File: executor_utils.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1442 lines) | stat: -rw-r--r-- 49,768 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAGeneratorImpl.h>
#include <ATen/cuda/nvrtc_stub/ATenNVRTC.h>

#include <c10/cuda/CUDACachingAllocator.h>
#include <c10/util/irange.h>

#include <torch/csrc/jit/codegen/cuda/contiguity.h>
#include <torch/csrc/jit/codegen/cuda/executor_utils.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/fuser/cuda/fused_kernel.h>
#include <torch/csrc/jit/resource_guard.h>

#include <nvfuser_resources/PhiloxCudaStateRaw.h>
#include <nvfuser_resources/array.h>
#include <nvfuser_resources/bf16_support.h>
#include <nvfuser_resources/block_reduction.h>
#include <nvfuser_resources/block_sync_atomic.h>
#include <nvfuser_resources/block_sync_default.h>
#include <nvfuser_resources/broadcast.h>
#include <nvfuser_resources/fp16_support.h>
#include <nvfuser_resources/fused_reduction.h>
#include <nvfuser_resources/fused_welford_helper.h>
#include <nvfuser_resources/fused_welford_impl.h>
#include <nvfuser_resources/grid_broadcast.h>
#include <nvfuser_resources/grid_reduction.h>
#include <nvfuser_resources/grid_sync.h>
#include <nvfuser_resources/helpers.h>
#include <nvfuser_resources/index_utils.h>
#include <nvfuser_resources/memory.h>
#include <nvfuser_resources/random_numbers.h>
#include <nvfuser_resources/swizzle.h>
#include <nvfuser_resources/tensor.h>
#include <nvfuser_resources/tensorcore.h>
#include <nvfuser_resources/tuple.h>
#include <nvfuser_resources/type_traits.h>
#include <nvfuser_resources/warp.h>
#include <nvfuser_resources/welford.h>

#ifdef USE_ROCM
#include <nvfuser_resources/array_rocm.h>
#include <nvfuser_resources/bf16_support_rocm.h>
#include <nvfuser_resources/block_sync_default_rocm.h>
#include <nvfuser_resources/warp_rocm.h>
#endif

#ifndef USE_ROCM
#include <cuda_occupancy.h>
#endif

#include <fstream>

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace executor_utils {

std::string kernelPreamble() {
  std::stringstream ss;

#ifndef USE_ROCM
  ss << nvfuser_resources::fp16_support_cu;
#if defined(CUDA_VERSION) && CUDA_VERSION >= 11000
  ss << nvfuser_resources::bf16_support_cu;
#endif
#else
  ss << R"(
#ifndef __noinline__
#define __noinline__ __attribute__((noinline))
#endif
#ifndef __forceinline__
#define __forceinline__ inline __attribute__((always_inline))
#endif
#ifndef assert
#define assert(expr) ((void)0)
#endif
#ifndef __align__
#define __align__(x) __attribute__((aligned(x)))
#endif
  )";
  // fp16 support is automatic, bf16 is not
  ss << nvfuser_resources::bf16_support_rocm_cu;
#endif

  // Base classes and helpers
  ss << nvfuser_resources::tensor_cu;
  ss << nvfuser_resources::type_traits_cu;
#ifndef USE_ROCM
  ss << nvfuser_resources::array_cu;
#else
  ss << nvfuser_resources::array_rocm_cu;
#endif
  ss << nvfuser_resources::random_numbers_cu;
  ss << nvfuser_resources::helpers_cu;
  ss << nvfuser_resources::index_utils_cu;
  ss << nvfuser_resources::tuple_cu;

  // Synchronization classes
  if (std::getenv("PYTORCH_NVFUSER_USE_BLOCK_SYNC_ATOMIC")) {
    ss << nvfuser_resources::block_sync_atomic_cu;
  } else {
#ifndef USE_ROCM
    ss << nvfuser_resources::block_sync_default_cu;
#else
    ss << nvfuser_resources::block_sync_default_rocm_cu;
#endif
  }
  ss << nvfuser_resources::grid_sync_cu;

  // Communication classes
  ss << nvfuser_resources::block_reduction_cu;
  ss << nvfuser_resources::grid_reduction_cu;
  ss << nvfuser_resources::grid_broadcast_cu;
  ss << nvfuser_resources::broadcast_cu;
  ss << nvfuser_resources::welford_cu;
#ifndef USE_ROCM
  ss << nvfuser_resources::warp_cu;
  ss << nvfuser_resources::tensorcore_cu;
  ss << nvfuser_resources::memory_cu;
#else
  ss << nvfuser_resources::warp_rocm_cu;
#endif
  ss << nvfuser_resources::fused_welford_helper_cu;
  ss << nvfuser_resources::fused_reduction_cu;
  ss << nvfuser_resources::fused_welford_impl_cu;
  ss << nvfuser_resources::swizzle_cu;

  // Random utilities
  ss << nvfuser_resources::PhiloxCudaStateRaw_cu;

  return ss.str();
}

namespace {

// return false if arg's type, number of dimensions, and device, doesn't match
// param and provided c10:device
bool validateKernelArgTensor(
    const at::Tensor& arg,
    const Val* param,
    const c10::Device& device,
    std::stringstream& msg) {
  // Arg is a tensor. Param must be a tensor too.
  if (*param->getValType() != ValType::TensorView) {
    msg << "Argument is a tensor, but the parameter is not.\n";
    return false;
  }

  if (is_cpu_scalar(arg) && !param->as<TensorView>()->isCpuScalar()) {
    msg << "Argument is CPU Scalar Tensor, but parameter is not.\n";
    return false;
  }

  if (!is_cpu_scalar(arg) && !arg.is_cuda()) {
    msg << "Argumnet is a CPU tensor which is not supported in fusions.\n";
    return false;
  }

