1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
#pragma once
#include <ATen/core/ivalue.h>
#include <ATen/cuda/CUDAGeneratorImpl.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/codegen/cuda/type.h>
#include <torch/csrc/jit/ir/ir.h>
#include <array>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
// This should match the tensor used in the code generation (almost exactly)
template <typename T, int N, typename nvfuser_index_t>
struct TensorArgCodegen {
T& operator[](nvfuser_index_t ind) {
return data[ind];
};
T* data;
std::array<nvfuser_index_t, N> size;
std::array<nvfuser_index_t, N> stride;
constexpr int nDims() const {
return N;
}
void setSize(int i, nvfuser_index_t s) {
size[i] = s;
}
void setStride(int i, nvfuser_index_t s) {
stride[i] = s;
}
nvfuser_index_t getSize(int i) const {
return size[i];
}
nvfuser_index_t getStride(int i) const {
return stride[i];
}
};
// 0-Dim GPU based tensor
template <typename T, typename nvfuser_index_t>
struct TensorArgCodegen<T, 0, nvfuser_index_t> {
T& operator[](nvfuser_index_t ind) {
return data[ind];
};
T* data;
constexpr int nDims() const {
return 0;
}
void setSize(int, nvfuser_index_t) {
TORCH_INTERNAL_ASSERT(false, "Tried to set size of a 0-dim tensor");
}
void setStride(int, nvfuser_index_t) {
TORCH_INTERNAL_ASSERT(false, "Tried to set stride of a 0-dim tensor");
}
nvfuser_index_t getSize(int i) const {
TORCH_INTERNAL_ASSERT(false, "Tried to get size of a 0-dim tensor");
}
nvfuser_index_t getStride(int i) const {
TORCH_INTERNAL_ASSERT(false, "Tried to get stride of a 0-dim tensor");
}
};
// Specialization for 0-dim case that's easy to pass in a CPU based tensor
// without memcpy
template <typename T>
struct CpuScalarTensorCodegen {
T& operator[](int) {
return data;
};
T data;
};
// TODO: macro this and the printer below
enum class ArgType {
PhiloxCudaState,
Long,
Double,
ComplexDouble,
Bool,
Tensor,
CpuScalarTensor
};
inline std::string argTypeToString(ArgType type) {
std::string ret;
switch (type) {
case ArgType::PhiloxCudaState:
ret = "PhiloxCudaState";
break;
case ArgType::Long:
ret = "Long";
break;
case ArgType::Double:
ret = "Double";
break;
case ArgType::ComplexDouble:
ret = "ComplexDouble";
break;
case ArgType::Bool:
ret = "Bool";
break;
case ArgType::Tensor:
ret = "Tensor";
break;
case ArgType::CpuScalarTensor:
ret = "CpuScalarTensor";
break;
}
return ret;
}
struct ArgAbstract {
virtual ~ArgAbstract() = default;
virtual const void* arg() const = 0;
virtual void* arg() = 0;
virtual bool isType(ArgType type) const = 0;
virtual ArgType type() const = 0;
virtual std::unique_ptr<ArgAbstract> copy_unique_ptr() const = 0;
virtual void print() const {
printf("input type: %s\n", argTypeToString(type()).c_str());
};
};
#define DEF_HELPEE_FUNC(TARGET_TYPE, ARG_NAME) \
bool isType(ArgType type) const override { \
return ArgType::TARGET_TYPE == type; \
} \
ArgType type() const override { \
return ArgType::TARGET_TYPE; \
} \
const void* arg() const override { \
return &ARG_NAME; \
} \
void* arg() override { \
return &ARG_NAME; \
} \
std::unique_ptr<ArgAbstract> copy_unique_ptr() const override { \
return std::make_unique<TARGET_TYPE##Arg>(*this); \
}
#define DEF_PRINT_FUNC \
void print() const override { \
std::cout << val_ << std::endl; \
}
struct PhiloxCudaStateArg : public ArgAbstract {
at::PhiloxCudaState val_;
PhiloxCudaStateArg(at::PhiloxCudaState _val) : val_(_val){};
DEF_HELPEE_FUNC(PhiloxCudaState, val_)
};
struct LongArg : public ArgAbstract {
int64_t val_;
explicit LongArg(int64_t _val) : val_(_val) {}
DEF_HELPEE_FUNC(Long, val_)
DEF_PRINT_FUNC
};
struct DoubleArg : public ArgAbstract {
double val_;
explicit DoubleArg(double _val) : val_(_val) {}
DEF_HELPEE_FUNC(Double, val_)
DEF_PRINT_FUNC
};
struct ComplexDoubleArg : public ArgAbstract {
c10::complex<double> val_;
explicit ComplexDoubleArg(c10::complex<double> _val) : val_(_val) {}
DEF_HELPEE_FUNC(ComplexDouble, val_)
DEF_PRINT_FUNC
};
struct BoolArg : public ArgAbstract {
bool val_;
explicit BoolArg(bool _val) : val_(_val) {}
DEF_HELPEE_FUNC(Bool, val_)
DEF_PRINT_FUNC
};
struct TensorArgAbstract : ArgAbstract {
virtual void setSize(int i, int64_t size) = 0;
virtual void setStride(int i, int64_t stride) = 0;
virtual void setPointer(void* ptr) = 0;
virtual void setDataType(DataType data_type) = 0;
virtual void setTensor(at::Tensor tensor) = 0;
virtual int64_t getRank() const = 0;
virtual int64_t getSize(int i) const = 0;
virtual int64_t getStride(int i) const = 0;
virtual void* getPointer() const = 0;
virtual DataType getDataType() const = 0;
virtual int64_t numel() const = 0;
virtual at::Tensor getTensor() const = 0;
// TODO: clean it up and also print out dtype
void print() const override {
auto rank = getRank();
std::cout << "tensor dtype: " << getDataType() << " sizes: (";
for (auto i = 0; i < rank; i++) {
std::cout << getSize(i) << ", ";
}
std::cout << ") stride: (";
for (auto i = 0; i < rank; i++) {
std::cout << getStride(i) << ", ";
}
std::cout << ") pointer: " << getPointer() << std::endl;
}
};
template <typename TENSOR_TYPE, typename nvfuser_index_t>
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
struct TensorArg : public TensorArgAbstract {
TENSOR_TYPE instance_;
// TODO: this is ugly, we should be extracting data type from `instance_`
// instead
DataType data_type_ = DataType::Null;
at::Tensor tensor_;
void setSize(int i, int64_t size) override {
instance_.setSize(i, (nvfuser_index_t)size);
}
void setStride(int i, int64_t stride) override {
instance_.setStride(i, (nvfuser_index_t)stride);
}
void setPointer(void* ptr) override {
instance_.data = static_cast<decltype(TENSOR_TYPE::data)>(ptr);
}
void setDataType(DataType data_type) override {
data_type_ = data_type;
}
void setTensor(at::Tensor tensor) override {
tensor_ = tensor;
}
int64_t getSize(int i) const override {
return instance_.getSize(i);
}
int64_t getStride(int i) const override {
return instance_.getStride(i);
}
int64_t getRank() const override {
return instance_.nDims();
}
void* getPointer() const override {
return instance_.data;
}
DataType getDataType() const override {
return data_type_;
}
at::Tensor getTensor() const override {
return tensor_;
}
int64_t numel() const override {
int64_t ret = 1;
for (auto i : c10::irange(instance_.nDims())) {
ret *= instance_.getSize(i);
}
return ret;
}
DEF_HELPEE_FUNC(Tensor, instance_)
};
template <typename CPU_TENSOR_TYPE>
struct CpuScalarTensorArg : public ArgAbstract {
CPU_TENSOR_TYPE instance_;
CpuScalarTensorArg() = delete;
explicit CpuScalarTensorArg(decltype(CPU_TENSOR_TYPE::data) _data) {
instance_.data = _data;
}
DEF_HELPEE_FUNC(CpuScalarTensor, instance_)
};
// TODO: This class needs some further clean up and refactor
//! KernelArgumentHolder copies meta information from kernel inputs, including
//! tensor sizes/shapes/dtype/memory_ptr and copies scalar inputs. It is used
//! for both compilation as well as kernel execution. The important thing is to
//! strip ownership of tensor from KernelArgumentHolder, so that during async
//! compilation, we are not unnecessarily holding memory that is not needed.
class TORCH_CUDA_CU_API KernelArgumentHolder {
public:
//! create KernelArgumentHolder from c10 inputs. Note that we we not taking
//! the ownership of the memory from the original inputs, but just recording
//! its meta data for kernel execution/compilation.
static KernelArgumentHolder createKernelArgumentHolder(
const c10::ArrayRef<c10::IValue>& inputs);
KernelIndexMode getIndexMode() const {
return index_mode_;
}
explicit KernelArgumentHolder(KernelIndexMode index_mode)
: index_mode_(index_mode) {}
KernelArgumentHolder(const KernelArgumentHolder& self)
: device_index_(self.getDeviceIndex()), index_mode_(self.getIndexMode()) {
for (const auto& arg : self.arguments_) {
push(arg.get());
}
}
KernelArgumentHolder& operator=(const KernelArgumentHolder& self) {
device_index_ = self.getDeviceIndex();
index_mode_ = self.getIndexMode();
for (const auto& arg : self.arguments_) {
push(arg.get());
}
return *this;
}
// Push a tensor to the arguments
void push(const at::Tensor& tensor);
// Push a scalar or integer to the arguments
void push(const IValue& val);
void push(const at::PhiloxCudaState& val);
// Create buffer, flatten arguments into it, align by 8 Bytes, return pointers
// in the buffer
void** getBuffer();
void push(const c10::ArrayRef<c10::IValue>& args);
void push(const std::vector<at::Tensor>& tensors);
void push(const ArgAbstract* arg);
void swap(int i, const ArgAbstract* arg);
// push int64
void push(int64_t val);
const ArgAbstract* back() const {
return arguments_.back().get();
}
void appendPhiloxRNGSeed(uint64_t rand_offset);
const ArgAbstract* operator[](int ind) const {
return arguments_.at(ind).get();
};
size_t size() const {
return arguments_.size();
}
bool empty() const {
return arguments_.empty();
}
void setDeviceIndex(int index) {
device_index_ = index;
}
int getDeviceIndex() const {
return device_index_;
}
void setCacheId(size_t id) {
cache_id_ = id;
}
c10::optional<size_t> getCacheId() const {
return cache_id_;
}
void print() const {
for (const auto& arg : arguments_) {
arg->print();
}
}
private:
std::vector<std::unique_ptr<ArgAbstract>> arguments_;
std::vector<void*> void_ptrs_;
bool changed_ = true;
int device_index_ = 0;
c10::optional<size_t> cache_id_ = c10::nullopt;
KernelIndexMode index_mode_ = KernelIndexMode::INT64;
};
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|