1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
#include <torch/csrc/jit/codegen/cuda/compute_at.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <torch/csrc/jit/codegen/cuda/root_domain_map.h>
#include <torch/csrc/jit/codegen/cuda/transform_iter.h>
#include <c10/util/irange.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
// Simple selector that only propagates across tensor views in the provided
// unordered_set. Will also propagate to all consumers of those tensors, and the
// siblings of those tensors.
class ComputeAtSelector : public MaxInfoSpanningTree::Selector {
std::unordered_set<TensorView*> selected_;
public:
virtual bool allowC2P(TensorView* from, TensorView* to) override {
return selected_.count(to) > 0;
}
virtual bool allowP2C(TensorView* from, TensorView* to) override {
// If the producer is in the selected set, then the consumer must also be
// replayed to obtain a compatible loop structure so that this producer
// can be consumed in this loop.
return selected_.count(from) > 0 || selected_.count(to) > 0;
}
virtual bool allowSibling(TensorView* from, TensorView* to) override {
return true;
}
ComputeAtSelector(std::unordered_set<TensorView*> selected)
: selected_(std::move(selected)) {}
const std::unordered_set<TensorView*>& selected() const {
return selected_;
}
};
namespace {
// Wrapper around set_intersection
template <typename T>
std::set<T> set_intersection(const std::set<T>& set1, const std::set<T>& set2) {
std::set<T> intersection;
std::set_intersection(
set1.begin(),
set1.end(),
set2.begin(),
set2.end(),
std::inserter(intersection, intersection.begin()));
return intersection;
}
std::deque<std::deque<TensorView*>> tvChains(
std::deque<std::deque<Val*>> val_chains) {
std::deque<std::deque<TensorView*>> tv_chains(val_chains.size());
for (const auto i : c10::irange(val_chains.size())) {
auto tv_iterable = ir_utils::filterByType<TensorView>(val_chains[i]);
tv_chains[i] =
std::deque<TensorView*>(tv_iterable.begin(), tv_iterable.end());
}
return tv_chains;
}
std::unordered_set<TensorView*> getAllTVsBetween(
TensorView* producer,
TensorView* consumer) {
TORCH_CHECK(
DependencyCheck::isDependencyOf(producer, consumer),
"Compute At expects ",
producer->name(),
" is a dependency of ",
consumer->name(),
", however it is not.");
auto between_vals =
DependencyCheck::getAllValsBetween({producer}, {consumer});
auto between_tvs = ir_utils::filterByType<TensorView>(between_vals);
std::unordered_set<TensorView*> result(
between_tvs.begin(), between_tvs.end());
result.erase(consumer);
return result;
}
TensorView* getCommonConsumer(TensorView* producer, TensorView* consumer) {
FUSER_PERF_SCOPE("ComputeAt::setCommonConsumer");
auto producer_use_chains_ =
tvChains(DependencyCheck::getAllUseChains(producer));
// Convert the first chain to a set.
std::set<TensorView*> common_consumers(
producer_use_chains_.front().begin(), producer_use_chains_.front().end());
// Run through all use chains of producer, and intersect them to find common
// TVs
for (auto tv_chain : producer_use_chains_) {
common_consumers = set_intersection(
common_consumers,
std::set<TensorView*>(tv_chain.begin(), tv_chain.end()));
}
auto all_chains =
tvChains(DependencyCheck::getAllDependencyChains(producer, consumer));
// Right now we only support compute at if at some point in the graph consumer
// is dependent on producer.
