File: executor_kernel_arg.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (320 lines) | stat: -rw-r--r-- 10,656 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
#include <c10/util/irange.h>

// Extract size and strides
#include <torch/csrc/jit/codegen/cuda/kernel_cache.h>

#include <torch/csrc/jit/codegen/cuda/executor_kernel_arg.h>

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

namespace {

template <typename T, typename nvfuser_index_t>
std::unique_ptr<TensorArgAbstract> getTensorArg(int nDims) {
  switch (nDims) {
    case (0):
      return std::make_unique<TensorArg<
          TensorArgCodegen<T, 0, nvfuser_index_t>,
          nvfuser_index_t>>();
    case (1):
      return std::make_unique<TensorArg<
          TensorArgCodegen<T, 1, nvfuser_index_t>,
          nvfuser_index_t>>();
    case (2):
      return std::make_unique<TensorArg<
          TensorArgCodegen<T, 2, nvfuser_index_t>,
          nvfuser_index_t>>();
    case (3):
      return std::make_unique<TensorArg<
          TensorArgCodegen<T, 3, nvfuser_index_t>,
          nvfuser_index_t>>();
    case (4):
      return std::make_unique<TensorArg<
          TensorArgCodegen<T, 4, nvfuser_index_t>,
          nvfuser_index_t>>();
    // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
    case (5):
      // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
      return std::make_unique<TensorArg<
          TensorArgCodegen<T, 5, nvfuser_index_t>,
          nvfuser_index_t>>();
    // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
    case (6):
      // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
      return std::make_unique<TensorArg<
          TensorArgCodegen<T, 6, nvfuser_index_t>,
          nvfuser_index_t>>();
    // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
    case (7):
      // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
      return std::make_unique<TensorArg<
          TensorArgCodegen<T, 7, nvfuser_index_t>,
          nvfuser_index_t>>();
    // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
    case (8):
      // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
      return std::make_unique<TensorArg<
          TensorArgCodegen<T, 8, nvfuser_index_t>,
          nvfuser_index_t>>();
    default:
      TORCH_INTERNAL_ASSERT(
          false,
          "Tried to generate a tensor to run a generated kernel with ",
          nDims,
          " dimensions, however only 0 to 8 dimensional tensor are supported.");
  }
  return nullptr;
}

template <typename INDEX_MODE>
std::unique_ptr<TensorArgAbstract> getTensorArg(
    c10::ScalarType dtype,
    int nDims) {
  switch (dtype) {
    case c10::ScalarType::Double:
      return getTensorArg<double, INDEX_MODE>(nDims);
    case c10::ScalarType::Float:
      return getTensorArg<float, INDEX_MODE>(nDims);
    case c10::ScalarType::Half:
      return getTensorArg<at::Half, INDEX_MODE>(nDims);
    case c10::ScalarType::BFloat16:
      return getTensorArg<at::BFloat16, INDEX_MODE>(nDims);
    case c10::ScalarType::Bool:
      return getTensorArg<bool, INDEX_MODE>(nDims);
    case c10::ScalarType::Long:
      return getTensorArg<int64_t, INDEX_MODE>(nDims);
    case c10::ScalarType::Int:
      return getTensorArg<int32_t, INDEX_MODE>(nDims);
    case c10::ScalarType::ComplexFloat:
      return getTensorArg<c10::complex<float>, INDEX_MODE>(nDims);
    case c10::ScalarType::ComplexDouble:
      return getTensorArg<c10::complex<double>, INDEX_MODE>(nDims);
    default:
      TORCH_CHECK(
          false,
          "Dtype: ",
          dtype,
          " not currently supported in code generated kernels.");
  }
}

std::unique_ptr<TensorArgAbstract> getTensorArg(
    c10::ScalarType dtype,
    int nDims,
    KernelIndexMode index_mode) {
  switch (index_mode) {
    case KernelIndexMode::INT32:
      return getTensorArg<int>(dtype, nDims);
    case KernelIndexMode::INT64:
      return getTensorArg<int64_t>(dtype, nDims);
    default:
      break;
  }

  TORCH_INTERNAL_ASSERT(false, "unknown index mode");
  return nullptr;
}

} // namespace

KernelArgumentHolder KernelArgumentHolder::createKernelArgumentHolder(
    const c10::ArrayRef<c10::IValue>& inputs) {
  if (inputs.empty()) {
    // default to int32 on device 0
    KernelArgumentHolder args(KernelIndexMode::INT32);
    args.setDeviceIndex(0);
    return args;
  }
  auto device_index = getCommonDeviceCUDA(inputs);
  auto index_mode = collectIndexMode(inputs);

  KernelArgumentHolder args(index_mode);
  args.setDeviceIndex(device_index);
  args.push(inputs);

  return args;
}

// Push a tensor to the arguments
void KernelArgumentHolder::push(const at::Tensor& tensor) {
  changed_ = true;
  if (is_cpu_scalar(tensor)) {
    switch (tensor.scalar_type()) {
      case c10::ScalarType::ComplexDouble:
        arguments_.push_back(std::make_unique<CpuScalarTensorArg<
                                 CpuScalarTensorCodegen<c10::complex<double>>>>(
            tensor.data_ptr<c10::complex<double>>()[0]));
        break;
      case c10::ScalarType::ComplexFloat:
        arguments_.push_back(std::make_unique<CpuScalarTensorArg<
                                 CpuScalarTensorCodegen<c10::complex<float>>>>(
            tensor.data_ptr<c10::complex<float>>()[0]));
        break;
      case c10::ScalarType::Double:
        arguments_.push_back(
            std::make_unique<
                CpuScalarTensorArg<CpuScalarTensorCodegen<double>>>(
                tensor.data_ptr<double>()[0]));
        break;
      case c10::ScalarType::Float:
        arguments_.push_back(
            std::make_unique<CpuScalarTensorArg<CpuScalarTensorCodegen<float>>>(
                tensor.data_ptr<float>()[0]));
        break;
      case c10::ScalarType::Half:
        arguments_.push_back(
            std::make_unique<
                CpuScalarTensorArg<CpuScalarTensorCodegen<at::Half>>>(
                tensor.data_ptr<at::Half>()[0]));
        break;
      case c10::ScalarType::BFloat16:
        arguments_.push_back(
            std::make_unique<
                CpuScalarTensorArg<CpuScalarTensorCodegen<at::BFloat16>>>(
                tensor.data_ptr<at::BFloat16>()[0]));
        break;
      case c10::ScalarType::Bool:
        arguments_.push_back(
            std::make_unique<CpuScalarTensorArg<CpuScalarTensorCodegen<bool>>>(
                tensor.data_ptr<bool>()[0]));
        break;
      case c10::ScalarType::Long:
        arguments_.push_back(
            std::make_unique<
                CpuScalarTensorArg<CpuScalarTensorCodegen<int64_t>>>(
                tensor.data_ptr<int64_t>()[0]));
        break;
      case c10::ScalarType::Int:
        arguments_.push_back(
            std::make_unique<
                CpuScalarTensorArg<CpuScalarTensorCodegen<int32_t>>>(
                tensor.data_ptr<int32_t>()[0]));
        break;
      default:
        TORCH_CHECK(
            false,
            "Dtype: ",
            tensor.scalar_type(),
            " not currently supported in code generated kernels.");
    }
  } else {
    int nDims = tensor.ndimension();

    c10::ScalarType dtype = tensor.scalar_type();
    std::unique_ptr<TensorArgAbstract> tensor_arg =
        getTensorArg(dtype, nDims, index_mode_);
    tensor_arg->setTensor(tensor);
    tensor_arg->setPointer(tensor.data_ptr());
    tensor_arg->setDataType(aten_to_data_type(dtype));
    for (const auto i : c10::irange(nDims)) {
      tensor_arg->setSize(i, tensor.sizes()[i]);
      tensor_arg->setStride(i, tensor.strides()[i]);
    }
    arguments_.push_back(std::move(tensor_arg));
  }
}

// Push a scalar or integer to the arguments
void KernelArgumentHolder::push(const IValue& val) {
  changed_ = true;
  TORCH_INTERNAL_ASSERT(
      val.isScalar(),
      "Tried to push an arg to run in a fused kernel, expected a scalar but got, ",
      val);
  auto scalar_val = val.toScalar();
  switch (scalar_val.type()) {
    // NOLINTNEXTLINE(bugprone-branch-clone)
    case c10::ScalarType::ComplexDouble:
      arguments_.push_back(
          std::make_unique<ComplexDoubleArg>(scalar_val.toComplexDouble()));
      return;
    case c10::ScalarType::Double:
      arguments_.push_back(std::make_unique<DoubleArg>(scalar_val.toDouble()));
      return;
    case c10::ScalarType::Long:
      arguments_.push_back(std::make_unique<LongArg>(scalar_val.toLong()));
      return;
    case c10::ScalarType::Bool:
      arguments_.push_back(std::make_unique<BoolArg>(scalar_val.toBool()));
      return;
    default:
      TORCH_INTERNAL_ASSERT(
          false,
          " Tried to create argument to send to a fused kernel, but got an unexpected type.");
  }
  TORCH_INTERNAL_ASSERT(
      false,
      " Tried to create argument to send to a fused kernel, but got a non-scalar type.");
}

void KernelArgumentHolder::push(int64_t val) {
  arguments_.push_back(std::make_unique<LongArg>(val));
}

void KernelArgumentHolder::push(const at::PhiloxCudaState& val) {
  arguments_.push_back(std::make_unique<PhiloxCudaStateArg>(val));
}

// Create buffer, flatten arguments into it, align by 8 Bytes, return pointers
// in the buffer
void** KernelArgumentHolder::getBuffer() {
  if (changed_) {
    void_ptrs_ = std::vector<void*>(arguments_.size(), nullptr);
    for (const auto i : c10::irange(arguments_.size())) {
      void_ptrs_[i] = static_cast<void*>(arguments_[i]->arg());
    }
    changed_ = false;
  }
  return void_ptrs_.data();
}

void KernelArgumentHolder::push(const c10::ArrayRef<c10::IValue>& args) {
  // Naive I/O setup, I'm ignoring all the potential transformation (i.e. I/O
  // allocated here from the subgraph could be, and very likely are, different
  // from I/O expected by the generated CUDA kernel.
  for (const auto& arg : args) {
    if (arg.isTensor()) {
      push(arg.toTensor());
    } else {
      push(arg);
    }
  }
}

void KernelArgumentHolder::push(const std::vector<at::Tensor>& tensors) {
  for (const auto& tensor : tensors) {
    push(tensor);
  }
}

void KernelArgumentHolder::push(const ArgAbstract* arg) {
  changed_ = true;
  arguments_.emplace_back(arg->copy_unique_ptr());
}

void KernelArgumentHolder::swap(int i, const ArgAbstract* arg) {
  changed_ = true;
  auto holder = arg->copy_unique_ptr();
  arguments_[i].swap(holder);
}

void KernelArgumentHolder::appendPhiloxRNGSeed(uint64_t rand_offset) {
  at::PhiloxCudaState philox_engine_inputs;
  auto gen = at::cuda::detail::getDefaultCUDAGenerator();
  {
    // See Note [Acquire lock when using random generators]
    std::lock_guard<std::mutex> lock(gen.mutex());
    philox_engine_inputs =
        at::check_generator<at::CUDAGeneratorImpl>(gen)->philox_cuda_state(
            rand_offset);
  }
  push(philox_engine_inputs);
}

} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch