be careful since getWritableTensorData
// converts CUDA tensor to cpu and data() might get destructed as we go
// out of scope of this loop.
auto writeableTensorData = jit::getWriteableTensorData(tensorData[i]);
entries.push_back(
{c10::to_string(i),
writeableTensorData.data(),
writeableTensorData.sizeInBytes()});
}
}
std::string header;
size_t tot = 0;
for (const auto& e : entries) {
tot += e.size;
header.append(e.name)
.append(" ")
.append(c10::to_string(e.size))
.append("\n");
}
header.push_back('\n');
std::string out;
out.reserve(header.size() + tot);
out.append(header);
for (const auto& e : entries) {
out.append(e.data, e.size);
}
return out;
}
std::pair<std::vector<char>, std::vector<at::Tensor>> wireDeserialize(
const void* data,
size_t data_size) {
auto sections = parseWireSections(data, data_size);
std::vector<char> payload;
auto payloadIt = sections.find(kPayload);
if (payloadIt != sections.end() && payloadIt->second.second != 0) {
payload.assign(
payloadIt->second.first,
payloadIt->second.first + payloadIt->second.second);
}
std::vector<at::Tensor> tensors;
auto metaIt = sections.find(kMeta);
if (metaIt != sections.end()) {
const auto& metaData = metaIt->second;
size_t metaDataPos = 0;
auto metaDataReadFunc = [&](char* buf, size_t n) -> size_t {
if (metaDataPos >= metaData.second || n == 0) {
return 0;
}
size_t toCopy = std::min(metaDataPos + n, metaData.second) - metaDataPos;
memcpy(buf, metaData.first + metaDataPos, toCopy);
metaDataPos += toCopy;
return toCopy;
};
auto sectionReadFunc = [&](const std::string& ename) -> at::DataPtr {
auto it = sections.find(ename);
if (it == sections.end()) {
TORCH_CHECK(false, "Couldn't find entity " + ename);
}
const auto& idat = it->second;
auto dptr = at::getCPUAllocator()->allocate(idat.second);
if (idat.second != 0) {
memcpy(dptr.get(), idat.first, idat.second);
}
return dptr;
};
// No need to pass typeResolver here, as it always processes string and
// tensors only
torch::jit::Unpickler unpickler(
metaDataReadFunc, nullptr, nullptr, sectionReadFunc, {});
auto ival = unpickler.parse_ivalue();
for (auto&& t : ival.toTensorList()) {
tensors.emplace_back(std::move(t));
}
}
return {std::move(payload), std::move(tensors)};
}
void writeWrappedPayload(
std::vector<char>& originalPayload,
std::vector<char>& additionalPayload) {
originalPayload.insert(
originalPayload.end(),
additionalPayload.begin(),
additionalPayload.end());
// Add size of the additional payload
int64_t indexToWrite = originalPayload.size();
originalPayload.resize(originalPayload.size() + sizeof(int64_t));
const int64_t additionalPayloadSize = additionalPayload.size();
torch::utils::THP_encodeInt64Buffer(
reinterpret_cast<uint8_t*>(originalPayload.data()) + indexToWrite,
&additionalPayloadSize,
torch::utils::THPByteOrder::THP_BIG_ENDIAN,
1);
}
std::vector<at::IValue> readWrappedPayload(
std::vector<char>& payload,
const rpc::Message& message) {
// Read the additional payload remove it from the payload.
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int64_t additionalPayloadSize;
TORCH_INTERNAL_ASSERT(payload.size() >= sizeof(int64_t));
size_t indexToRead = payload.size() - sizeof(int64_t);
torch::utils::THP_decodeInt64Buffer(
&additionalPayloadSize,
reinterpret_cast<uint8_t*>(payload.data()) + indexToRead,
torch::utils::THPByteOrder::THP_BIG_ENDIAN,
1);
payload.resize(indexToRead);
TORCH_INTERNAL_ASSERT(
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
payload.size() > additionalPayloadSize,
"Wrong payload sizes: payload.size() is ",
payload.size(),
" but additional payload size is ",
additionalPayloadSize);
auto wrappedPayloadBegin =
static_cast<const char*>(message.payload().data()) + payload.size() -
additionalPayloadSize;
std::vector<torch::Tensor> tensorTable;
IValue tuple = jit::unpickle(
wrappedPayloadBegin,
additionalPayloadSize,
*rpc::RpcAgent::getCurrentRpcAgent()->getTypeResolver(),
tensorTable);
std::vector<at::IValue> tupleElements = tuple.toTupleRef().elements().vec();
payload.resize(payload.size() - additionalPayloadSize);
return tupleElements;
}
void populateRemoteProfiledEvents(
std::vector<LegacyEvent>& profiledEvents,
const ProfilerConfig& profilingConfig,
const std::vector<std::vector<LegacyEvent>>& eventLists) {
// Gather all events into a vector
for (auto& l : eventLists) {
for (auto& e : l) {
profiledEvents.push_back(e);
}
}
// find __start_profile event
bool cudaProfilingEnabled = profilingConfig.state == ProfilerState::CUDA;
const LegacyEvent* profilerStart = nullptr;
for (auto& e : profiledEvents) {
if (std::string(e.name()) == "__start_profile") {
profilerStart = &e;
break;
}
}
// We should always find __start_profile.
TORCH_CHECK(
profilerStart != nullptr, "Expected to find __start_profile event.");
if (cudaProfilingEnabled) {
// Deserialized events don't have the corresponding CUDA events, making it
// impossible to use cudaEventElapsedTime the receiving end. To avoid this,
// find all push/pop pairs of CUDA events and set the corresponding CUDA
// time to zero for the push event and to the elapsed time for the pop
// event, to be used later for the elapsed CUDA time computation.
std::unordered_map<at::RecordFunctionHandle, const LegacyEvent*>
startEvents;
for (auto& e : profiledEvents) {
if (e.hasCuda()) {
if (e.kind() == EventKind::PushRange) {
startEvents[e.handle()] = &e;
}
}
}
for (auto& e : profiledEvents) {
if (e.hasCuda()) {
if (e.kind() == EventKind::PopRange) {
auto it = startEvents.find(e.handle());
if (it != startEvents.end()) {
e.setCudaUs(it->second->cudaElapsedUs(e));
} else {
TORCH_WARN("Found a pop event without a corresponding push event");
e.setCudaUs(0);
}
} else {
e.setCudaUs(0);
}
}
}
}
}
} // namespace rpc
} // namespace distributed
} // namespace torch
|