1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
#include <torch/csrc/jit/backends/backend_detail.h>
#include <ATen/code_template.h>
#include <ATen/core/jit_type.h>
#include <torch/csrc/jit/backends/backend.h>
#include <torch/csrc/jit/backends/backend_debug_handler.h>
#include <torch/csrc/jit/backends/backend_debug_info.h>
#include <torch/csrc/jit/backends/backend_resolver.h>
#include <memory>
#include <stack>
#include <unordered_map>
namespace torch {
namespace jit {
namespace detail {
namespace {
/*
* This is the API via which backend's preprocess function will obtain debug
* handles corresponding to the nodes of the graph for the lowered methods of
* the module.
* Implementation: Given graph
* For each node of the graph, request debug handle via debug_info_recorder.
* debug_info_recorder returns the next debug handle and record node with
* corresponding debug info, such as source range and inlined callstack.
*
* Backend code for lowering module, preprocess, calls
* generate_debug_handles(graph)) which will return debug handles corresponding
* to the Node* of the said graph.
*
* In to_backend, after lowering, stopRecording is called on
* BackendModuleDebugInfoRecorder: It will extract debug map. This map gets
* stored as part of the lowered module.
* During serialization, specifically for bytecode serialization, check is made
* to see if the model being serialized has any lowered modules. If so
* corresponding debug map is extracted and serialized.
*/
NodeToDebugHandle generate_debug_handles(
BackendDebugInfoRecorder& debug_info_recorder,
const std::shared_ptr<Graph>& graph) {
NodeToDebugHandle node_to_debug_handles;
std::stack<Block*> blocks_to_visit;
// TODO: Look into using DepthFirstGraphNodeIterator
// At the moment it takes non-const graph but maybe we can make it
// general such that it can work with both.
blocks_to_visit.push(graph->block());
while (!blocks_to_visit.empty()) {
Block* b = blocks_to_visit.top();
blocks_to_visit.pop();
for (Node* n : b->nodes()) {
DebugHandleType debug_handle = debug_info_recorder.getNextDebugHandle(n);
node_to_debug_handles.emplace(n, debug_handle);
for (Block* subblock : n->blocks()) {
blocks_to_visit.push(subblock);
}
}
}
return node_to_debug_handles;
}
std::unordered_map<std::string, BackendPreprocessFunction>&
backendPreprocessFunctions() {
static std::unordered_map<std::string, BackendPreprocessFunction>
preprocess_functions;
return preprocess_functions;
}
} // namespace
bool hasBackendPreprocessFunction(const std::string& name) {
return backendPreprocessFunctions().count(name);
}
void registerBackendPreprocessFunction(
const std::string& name,
const BackendPreprocessFunction& preprocess) {
TORCH_CHECK(
!detail::hasBackendPreprocessFunction(name),
"Preprocessing function for backend ",
name,
" is already registered. Ensure that registration is only called once.");
detail::backendPreprocessFunctions()[name] = preprocess;
}
BackendPreprocessFunction getBackendPreprocessFunction(
const std::string& name) {
TORCH_CHECK(
hasBackendPreprocessFunction(name),
"Preprocessing function for backend ",
name,
" is not registered.");
return backendPreprocessFunctions()[name];
}
Module codegen_backend_module(
const std::string& backend_name,
const Module& orig_module,
const c10::Dict<IValue, IValue>& method_compile_spec,
const c10::DictTypePtr& any_dict_ty) {
const c10::QualifiedName qual_backend_name(
{"__torch__", "torch", "classes", kBackendsNamespace, backend_name});
// TODO: Validate method_compile_spec.
// Clone orig_module to make sure backend transformation is
// functional.
auto cloned_module = orig_module.clone();
auto module_name = orig_module.type()->name()->qualifiedName();
// Generate LoweredModule.
Module loweredModule(
"torch.jit.LoweredModule." + backend_name + "." + module_name,
std::make_shared<CompilationUnit>(),
/*shouldMangle=*/true);
// Generate WrapperModule.
Module wrapper(
"torch.jit.LoweredWrapper." + backend_name + "." + module_name,
std::make_shared<CompilationUnit>(),
/*shouldMangle=*/true);
// 1. Initialized debug info recorder.
// 2. Later call debug_info_recorder.stopRecording() to gather
// recorded debug info and save it in __backend_debug_info.
BackendDebugInfoRecorder debug_info_recorder;
// Generate attributes.
// This is the preprocessed module.
// For backwards compatibility, for backends that implement preprocessing in
// the backend interface rather than as a separate function, we just pass
// the cloned original Module.
BackendDebugHandleGenerator debug_handle_generator =
[&](const std::shared_ptr<Graph>& g) {
return generate_debug_handles(debug_info_recorder, g);
};
loweredModule.register_attribute(
"__processed_module",
AnyType::get(),
detail::getBackendPreprocessFunction(backend_name)(
cloned_module, method_compile_spec, debug_handle_generator),
/*is_param=*/false);
// This is for the method_compile_spec passed in to to_<backend> or
// loaded from an exported model.
loweredModule.register_attribute(
"__method_compile_spec",
any_dict_ty,
method_compile_spec,
/*is_param=*/false);
// This is a pointer to a backend instance that is used to access
// compile and execute functions.
auto cls = getCustomClass(qual_backend_name.qualifiedName());
TORCH_INTERNAL_ASSERT(cls);
c10::intrusive_ptr<torch::CustomClassHolder> backend;
loweredModule.register_attribute(
"__backend", cls, IValue::make_capsule(backend));
// This is the list of opaque backend handles returned by
// backend.compile.
loweredModule.register_attribute(
"__handles",
any_dict_ty,
c10::impl::GenericDict(
any_dict_ty->getKeyType(), any_dict_ty->getValueType()),
/*is_param=*/false);
// Methods.
// This is a helper function for creating a new instance of the
// backend class.
static const auto create_backend_ct = at::jit::CodeTemplate(R"(
def __create_backend(self):
self.__backend = $name()
)");
at::jit::TemplateEnv create_backend_te;
create_backend_te.s("name", qual_backend_name.qualifiedName());
loweredModule.define(
create_backend_ct.format(create_backend_te), loweredModuleResolver());
// Helper function to expose backend.is_available() to Module generation code.
// Assumes self.__backend exists (i.e. __create_backend() has already been
// invoked).
loweredModule.define(
R"(
def __is_available(self):
return self.__backend.is_available()
)",
loweredModuleResolver());
// backend_debug_info_class is an instance of BackendDebugInfo that
// stores debug information.
// The purpose of this class is to make the debug information available
// at model saving time for serializing it outside of the lowered module,
// while still tying it to the module's lifetime (so it gets destroyed along
// with it).
// Whereas this information is not serialized as part of the lowered
// module, we still need to provide a valid instance of the
// BackendDebugInfo class when the lowered module is deserialized.
// Since the deserialized modules does not need this information,
// we create a "dummy" instance with no extra code dependencies (to avoid
// overhead) when the backend is created in __setstate__.
c10::intrusive_ptr<torch::CustomClassHolder> backend_debug_info_class;
const c10::QualifiedName backend_debug_info_class_name(
{"__torch__",
"torch",
"classes",
kBackendUtilsNamespace,
kBackendDebugInfoClass});
auto debug_info_cls =
getCustomClass(backend_debug_info_class_name.qualifiedName());
TORCH_CHECK(debug_info_cls, "BackendDebugInfo class must be available.");
loweredModule.register_attribute(
"__backend_debug_info",
OptionalType::create(debug_info_cls),
IValue::make_capsule(backend_debug_info_class));
static const auto create_backend_debug_info_ct = at::jit::CodeTemplate(R"(
def __create_backend_debug_info(self):
self.__backend_debug_info = $backend_debug_info()
)");
at::jit::TemplateEnv create_backend_debug_info_te;
create_backend_debug_info_te.s(
"backend_debug_info", backend_debug_info_class_name.qualifiedName());
loweredModule.define(
create_backend_debug_info_ct.format(create_backend_debug_info_te),
loweredModuleResolver());
// getstate and setstate are for serialization/deserialization of
// the LoweredModule.
// setstate is in charge of initializing self.__backend by invoking
// __create_backend().
loweredModule.define(
R"(
def __getstate__(self):
# The third parameter indicates whether __setstate__ must create
# the backend instance. It's hardcoded to True since the only
# case it can be false is when __setstate__ is called from
# outside the module (at module creation time), because
# __create_backed has been called already (also directly).
return self.__method_compile_spec, self.__processed_module, True
)",
loweredModuleResolver());
loweredModule.define(
R"(
def __setstate__(self, state):
self.__method_compile_spec = state[0]
self.__processed_module = state[1]
# state[2] indicates whether to create the backend instance.
if state[2]:
self.__create_backend()
self.__create_backend_debug_info()
if self.__backend.is_available() :
self.__handles = self.__backend.compile(self.__processed_module, self.__method_compile_spec)
else:
raise Exception("Backend is not available.")
)",
loweredModuleResolver());
// This loop generates one method on the LoweredModule for every key
// in method_compile_spec.
std::vector<std::string> wrapper_methods;
for (auto& e : method_compile_spec) {
std::string method_name = e.key().toStringRef();
static const auto method_ct = at::jit::CodeTemplate(R"(
def $method(self${,def_inputs}):
typed_inputs: List[Any] = [${fwd_inputs,}]
if self.__backend.is_available() :
$unpack, = self.__backend.execute(self.__handles["$method"], typed_inputs)
${refine,}
return $ret
else:
raise Exception("Backend is not available.")
)");
static const auto wrapper_method_ct = at::jit::CodeTemplate(R"(
def $method(self${,def_inputs}):
return self.__loweredModule__.$method(${fwd_inputs})
)");
at::jit::TemplateEnv method_te, wrapper_method_te;
method_te.s("method", method_name);
wrapper_method_te.s("method", method_name);
auto method = orig_module.get_method(method_name);
auto& function = method.function();
auto& schema = function.getSchema();
// Generate the inputs for the function signature (def_inputs) and
// for passing to backend.execute (fwd_inputs).
std::vector<std::string> def_inputs, fwd_inputs;
for (const auto& arg : schema.arguments()) {
auto name = arg.name();
// Skip self since that is only and always present in the
// signature.
if (name == "self") {
continue;
}
auto default_value = arg.default_value();
if (arg.kwarg_only()) {
// If this is a kwarg, it needs to be emitted as keyword=value
// in the definition and keyword=keyword in the call to
// backend_execute.
TORCH_INTERNAL_ASSERT(default_value.has_value());
std::stringstream def_ss, fwd_ss;
// Annotate type of the arg
def_ss << name << ": " << arg.type()->annotation_str(nullptr) << "=";
fwd_ss << name << "=" << name;
default_value->repr(
def_ss, [](std::ostream&, const IValue&) -> bool { return false; });
def_inputs.emplace_back(def_ss.str());
fwd_inputs.emplace_back(fwd_ss.str());
} else {
// If this is not a kwarg, it should be emitted as is in the
// signature and the call to backend_execute.
std::stringstream def_ss;
// Annotate type of the arg
def_ss << name << ": " << arg.type()->annotation_str(nullptr);
def_inputs.emplace_back(def_ss.str());
fwd_inputs.emplace_back(name);
}
}
// Generate a comma-delimited list of identifiers to unpack
// outputs, as well as a list of isinstance checks to make sure
// the backend returned the types it was supposed to.
std::stringstream out_ss, type_check_ss;
std::vector<std::string> type_checks;
TORCH_INTERNAL_ASSERT(schema.returns().size() == 1);
auto out_ty = schema.returns().at(0).type();
out_ss << "_0";
type_check_ss << "assert isinstance(_0, ";
auto out_tuple_ty = out_ty->cast<TupleType>();
if (out_tuple_ty) {
auto tuple_elements = out_tuple_ty->elements();
type_check_ss << tuple_elements[0]->annotation_str() << ")";
type_checks.emplace_back(type_check_ss.str());
for (unsigned i = 1, e = tuple_elements.size(); i < e; ++i) {
type_check_ss.str(std::string());
type_check_ss.clear();
out_ss << ", _" << i;
type_check_ss << "assert isinstance(_" << i << ", "
<< tuple_elements[i]->annotation_str() << ")";
type_checks.emplace_back(type_check_ss.str());
}
} else {
type_check_ss << out_ty->annotation_str() << ")";
type_checks.emplace_back(type_check_ss.str());
}
method_te.v("def_inputs", def_inputs);
method_te.v("fwd_inputs", fwd_inputs);
method_te.v("refine", type_checks);
method_te.s("unpack", out_ss.str());
wrapper_method_te.v("def_inputs", def_inputs);
wrapper_method_te.v("fwd_inputs", fwd_inputs);
wrapper_methods.push_back(wrapper_method_ct.format(wrapper_method_te));
// If the output type is a single element tuple then add an extra comma
// to ensure the final output maintains this type.
if (out_tuple_ty && out_tuple_ty->elements().size() == 1) {
out_ss << ",";
}
method_te.s("ret", out_ss.str());
loweredModule.define(method_ct.format(method_te), loweredModuleResolver());
}
// If backend is available, call __setstate__ to ensure that the returned
// Module is ready to run.
// Otherwise throw a warning indicating that the resulting Module is not
// ready for execution until is loaded to a device with the backend.
loweredModule.run_method("__create_backend");
if (loweredModule.run_method("__is_available").toBool()) {
auto state = at::ivalue::Tuple::create(
method_compile_spec,
loweredModule.attr("__processed_module"),
/*create_backend*/ false);
loweredModule.run_method("__setstate__", state);
} else {
TORCH_WARN(
"Backend [",
backend_name,
"] is not available. Execution of this Module is still possible by "
"saving and loading on a device where the backend is available.");
}
// stop debug info recording and get debug_info_map
auto debug_info_map = debug_info_recorder.stopRecording();
loweredModule.run_method("__create_backend_debug_info");
auto backend_debug_info = loweredModule.attr("__backend_debug_info")
.toCustomClass<PyTorchBackendDebugInfo>();
backend_debug_info->setDebugInfoMap(std::move(debug_info_map));
// Wrap lowered module to obfuscate custom serialization logic
wrapper.register_module("__loweredModule__", loweredModule);
for (auto& method : wrapper_methods) {
wrapper.define(method);
}
return wrapper;
}
} // namespace detail
} // namespace jit
} // namespace torch
|