TORCH_CHECK(
!all_chains.empty(),
"Compute At expects ",
producer->name(),
" is a dependency of ",
consumer->name(),
", however it is not.");
// Remove all TVs from producer to consumer as common consumer must be at or
// after consumer
for (const auto& tv_chain : all_chains) {
for (auto tv : tv_chain) {
if (tv != consumer)
common_consumers.erase(tv);
}
}
// If there is a common consumer, grab the first one at or after consumer
TensorView* common_consumer = nullptr;
if (!common_consumers.empty()) {
for (auto tv : producer_use_chains_.front()) {
if (common_consumers.find(tv) != common_consumers.end()) {
common_consumer = tv;
break;
}
}
TORCH_INTERNAL_ASSERT(
common_consumer != nullptr,
"Hit a logical inconsistency in the computeAt pass.");
}
return common_consumer;
}
void pullInSiblings(std::unordered_set<TensorView*>& s) {
for (auto tv : s) {
for (auto sibling_tv : ir_utils::siblingTvsOf(tv)) {
if (sibling_tv == tv) {
continue;
}
s.emplace(sibling_tv);
}
}
}
// I am just trying to get the same set of tensors being transformed matching
// the previous behavior of ComputeAt. The algorithm to compute this set is
// horrible, but I don't care because I will eventually completely remove
// ComputeAt, and this algorihtm is not worse than the pervious ComputeAt. :)
std::unordered_set<TensorView*> getPropagationSubgraph(
TensorView* producer,
TensorView* consumer) {
TORCH_CHECK(
DependencyCheck::isDependencyOf(producer, consumer),
"Compute At expects ",
producer->name(),
" is a dependency of ",
consumer->name(),
", however it is not.");
TensorView* common_consumer = getCommonConsumer(producer, consumer);
if (common_consumer != nullptr) {
auto result = getAllTVsBetween(producer, common_consumer);
pullInSiblings(result);
return result;
}
auto result_vals = DependencyCheck::getAllDependentVals({producer});
result_vals.emplace(producer);
auto result_tvs = ir_utils::filterByType<TensorView>(result_vals);
std::unordered_set<TensorView*> result;
std::copy_if(
result_tvs.begin(),
result_tvs.end(),
std::inserter(result, result.begin()),
[](TensorView* tv) { return !tv->uses().empty(); });
pullInSiblings(result);
return result;
}
} // namespace
void ComputeAt::runAt(
TensorView* producer,
TensorView* consumer,
int64_t consumer_position,
ComputeAtMode mode) {
FUSER_PERF_SCOPE("ComputeAt::runAt");
// Make sure the correct fusion is setup between this and consumer.
TORCH_CHECK(
producer->fusion() == consumer->fusion(),
producer,
" and ",
consumer,
" are not in the same fusion.");
if (mode == ComputeAtMode::MostInlined) {
consumer_position = -1;
}
FusionGuard fg(producer->fusion());
auto selected = getPropagationSubgraph(producer, consumer);
ComputeAtSelector selector(selected);
InlinePropagator inline_propagator(
consumer, consumer_position, mode, selector.selected());
MaxRootDomainInfoSpanningTree path(consumer, consumer_position, &selector);
if (mode == ComputeAtMode::MostInlined) {
MostInlinedTransformPropagator propagator;
path.traverse(&propagator);
} else {
TransformPropagator propagator(consumer, consumer_position);
path.traverse(&propagator);
}
path.traverse(&inline_propagator);
}
void ComputeAt::runWith(
TensorView* producer,
TensorView* consumer,
int64_t producer_position,
ComputeAtMode mode) {
FUSER_PERF_SCOPE("ComputeAt::runWith");
// Make sure the correct fusion is setup between this and consumer.
TORCH_CHECK(
producer->fusion() == consumer->fusion(),
producer,
" and ",
consumer,
" are not in the same fusion.");
if (mode == ComputeAtMode::MostInlined) {
producer_position = -1;
}
FusionGuard fg(producer->fusion());
auto selected = getPropagationSubgraph(producer, consumer);
ComputeAtSelector selector(selected);
InlinePropagator inline_propagator(
producer, producer_position, mode, selector.selected());
MaxRootDomainInfoSpanningTree path(producer, producer_position, &selector);
if (mode == ComputeAtMode::MostInlined) {
MostInlinedTransformPropagator propagator;
path.traverse(&propagator);
} else {
TransformPropagator propagator(producer, producer_position);
path.traverse(&propagator);
}
path.traverse(&inline_propagator);
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|