  // Check the rank of the tensors.
  size_t arg_dim = arg.dim();
  // Note: This requires current Fusion to be active.
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  size_t param_dim = TensorDomain::noReductions(
                         param->as<TensorView>()->getMaybeRFactorDomain())
                         .size();
  // see [Note - broadcast support in integration]
  // Because of broadcasting support handled in integration, we relax the rank
  // check as necessary.
  if (arg_dim > param_dim) {
    msg << "Argument tensor's rank is " << arg_dim << ", but the parameter is "
        << param_dim << "\n";
    return false;
  }

  if (!is_cpu_scalar(arg) && arg.device() != device) {
    msg << "Argument is on device that is not compiled for."
        << "\n";
    return false;
  }
  // Check element type
  at::ScalarType arg_data_type = arg.scalar_type();
  DataType param_data_type = *param->getDataType();
  bool match = false;
  // TODO: remove this switch with `aten_to_data_type`
  switch (arg_data_type) {
    case at::ScalarType::Double:
      match = param_data_type == DataType::Double;
      break;
    case at::ScalarType::Half:
      match = param_data_type == DataType::Half;
      break;
    case at::ScalarType::BFloat16:
      match = param_data_type == DataType::BFloat16;
      break;
    case at::ScalarType::Float:
      match = param_data_type == DataType::Float;
      break;
    case at::ScalarType::Long:
      match = param_data_type == DataType::Int;
      break;
    case at::ScalarType::Int:
      match = param_data_type == DataType::Int32;
      break;
    case at::ScalarType::Bool:
      match = param_data_type == DataType::Bool;
      break;
    case at::ScalarType::ComplexFloat:
      match = param_data_type == DataType::ComplexFloat;
      break;
    case at::ScalarType::ComplexDouble:
      match = param_data_type == DataType::ComplexDouble;
      break;
    default:
      msg << "Argument element type, " << arg_data_type << ", is not supported."
          << "\n";
      return false;
  }
  if (!match)
    msg << "Argument element type is " << arg_data_type
        << ", but the parameter is " << param_data_type << "\n";
  return match;
}

// Return false if  arg_type doesn't match the type in param
bool validateKernelArgScalar(
    const ArgAbstract* arg,
    const Val* param,
    std::stringstream& msg) {
  TORCH_INTERNAL_ASSERT(
      param->getDataType().has_value(), "kernel param should have data type");
  DataType param_type = *param->getDataType();
  bool match = false;
  switch (arg->type()) {
    case ArgType::Long:
      match = param_type == DataType::Int || param_type == DataType::Int32;
      break;
    case ArgType::Double:
      match = param_type == DataType::Double || param_type == DataType::Float ||
          param_type == DataType::Half || param_type == DataType::BFloat16;
      break;
    case ArgType::Bool:
      match = param_type == DataType::Bool;
      break;
    case ArgType::ComplexDouble:
      match = param_type == DataType::ComplexDouble ||
          param_type == DataType::ComplexFloat;
      break;
    default:
      // TODO: We need to verify that param is actually a scalar
      msg << "Argument is not a scalar, but the parameter is."
          << "\n";
      return false;
  }
  if (!match) {
    msg << "Argument type is " << argTypeToString(arg->type())
        << ", but the parameter is " << param_type << "\n";
  }
  return match;
}

// Return false if arg and param don't match up and if arg's device (if a
// tensor) doesn't match provided device
bool validateKernelArg(
    const ArgAbstract* arg,
    const Val* param,
    const c10::Device& device,
    std::stringstream& msg) {
  if (auto tensor_arg_abstract = dynamic_cast<const TensorArgAbstract*>(arg)) {
    // TODO: don't use get tensor here. We would want to remove tensor reference
    // for async compilation
    return validateKernelArgTensor(
        tensor_arg_abstract->getTensor(), param, device, msg);
  } else if (arg->isType(ArgType::CpuScalarTensor)) {
    // TODO: merge this one with above
    // TODO: we need to check cpu scalar dtyp matches param
    bool match = param->as<TensorView>()->isCpuScalar();
    if (!match) {
      msg << "Argument is scalar type, but kernel parameter is not\n";
    }
    return match;
  } else {
    return validateKernelArgScalar(arg, param, msg);
  }
}

// Return true if all the tensors have the same stride, assumes all tensors are
// contiguous
bool checkSameStride(const std::vector<c10::IValue>& tensors) {
  if (tensors.size() < 2) {
    return true;
  }
  for (const auto idx : c10::irange(tensors.size() - 1)) {
    auto current = tensors[idx];
    auto next = tensors[idx + 1];
    if (!current.isTensor() || !next.isTensor()) {
      return false;
    }

    const auto& current_tensor = current.toTensor();
    const auto& next_tensor = next.toTensor();
    if (current_tensor.ndimension() != next_tensor.ndimension()) {
      return false;
    }

    for (const auto i : c10::irange(current_tensor.ndimension())) {
      if (current_tensor.stride(i) != next_tensor.stride(i)) {
        return false;
      }
    }
  }
  return true;
}

// Return true if all the tensors are contiguous and have the same striding
bool checkSameContiguity(const std::vector<c10::IValue>& tensors) {
  if (tensors.size() < 2) {
    return true;
  }

  auto reference = tensors.front();
  if (!reference.isTensor()) {
    return false;
  }

  // Determine if the reference tensor is contiguous
  const auto& reference_tensor = reference.toTensor();
  int64_t expected_stride = 1;
  for (const auto i : c10::irange(1, reference_tensor.ndimension() + 1)) {
    int64_t ind = reference_tensor.ndimension() - i;
    if (reference_tensor.size(ind) == 1) {
      continue;
    }
    if (reference_tensor.stride(ind) != expected_stride) {
      return false;
    }
    expected_stride *= reference_tensor.size(ind);
  }

  // Check if all the tensors have the same contiguity
  return checkSameStride(tensors);
}

bool checkValidMisalignedTensors(
    const std::unordered_set<TensorView*>& inp_tv,
    const std::unordered_set<TensorView*>& out_tv,
    const std::vector<c10::IValue>& inp_tensors,
    const std::vector<c10::IValue>& out_tensors) {
  if (out_tv.empty()) {
    // Only check input tensors
    return checkSameStride(inp_tensors);
  } else if (!out_tv.empty() && out_tensors.empty()) {
    // out_tensors is empty unless outputs are given to runFusion.
    // Assume out tensors are contiguous
    return checkSameContiguity(inp_tensors);
  } else {
    // Only check input and output tensors
    std::vector<c10::IValue> tensors;
    tensors.insert(tensors.end(), inp_tensors.begin(), inp_tensors.end());
    tensors.insert(tensors.end(), out_tensors.begin(), out_tensors.end());
    return checkSameStride(tensors);
  }
}

} // namespace

void validateKernelInputs(
    Fusion* fusion,
    const KernelArgumentHolder& args,
    const c10::Device& device) {
  FUSER_PERF_SCOPE("executor_utils::ValidateKernelInputs");

  // This is necessary as we were traversing the fusion graph later in the check
  FusionGuard fg(fusion);
  // Check inputs
  TORCH_INTERNAL_ASSERT(
      args.size() == fusion->inputs().size(), "Wrong number of kernel inputs.");

  std::stringstream msg;
  bool mismatch = false;
  for (const auto i : c10::irange(args.size())) {
    const ArgAbstract* arg = args[i];
    const Val* param = fusion->inputs()[i];
    mismatch = !validateKernelArg(arg, param, device, msg) || mismatch;
  }
  TORCH_INTERNAL_ASSERT(
      !mismatch, "Found one or more invalid arguments: ", msg.str());
}

void validateKernelOutputs(
    Fusion* fusion,
    const std::vector<at::Tensor>& outputs,
    const c10::Device& device) {
  FUSER_PERF_SCOPE("executor_utils::ValidateKernelOutputs");

  TORCH_INTERNAL_ASSERT(
      fusion->outputs().size() != 0,
      "Kernel should have at least one output tensor.");

  TORCH_INTERNAL_ASSERT(
      outputs.size() == fusion->outputs().size(),
      "Wrong number of kernel outputs.");

  std::stringstream msg;
  bool mismatch = false;
  for (const auto i : c10::irange(outputs.size())) {
    const at::Tensor& arg = outputs[i];
    const Val* param = fusion->outputs()[i];
    mismatch = !validateKernelArgTensor(arg, param, device, msg) || mismatch;
  }
  TORCH_INTERNAL_ASSERT(
      !mismatch, "Found one or more invalid arguments: ", msg.str());
}

namespace {

// Finds a fusion input or output tensor to validate its stides
// for vectorization.
// Returns a pair consisting of a flag indicating it's a fusion input
// and an integer position within in the input or output tensor list.
std::vector<std::pair<bool, int>> getVectorizedFusionInputOutput(
    TensorView* producer_tv,
    TensorView* consumer_tv,
    Fusion* fusion) {
  std::vector<std::pair<bool, int>> vectorized_input_output;

  // When the producer is a fusion input, validate only the producer
  // and assume the consumer is contiguous. Similarly, when the
  // consumer is a fusion output, validate the consumer and assume the
  // producer is contiguous.

  if (producer_tv->isFusionInput()) {
    auto producer_it = std::find(
        fusion->inputs().begin(), fusion->inputs().end(), producer_tv);
    TORCH_INTERNAL_ASSERT(
        producer_it != fusion->inputs().end(),
        "Could not find ",
        producer_tv,
        " in fusion inputs.");
    auto pos = std::distance(fusion->inputs().begin(), producer_it);
    vectorized_input_output.push_back(
        std::make_pair<bool, int>(true, static_cast<int>(pos)));
  } else {
    // If not fusion input, assume it's fully contiguous, so nothing
    // to check with respect to strides.
    TORCH_INTERNAL_ASSERT(
        std::all_of(
            producer_tv->domain()->contiguity().begin(),
            producer_tv->domain()->contiguity().end(),
            [](bool contig) { return contig; }),
        "Unsupported pattern of vectorization: ",
        consumer_tv->definition()->toString());
  }

  if (consumer_tv->isFusionOutput()) {
    auto consumer_it = std::find(
        fusion->outputs().begin(), fusion->outputs().end(), consumer_tv);
    TORCH_INTERNAL_ASSERT(
        consumer_it != fusion->outputs().end(),
        "Could not find ",
        consumer_tv,
        " in fusion outputs.");
    auto pos = std::distance(fusion->outputs().begin(), consumer_it);
    vectorized_input_output.push_back(
        std::make_pair<bool, int>(false, static_cast<int>(pos)));
  } else {
    // If not fusion input, assume it's fully contiguous, so nothing
    // to check with respect to strides.
    TORCH_INTERNAL_ASSERT(
        std::all_of(
            consumer_tv->domain()->contiguity().begin(),
            consumer_tv->domain()->contiguity().end(),
            [](bool contig) { return contig; }),
        "Unsupported pattern of vectorization: ",
        consumer_tv->definition()->toString());
  }

  return vectorized_input_output;
}

//! Returns the information of vectorized input/output tensors
//! in the given fusion.
std::unique_ptr<caching::VectorizedTensorInfo> getVectorizedTensorValidationInfo(
    kir::Kernel* kernel) {
  auto vectorized_tensor_info_ptr =
      std::make_unique<caching::VectorizedTensorInfo>();

  for (const auto& vector_info : kernel->summary().vectorized_set_info) {
    auto consumer_tv = vector_info.consumer_tv;
    auto producer_tv = vector_info.producer_tv;

    auto vector_dim = vector_info.vectorized_leaf_id;
    const auto is_aligned =
        vector_dim->getParallelType() == ParallelType::Vectorize;

    // Find fusion inputs and outputs that are used with misaligned
    // vectorization.
    if (!is_aligned) {
      TORCH_INTERNAL_ASSERT(
          producer_tv->isFusionInput() || consumer_tv->isFusionOutput(),
          "MisalignedVectorize is assumed to be used with either input or output tensor");
      if (consumer_tv->getMemoryType() == MemoryType::Global &&
          producer_tv->getMemoryType() == MemoryType::Local) {
        vectorized_tensor_info_ptr->global_out_misaligned_tv.insert(
            consumer_tv);
      } else if (
          producer_tv->getMemoryType() == MemoryType::Global &&
          consumer_tv->getMemoryType() == MemoryType::Local) {
        vectorized_tensor_info_ptr->global_inp_misaligned_tv.insert(
            producer_tv);
      } else {
        TORCH_INTERNAL_ASSERT(
            false,
            "Unsupported memory configuration for misaligned vectorization.");
      }
    }

    // Collect information on corresponding fusion input and output
    // tensors to verify strides.
    auto inp_or_out_info =
        getVectorizedFusionInputOutput(producer_tv, consumer_tv, kernel);

    // If both producer and consumer are contig and intermediate,
    // nothing to validate with respect to strides.
    if (inp_or_out_info.empty()) {
      continue;
    }

    // Misaligned vectorize only allows from input to local or local
    // to output
    if (!is_aligned) {
      TORCH_INTERNAL_ASSERT(inp_or_out_info.size() == 1);
    }

    for (const auto& inp_or_out : inp_or_out_info) {
      const bool is_input = inp_or_out.first;
      const int pos = inp_or_out.second;

      if (is_aligned) {
        auto& pos_list = is_input
            ? vectorized_tensor_info_ptr->aligned_vectorized_inp_tensor_pos
            : vectorized_tensor_info_ptr->aligned_vectorized_out_tensor_pos;
        pos_list.push_back(pos);
      } else {
        auto& map = is_input
            ? vectorized_tensor_info_ptr->inp_misaligned_tensors_pos
            : vectorized_tensor_info_ptr->out_misaligned_tensors_pos;
        map.emplace_back(pos);
      }
    }
  }

  return vectorized_tensor_info_ptr;
}

// Make sure the root domain(s) comprising the vectorized leaf domain
// have the (merged) extent that is divisible by the vectorization
// word size.
void validateAlignedVectorizeExtents(
    const VectorizedSetInfo& info,
    kir::ExpressionEvaluator& expr_eval) {
  TORCH_INTERNAL_ASSERT(
      !info.contig_root_ids.empty(),
      "No root ID found for vectorization with ",
      info.consumer_tv->toString(),
      " and ",
      info.producer_tv->toString());

  int64_t vectorized_merged_domain_extent = 1;
  for (auto id : info.contig_root_ids) {
    auto extent_val = expr_eval.evaluate(id->extent());
    TORCH_INTERNAL_ASSERT(
        extent_val.has_value(),
        "Error vectorizing, ",
        info.consumer_tv->toString(),
        " as the extent of a vectorized root domain, ",
        id->toString(),
        ", is unknown.");
    vectorized_merged_domain_extent *= extent_val->as<int64_t>();
  }

  TORCH_INTERNAL_ASSERT(
      vectorized_merged_domain_extent % info.word_size == 0,
      "Error vectorizing, ",
      info.consumer_tv->toString(),
      " as the extent of the indexed domain, ",
      vectorized_merged_domain_extent,
      ", is not divisible by vector word size ",
      info.word_size);
}

void validateAlignedVectorizedFusionInputOutput(
    const at::Tensor& aten_tensor,
    int word_size,
    TensorView* tv) {
  TORCH_INTERNAL_ASSERT(
      reinterpret_cast<size_t>(aten_tensor.data_ptr()) %
              (word_size * aten_tensor.dtype().itemsize()) ==
          0,
      "Vectorization of ",
      tv->toString(),
      " not possible as the memory address is not aligned. ",
      "Address: ",
      aten_tensor.data_ptr(),
      ", vector word size: ",
      word_size,
      ", data type: ",
      aten_tensor.dtype());

  // Traverse strides from the right-most domains. The rightmost
  // domain must have stride 1.
  int64_t cur_contig_stride = 1;
  bool still_rightmost = true;
  for (auto i = aten_tensor.ndimension() - 1; i >= 0; --i) {
    const auto stride = aten_tensor.strides().at(i);
    const auto size = aten_tensor.sizes().at(i);
    // If this domain is contiguous or size == 1, then not necessary to check
    // the stride. Otherwise, stride must be 1 if it's rightmost or
    // divisible by word_size
    TORCH_INTERNAL_ASSERT(
        stride == cur_contig_stride || size == 1 ||
            (still_rightmost && stride == 1) ||
            (!still_rightmost && stride % word_size == 0),
        "Vectorization of ",
        tv->toString(),
        " with word size ",
        word_size,
        " not possible due to invalid stride.",
        " Domain: ",
        tv->axis(i)->toString(),
        ", stride: ",
        stride)
    // If the domain is size-1, the next domain is still considered
    // rightmost.
    still_rightmost = still_rightmost && size == 1;
    // We do not update cur_contig_stride for size==1 dimensions,
    // since we have specialized vectorization stride check for them
    if (size != 1) {
      cur_contig_stride = stride * size;
    }
  }
}

void validateAlignedVectorizedTensors(
    kir::Kernel* kernel,
    const KernelArgumentHolder& args,
    const std::vector<at::Tensor>& outputs,
    caching::ExecutorCompileTimeInfoCache* data_cache,
    kir::ExpressionEvaluator& expr_eval) {
  auto tensor_vectorization_validation_entry =
      executor_utils::caching::ExecutorCompileTimeEntry<
          executor_utils::caching::VectorizedTensorValidation>(
          data_cache, [kernel]() {
            return executor_utils::getVectorizedTensorValidationInfo(kernel);
          });

  // Verify extents of aligned vectorized tensors
  for (const auto& vec_info : kernel->summary().vectorized_set_info) {
    if (vec_info.vectorized_leaf_id->getParallelType() ==
        ParallelType::Vectorize) {
      validateAlignedVectorizeExtents(vec_info, expr_eval);
    }
  }

  // Validate input and output tensors with aligend
  // vectorization.
  for (auto pos : tensor_vectorization_validation_entry.get()
                      .aligned_vectorized_inp_tensor_pos) {
    auto tv = kernel->inputs().at(pos)->as<TensorView>();
    auto word_size = kernel->summary().vectorized_accesses.at(tv);
    auto tensor_arg_abstract =
        dynamic_cast<const TensorArgAbstract*>(args[pos]);
    TORCH_INTERNAL_ASSERT(tensor_arg_abstract, "alias io only supports tensor");
    validateAlignedVectorizedFusionInputOutput(
        tensor_arg_abstract->getTensor(), word_size, tv);
  }
  if (!outputs.empty()) {
    for (auto pos : tensor_vectorization_validation_entry.get()
                        .aligned_vectorized_out_tensor_pos) {
      auto tv = kernel->outputs().at(pos)->as<TensorView>();
      auto word_size = kernel->summary().vectorized_accesses.at(tv);
      validateAlignedVectorizedFusionInputOutput(outputs[pos], word_size, tv);
    }
  }
}

// Misaligned vectorization check. Currently misaligned vectorization is limited
// to global-register and register-global load/store patterns. However, this
// could be improved to include shared memory.
void validateMisalignedVectorizedTensors(
    kir::Kernel* kernel,
    const KernelArgumentHolder& args,
    const std::vector<at::Tensor>& outputs,
    caching::ExecutorCompileTimeInfoCache* data_cache,
    kir::ExpressionEvaluator& expr_eval) {
  auto tensor_vectorization_validation_entry =
      executor_utils::caching::ExecutorCompileTimeEntry<
          executor_utils::caching::VectorizedTensorValidation>(
          data_cache, [kernel]() {
            return executor_utils::getVectorizedTensorValidationInfo(kernel);
          });

  std::vector<c10::IValue> inp_misaligned_tensors;
  std::vector<c10::IValue> out_misaligned_tensors;

  const auto& inp_misaligned_tensors_pos =
      tensor_vectorization_validation_entry.get().inp_misaligned_tensors_pos;
  inp_misaligned_tensors.reserve(inp_misaligned_tensors_pos.size());
  std::transform(
      inp_misaligned_tensors_pos.begin(),
      inp_misaligned_tensors_pos.end(),
      std::back_inserter(inp_misaligned_tensors),
      [&args](int idx) {
        auto tensor_arg_abstract =
            dynamic_cast<const TensorArgAbstract*>(args[idx]);
        TORCH_INTERNAL_ASSERT(
            tensor_arg_abstract, "alias io only supports tensor");
        return tensor_arg_abstract->getTensor();
      });

  const auto& out_misaligned_tensors_pos =
      tensor_vectorization_validation_entry.get().out_misaligned_tensors_pos;
  if (outputs.size() > 0) {
    out_misaligned_tensors.reserve(out_misaligned_tensors_pos.size());
    std::transform(
        out_misaligned_tensors_pos.begin(),
        out_misaligned_tensors_pos.end(),
        std::back_inserter(out_misaligned_tensors),
        [&outputs](int idx) { return outputs[idx]; });
  }
  // If input stride is non-contiguous + no outputs, return false
  TORCH_INTERNAL_ASSERT(
      checkValidMisalignedTensors(
          tensor_vectorization_validation_entry.get().global_inp_misaligned_tv,
          tensor_vectorization_validation_entry.get().global_out_misaligned_tv,
          inp_misaligned_tensors,
          out_misaligned_tensors),
      "All global tensors must have the same stride for misaligned vectorization.");
}

// Check if there's any split that is non-divisible and vectorized. If
// found, Vectorize is illegal.
void validateVectorizedSplits(
    kir::Kernel* kernel,
    kir::ExpressionEvaluator& expr_eval) {
  for (const auto& extent_factor : kernel->summary().splits_to_validate) {
    auto input_extent = expr_eval.evaluate(extent_factor.first);
    auto split_factor = expr_eval.evaluate(extent_factor.second);
    TORCH_INTERNAL_ASSERT(
        input_extent.has_value(),
        "Could not check if a split with vectorization is divisible because the extent, ",
        extent_factor.first->toString(),
        ", is not possible to evaluate.");
    TORCH_INTERNAL_ASSERT(
        input_extent.has_value(),
        "Could not check if a split with vectorization is divisible because the split factor, ",
        extent_factor.second->toString(),
        ", is not possible to evaluate.");
    TORCH_INTERNAL_ASSERT(
        input_extent.value() % split_factor.value() == 0,
        "Non-divisible split with vectorization is detected. ",
        "Extent: ",
        input_extent.value(),
        ". Factor: ",
        split_factor.value());
  }
}

} // namespace

void validateVectorizedTensors(
    kir::Kernel* kernel,
    const KernelArgumentHolder& args,
    const std::vector<at::Tensor>& outputs,
    caching::ExecutorCompileTimeInfoCache* data_cache,
    kir::ExpressionEvaluator& expr_eval) {
  FUSER_PERF_SCOPE("FusionExecutor::validateVectorizedTensors");

  validateAlignedVectorizedTensors(
      kernel, args, outputs, data_cache, expr_eval);

  validateMisalignedVectorizedTensors(
      kernel, args, outputs, data_cache, expr_eval);

  validateVectorizedSplits(kernel, expr_eval);
}

namespace {

template <typename EXPR_EVALUATOR>
void bindInputForExprEvaluation(
    Val* val,
    const ArgAbstract* arg,
    bool check_consistency,
    EXPR_EVALUATOR& expr_eval) {
  if (val->getValType() == ValType::TensorView) {
    TensorView* cg_tensor = val->as<TensorView>();
    auto root_domain =
        TensorDomain::noReductions(cg_tensor->getMaybeRFactorDomain());

    if (root_domain.size() == 0) {
      TORCH_INTERNAL_ASSERT(
          arg->isType(ArgType::CpuScalarTensor) ||
              (arg->isType(ArgType::Tensor) &&
               dynamic_cast<const TensorArgAbstract*>(arg)->getRank() == 0),
          "Something went wrong configuring launch. Inputs is not rank 0 tensor");
    } else {
      TORCH_INTERNAL_ASSERT(
          arg->isType(ArgType::Tensor),
          "Something went wrong configuring launch. Inputs do not match.");

      auto tensor_arg_abstract = dynamic_cast<const TensorArgAbstract*>(arg);
      TORCH_INTERNAL_ASSERT(
          tensor_arg_abstract &&
              tensor_arg_abstract->getRank() == (int64_t)root_domain.size(),
          "Something went wrong configuring launch. Inputs rank does not match.");

      for (const auto dim : c10::irange(root_domain.size())) {
        const auto tensor_arg_size = tensor_arg_abstract->getSize(dim);
        const auto tensor_arg_stride = tensor_arg_abstract->getStride(dim);
        const auto extent = root_domain[dim]->extent();
        if (root_domain[dim]->hasExpandedExtent()) {
          TORCH_INTERNAL_ASSERT(
              tensor_arg_stride == 0,
              "Execting an expanded dimension on dimension ",
              dim,
              " but found stride ",
              tensor_arg_stride);
          // Could support dynamic size on expanded dimension, so may not have
          // an inferable expanded extent here. This check might be better to do
          // once all values are bound.
          auto maybe_expanded_size =
              expr_eval.evaluate(root_domain[dim]->expandedExtent());
          if (maybe_expanded_size.has_value()) {
            TORCH_CHECK(
                *maybe_expanded_size == tensor_arg_size,
                "Expecting expanded extent of ",
                *maybe_expanded_size,
                " but recieved value of ",
                tensor_arg_size);
          }
        }

        const auto value =
            root_domain[dim]->hasExpandedExtent() ? 1 : tensor_arg_size;
        if (value == 0 && cg_tensor->uses().empty()) {
          // If there's no uses, ignore there's a size-0 dimension.
          continue;
        }
        TORCH_INTERNAL_ASSERT(value != 0, "Cannot handle size-0 dimensions");
        bool should_bind = true;
        if (check_consistency) {
          const auto prev_value = expr_eval.evaluate(extent);
          if (prev_value.has_value()) {
            TORCH_CHECK(
                *prev_value == value,
                "Attempting to bind ",
                extent->toString(),
                " to ",
                value,
                " but it's already set to ",
                *prev_value);
            should_bind = false;
          }
        }
        if (should_bind && !extent->isConstScalar()) {
          expr_eval.bind(extent, value);
        }
      }
    }
  } else if (val->getValType().value() == ValType::Scalar) {
    if (val->getDataType().value() == DataType::Int) {
      TORCH_INTERNAL_ASSERT(
          arg->isType(ArgType::Long),
          "fusion expected Scalar Int inputs, but found ",
          argTypeToString(arg->type()));
      expr_eval.bind(val, *static_cast<const int64_t*>(arg->arg()));
    } else if (val->getDataType().value() == DataType::Double) {
      TORCH_INTERNAL_ASSERT(
          arg->isType(ArgType::Double),
          "fusion expected Scalar Double inputs, but found ",
          argTypeToString(arg->type()));
      expr_eval.bind(val, *static_cast<const double*>(arg->arg()));
    }
  }
}

} // namespace

kir::ExpressionEvaluator bindKernelInputs(
    const KernelArgumentHolder& args,
    kir::Kernel* kernel,
    bool check_consistency) {
  FUSER_PERF_SCOPE("executor_utils::BindKernelInputs");

  TORCH_INTERNAL_ASSERT(
      kernel->inputs().size() == args.size(),
      "Something went wrong configuring launch. Inputs no longer match.");

  kir::ExpressionEvaluator expr_eval;
  const auto& inputs = kernel->inputs();

  for (const auto i : c10::irange(inputs.size())) {
    bindInputForExprEvaluation(
        inputs[i], args[i], check_consistency, expr_eval);
  }
  return expr_eval;
}

ExpressionEvaluator bindFusionInputs(
    const KernelArgumentHolder& args,
    Fusion* fusion) {
  FUSER_PERF_SCOPE("executor_utils::BindFusionInputs");

  auto inputs = fusion->inputs();
  TORCH_INTERNAL_ASSERT(
      inputs.size() == args.size(),
      "Something went wrong configuring launch. Inputs do not match.\n",
      "inputs: ",
      ir_utils::toString(inputs),
      " args size: ",
      args.size());

  ExpressionEvaluator expr_eval(fusion);

  // This should probably move to EvaluationContext as we may want to bind
  // input values frequently. Bind fusion input values to runtime values.
  for (const auto i : c10::irange(inputs.size())) {
    bindInputForExprEvaluation(inputs[i], args[i], true, expr_eval);
  }
  return expr_eval;
}

void initializeCudaContext() {
  // lazily construct context if non-existing yet;
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  CUcontext pctx = nullptr;
  AT_CUDA_DRIVER_CHECK(at::globalContext().getNVRTC().cuCtxGetCurrent(&pctx));
  if (!pctx) {
    std::unique_lock<std::mutex> cudaFreeMutexLock(
        *(c10::cuda::CUDACachingAllocator::getFreeMutex()));
    cudaFree(nullptr);
  }
}

namespace {

// Dump PTX or CUBIN to a file
#if CUDA_VERSION >= 11010
void dumpCompiledCodeToFile(
    const nvrtcProgram& program,
    int fusion_id,
    bool dump_cubin) {
  const auto getSize = dump_cubin
      ? at::globalContext().getNVRTC().nvrtcGetCUBINSize
      : at::globalContext().getNVRTC().nvrtcGetPTXSize;
  const auto getCode = dump_cubin ? at::globalContext().getNVRTC().nvrtcGetCUBIN
                                  : at::globalContext().getNVRTC().nvrtcGetPTX;
  size_t size = 0;
  AT_CUDA_NVRTC_CHECK(getSize(program, &size));
  std::vector<char> code(size);
  AT_CUDA_NVRTC_CHECK(getCode(program, code.data()));
  std::stringstream file_name;
  file_name << "__tmp_kernel" << fusion_id << "."
            << (dump_cubin ? "cubin" : "ptx");
  std::cout << "PRINTING: " << file_name.str() << std::endl;
  std::ofstream out(file_name.str());
  TORCH_INTERNAL_ASSERT(out.is_open());
  out.write(code.data(), size);
  out.close();
}
#endif

} // namespace

std::pair<NvrtcFunction, std::string> nvrtcCompile(
    const std::string& code,
    const std::string& func_name,
    int id,
    c10::optional<int> opt_block_size) {
  FUSER_PERF_SCOPE("executor_utils::NVRTC");
  if (isOptionDisabled(DisableOption::ArchCheck)) {
    TORCH_WARN(
        "NVFuser Compile: arch check disabled, should not compile any kernel");
  }

  initializeCudaContext();

  std::stringstream ptxas_log;

  const auto prop = at::cuda::getCurrentDeviceProperties();

  int major = 0, minor = 0;
  bool compile_to_sass = false;
  codegenOutputQuery(prop, major, minor, compile_to_sass);

  nvrtcProgram program; // NOLINT(cppcoreguidelines-init-variables)

  {
    std::stringstream ss;
    ss << "__tmp_kernel" << id << ".cu";
    std::string name = ss.str();
    FUSER_PERF_SCOPE("executor_utils::NvrtcCreateProgram");
    AT_CUDA_NVRTC_CHECK(at::globalContext().getNVRTC().nvrtcCreateProgram(
        &program, code.c_str(), name.c_str(), 0, nullptr, nullptr));
  }

  ResourceGuard holdProgram([&] {
    FUSER_PERF_SCOPE("executor_utils::NvrtcDestroyProgram");
    AT_CUDA_NVRTC_CHECK(
        at::globalContext().getNVRTC().nvrtcDestroyProgram(&program));
  });

#ifdef USE_ROCM
  std::vector<const char*> args = {"--std=c++14"};
#if ROCM_VERSION >= 40200
  args.push_back("-hip-pch");
#endif
#else
#if CUDA_VERSION < 11010
  // compile to sass is not allowed prior to CUDA 11.1
  compile_to_sass = false;
#endif
  // CUDA 11.1 allows going directly to SASS (sm_) instead of PTX (compute_)
  // which gives better backwards compatibility to work on older driver,
  // (since older driver doesn't necessrily recognize PTX emitted by new
  // toolkit);
  // Meanwhile, for forward compatibility (future device with
  // `unsupported_arch==True`), since SASS are not necessarily compatible,
  // we fallback to PTX instead.
  const std::string compute = std::string("--gpu-architecture=") +
      (compile_to_sass ? "sm_" : "compute_") + std::to_string(major) +
      std::to_string(minor);
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<const char*> args = {
      "--std=c++14", compute.c_str(), "-default-device"};
#endif

  const bool disable_fma = isOptionDisabled(DisableOption::Fma);
#ifdef USE_ROCM
  if (disable_fma) {
    TORCH_WARN_ONCE(
        "PYTORCH_CUDA_FUSER_DISABLE_FMA is not supported on ROCm, ignoring");
  }
#else
  if (disable_fma) {
    args.push_back("--fmad=false");
  } else {
    args.push_back("--fmad=true");
  }
#endif
  // Add line info to generated kernels
  if (isDebugDumpEnabled(DebugDumpOption::DebugInfo)) {
    args.push_back("-lineinfo");
  }
#ifdef NDEBUG
  // Avoid excessive register usage from assertion
  args.push_back("-DNDEBUG");
#endif

  if (isOptionEnabled(EnableOption::KernelProfile)) {
    args.push_back("-DPYTORCH_NVFUSER_PROFILE_KERNEL");
  }

  const char* ptxas_opt_level = getenv("PYTORCH_NVFUSER_JIT_OPT_LEVEL");
  std::string jit_opt_level = "-O";

  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<CUjit_option> options;
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<void*> option_vals;
  std::vector<char> info_log;
  unsigned int log_size = 8196;

  if (isDebugDumpEnabled(DebugDumpOption::PrintPtxasLog) ||
      isDebugDumpEnabled(DebugDumpOption::PerfDebugVerbose)) {
    // show register usage in compilation log
    if (compile_to_sass) {
      args.push_back("--ptxas-options");
      args.push_back("--verbose");
    } else {
      options.push_back(CU_JIT_LOG_VERBOSE);
      option_vals.push_back((void*)1);
      info_log.reserve(log_size);

      options.push_back(CU_JIT_INFO_LOG_BUFFER);
      option_vals.push_back((void*)info_log.data());

      options.push_back(CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES);
      option_vals.push_back((void*)(long)log_size);
    }
  }

  if (ptxas_opt_level) {
    int val = atoi(ptxas_opt_level);
    if (val <= 4 && val >= 0) {
      if (val < 4) {
        TORCH_WARN(
            "ptxas optimization level manually set as ",
            val,
            ", which could negatively affect performance. Try removing env variable PYTORCH_NVFUSER_JIT_OPT_LEVEL for optimal performance.");
      }
      if (compile_to_sass) {
        jit_opt_level += std::to_string(val);
        args.push_back("--ptxas-options");
        args.push_back(jit_opt_level.c_str());
      } else {
        options.push_back(CU_JIT_OPTIMIZATION_LEVEL);
        option_vals.push_back((void*)(intptr_t)val);
      }
    } else {
      TORCH_WARN_ONCE(
          "acceptable range for PYTORCH_NVFUSER_JIT_OPT_LEVEL is between 0 and 4, but received ",
          val,
          ", ignoring the option");
    }
  }

#ifndef USE_ROCM
  // keeping the string outside the loop for lifetime
  std::string max_register_usage = "--maxrregcount=";
  uint32_t max_register = 0;
  if (opt_block_size.has_value() && opt_block_size.value() > 0) {
    int num_partition = 0;
    int reg_allocation_granularity = 0;
    cudaOccDeviceProp occ_prop(*prop);
    cudaOccSubPartitionsPerMultiprocessor(&num_partition, &occ_prop);
    cudaOccRegAllocationGranularity(&reg_allocation_granularity, &occ_prop);
    int warp_size = prop->warpSize;
    int num_warps = ceilDiv(opt_block_size.value(), warp_size);

    // warps could be distributed unevenly across partition
    int max_warps_per_sm_partition = ceilDiv(num_warps, num_partition);
    // registers are evenly distributed across partitions, partition with most
    // wraps determins the maximum register available per warp
    int max_reg_per_warp =
        prop->regsPerBlock / num_partition / max_warps_per_sm_partition;
    // clamp down to register allocation granularity at warp level
    int effective_max_reg_per_warp = max_reg_per_warp /
        reg_allocation_granularity * reg_allocation_granularity;
    // The maximum possible count allowed by ptxas is 255
    max_register = static_cast<uint32_t>(
        std::min(effective_max_reg_per_warp / warp_size, 255));
    if (compile_to_sass) {
      max_register_usage += std::to_string(max_register);
      args.push_back("--ptxas-options");
      args.push_back(max_register_usage.c_str());
    } else {
      options.push_back(CU_JIT_MAX_REGISTERS);
      option_vals.push_back((void*)(intptr_t)max_register);
    }

    ptxas_log << "\nCompile options: ";
    for (auto arg : args) {
      ptxas_log << arg << " ";
    }
    ptxas_log << " ; block size=" << opt_block_size.value() << "\n";
  }
#endif

  at::globalContext().getNVRTC().nvrtcAddNameExpression(
      program, func_name.c_str());

  {
    FUSER_PERF_SCOPE("executor_utils::Nvrtc::CompileProgram");

    const auto result = at::globalContext().getNVRTC().nvrtcCompileProgram(
        program, args.size(), args.data());

    size_t logsize = 0;
    at::globalContext().getNVRTC().nvrtcGetProgramLogSize(program, &logsize);

    std::vector<char> log(logsize);
    at::globalContext().getNVRTC().nvrtcGetProgramLog(program, log.data());

    if (result != NVRTC_SUCCESS) {
      TORCH_INTERNAL_ASSERT(
          false, code.c_str(), "\nCUDA NVRTC compile error: ", log.data());
    }

    ptxas_log << log.data() << std::endl;
    if (isDebugDumpEnabled(DebugDumpOption::PrintPtxasLog)) {
      std::cout << log.data() << std::endl;
    }
    AT_CUDA_NVRTC_CHECK(result);
  }

  const char* lowered_kernel_name = nullptr;
  at::globalContext().getNVRTC().nvrtcGetLoweredName(
      program, func_name.c_str(), &lowered_kernel_name);

  size_t ptx_size = 0;
  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  std::vector<char> ptx;

  {
    FUSER_PERF_SCOPE("executor_utils::Nvrtc::GetPTX");
#if CUDA_VERSION >= 11010
    // compile_to_sass determines whether we are generating SASS or PTX, hence
    // the different API.
    const auto getSize = compile_to_sass
        ? at::globalContext().getNVRTC().nvrtcGetCUBINSize
        : at::globalContext().getNVRTC().nvrtcGetPTXSize;
    const auto getFunc = compile_to_sass
        ? at::globalContext().getNVRTC().nvrtcGetCUBIN
        : at::globalContext().getNVRTC().nvrtcGetPTX;
#else
    const auto getSize = at::globalContext().getNVRTC().nvrtcGetPTXSize;
    const auto getFunc = at::globalContext().getNVRTC().nvrtcGetPTX;
#endif
    AT_CUDA_NVRTC_CHECK(getSize(program, &ptx_size));
    ptx.resize(ptx_size);
    AT_CUDA_NVRTC_CHECK(getFunc(program, ptx.data()));
  }

  NvrtcFunction compiled_kernel_;

#ifndef USE_ROCM

#if CUDA_VERSION >= 11010
  if (isDebugDumpEnabled(DebugDumpOption::Ptx)) {
    dumpCompiledCodeToFile(program, id, false);
  }

  if (isDebugDumpEnabled(DebugDumpOption::Cubin)) {
    TORCH_INTERNAL_ASSERT(
        compile_to_sass,
        "CUBIN not available as the kernel was compiled only to PTX");
    dumpCompiledCodeToFile(program, id, true);
  }
#endif

  {
    FUSER_PERF_SCOPE("executor_utils::Nvrtc::LoadPTX");

    // load ptx or cubin directly
    AT_CUDA_DRIVER_CHECK(at::globalContext().getNVRTC().cuModuleLoadDataEx(
        &(compiled_kernel_.module),
        ptx.data(),
        options.size(),
        options.data(),
        option_vals.data()));

    if (!compile_to_sass &&
        isDebugDumpEnabled(DebugDumpOption::PrintPtxasLog)) {
      std::cout << info_log.data() << std::endl;
    }
  }
#else
  // load ptx directly
  AT_CUDA_DRIVER_CHECK(at::globalContext().getNVRTC().cuModuleLoadData(
      &(compiled_kernel_.module), ptx.data()));

#endif
  AT_CUDA_DRIVER_CHECK(at::globalContext().getNVRTC().cuModuleGetFunction(
      &(compiled_kernel_.function),
      compiled_kernel_.module,
      lowered_kernel_name));

  TORCH_CHECK(
      !isOptionDisabled(DisableOption::ArchCheck),
      "NVFuser Compile: arch check disabled, should not return any compiled kernel");

  return {compiled_kernel_, ptxas_log.str()};
}

namespace caching {

//! CompileTimeInfo is the actual subclass of CompileTimeInfoBase that will
//!  be stored in the data cache. It owns a data_ state internally of the
//!  dataType defined within the entry class, which are listed in header file.
template <typename EntryClass>
class CompileTimeInfo : public CompileTimeInfoBase {
 public:
  CompileTimeInfo(std::unique_ptr<typename EntryClass::DataType> data)
      : CompileTimeInfoBase(EntryClass::EntryType), data_(std::move(data)) {}

  typename EntryClass::DataType* get() {
    return data_.get();
  }

 private:
  std::unique_ptr<typename EntryClass::DataType> data_;
};

void ExecutorCompileTimeInfoCache::insert(EntryOwningPtr new_entry) {
  // Just overwrite when insertion duplicates, equality not checked.
  entry_type_map_[new_entry->type()] = new_entry.get();
  entries_.emplace_back(std::move(new_entry));
}

template <typename EntryClass>
ExecutorCompileTimeEntry<EntryClass>::ExecutorCompileTimeEntry(
    ExecutorCompileTimeInfoCache* data_cache,
    MakerFnType fn) {
  using InfoType = CompileTimeInfo<EntryClass>;

  if (!data_cache || !data_cache->has(EntryClass::EntryType)) {
    owned_data_ = fn();
    data_ptr_ = owned_data_.get();

    if (data_cache) {
      std::unique_ptr<CompileTimeInfoBase> new_entry =
          std::make_unique<InfoType>(std::move(owned_data_));
      data_cache->insert(std::move(new_entry));
    }
  } else {
    data_ptr_ =
        data_cache->at(EntryClass::EntryType)->template as<InfoType>()->get();
  }
}

// Template instantiation
template class ExecutorCompileTimeEntry<ParallelBindingIterDomains>;
template class ExecutorCompileTimeEntry<ParallelIterExtentMap>;
template class ExecutorCompileTimeEntry<SimplifiedParallelIterExtentMap>;
template class ExecutorCompileTimeEntry<WarpPaddedParallelExtents>;
template class ExecutorCompileTimeEntry<VectorizedTensorValidation>;
template class ExecutorCompileTimeEntry<InputAliasIndices>;
template class ExecutorCompileTimeEntry<OutputAliasIndices>;

} // namespace caching

std::vector<IterDomain*> getParallelBindingsIterDomains(
    GpuLower* lower,
    const std::vector<TensorView*>& used_tvs) {
  std::vector<IterDomain*> parallel_ids;
  for (auto tv : used_tvs) {
    for (auto id : tv->domain()->domain()) {
      if (id->isThread()) {
        if (id->isBroadcast()) {
          // Want to keep the broadcast dimensions if they are not resolved
          // TODO: piping down the parallel dimension map here would
          //  be helpful
          if (lower->caMap()->getConcreteMappedID(id, IdMappingMode::LOOP) ==
              id) {
            parallel_ids.push_back(id);
          }
        } else {
          // Non broadcast ids are directly added to the binding
          //  ids.
          parallel_ids.push_back(id);
        }
      }
    }
  }
  return parallel_ids;
}

namespace {

void insertParallelExtent(
    IterDomain* binding_id,
    const std::unique_ptr<ParallelExtentMap>& parallel_iter_extents_ptr) {
  auto extent = binding_id->extent();
  const auto it =
      parallel_iter_extents_ptr->find(binding_id->getParallelType());
  if (it != parallel_iter_extents_ptr->end()) {
    it->second.push_back(extent);
  } else {
    parallel_iter_extents_ptr->operator[](binding_id->getParallelType()) = {
        extent};
  }
}

} // namespace

std::unique_ptr<ParallelExtentMap> getParallelIterExtents(
    std::vector<IterDomain*>& parallel_binding_ids) {
  auto parallel_iter_extents_ptr = std::make_unique<ParallelExtentMap>();
  for (auto id : parallel_binding_ids) {
    insertParallelExtent(id, parallel_iter_extents_ptr);
  }

  return parallel_iter_extents_ptr;
}

std::unique_ptr<ParallelExtentMap> getSimplifiedParallelIterExtents(
    GpuLower* lower,
    std::vector<IterDomain*>& parallel_binding_ids) {
  auto parallel_iter_extents_ptr = std::make_unique<ParallelExtentMap>();
  const auto& ca_map = lower->caMap();
  std::vector<IterDomain*> mapped;
  bool is_tidx_warp_padded = lower->getWarpPaddedParallelInfo().is_tidx_padded;

  for (auto id : parallel_binding_ids) {
    if (std::any_of(
            mapped.begin(), mapped.end(), [id, &ca_map](IterDomain* mapped_id) {
              return ca_map->areMapped(mapped_id, id, IdMappingMode::LOOP);
            })) {
      if (id->getParallelType() != ParallelType::TIDx || !is_tidx_warp_padded) {
        continue;
      }
    }

    insertParallelExtent(
        ca_map->getConcreteMappedID(id, IdMappingMode::LOOP),
        parallel_iter_extents_ptr);
    mapped.push_back(id);
  }

  return parallel_iter_extents_ptr;
}

std::unique_ptr<caching::WarpPaddedExtentsInfo> getWarpPaddedExtentsInfo(
    kir::Kernel* kernel,
    std::vector<IterDomain*>& parallel_binding_ids) {
  auto warp_padded_extent_info_ptr =
      std::make_unique<caching::WarpPaddedExtentsInfo>();
  auto& warp_padded_extent_set =
      warp_padded_extent_info_ptr->warp_padded_extent_set;
  auto& warp_padded_constant =
      warp_padded_extent_info_ptr->warp_padded_constant;
  bool has_warp_reduction =
      kernel->getWarpPaddedParallelInfo().has_warp_reduction;

  for (auto id : parallel_binding_ids) {
    // Apply warp padding only when there're warp reductions in
    //  the kernel.
    if (has_warp_reduction) {
      if (id->hasPaddingToMultipleOfWarp() ||
          kernel->isParallelTypePadded(id->getParallelType())) {
        auto extent = id->extent();
        warp_padded_extent_set.insert(extent);
        auto padded_value = id->getMaybeSizeAfterPadding();
        if (padded_value.has_value()) {
          warp_padded_constant[extent] = padded_value.value();
        }
      }
    }
  }
  return warp_padded_extent_info_ptr;
}

} // namespace executor_utils
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch