File: fusion.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (708 lines) | stat: -rw-r--r-- 20,846 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/codegen.h>
#include <torch/csrc/jit/codegen/cuda/disjoint_set.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/fusion_segmenter.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_cloner.h>
#include <torch/csrc/jit/codegen/cuda/ir_printer.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/iter_visitor.h>
#include <torch/csrc/jit/codegen/cuda/kernel.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

static thread_local Fusion* ACTIVE_FUSION = nullptr; // NOLINT

FusionGuard::FusionGuard(Fusion* fusion) {
  prev_fusion = ACTIVE_FUSION;
  ACTIVE_FUSION = fusion;
}

FusionGuard::~FusionGuard() {
  ACTIVE_FUSION = prev_fusion;
}

Fusion* FusionGuard::getCurFusion() {
  return ACTIVE_FUSION;
}
void FusionGuard::setCurFusion(Fusion* fusion) {
  ACTIVE_FUSION = fusion;
}

void swap(Fusion& a, Fusion& b) noexcept {
  FUSER_PERF_SCOPE("Fusion swap");

  using std::swap;

  swap(static_cast<IrContainer&>(a), static_cast<IrContainer&>(b));

  swap(a.inputs_, b.inputs_);
  swap(a.outputs_, b.outputs_);

  swap(a.io_alias_, b.io_alias_);
  swap(a.permuted_input_map_, b.permuted_input_map_);
  swap(a.permuted_output_map_, b.permuted_output_map_);
}

std::unique_ptr<SegmentedFusion> Fusion::segment(
    const KernelArgumentHolder& args) {
  FUSER_PERF_SCOPE("Segment Fusion");
  return SegmentCandidateFinder::segment(this, args);
}

IrCloner Fusion::copy(const Fusion* from, Fusion* to) {
  to->clear();
  auto ir_cloner = IrContainer::copy(from, to);

  for (auto val : from->vals_) {
    ir_cloner.clone(val)->setDefinition(ir_cloner.clone(val->definition_));
    ir_cloner.clone(val)->setUses(ir_cloner.clone(val->uses_));
  }

  to->inputs_ = ir_cloner.clone(from->inputs_);
  to->outputs_ = ir_cloner.clone(from->outputs_);
  for (auto inp : to->inputs_) {
    inp->setIsFusionInput(true);
  }
  for (auto out : to->outputs_) {
    out->setIsFusionOutput(true);
  }

  // TODO: put this into ir_cloner instead
  for (const auto& entry : from->io_alias_) {
    Val* copied_output = ir_cloner.clone(entry.first);
    Val* copied_input = ir_cloner.clone(entry.second);
    to->io_alias_[copied_output] = copied_input;
  }

  to->permuted_input_map_ = from->permuted_input_map_;
  to->permuted_output_map_ = from->permuted_output_map_;

  to->all_tv_uses_valid_ = from->all_tv_uses_valid_;
  // This should never be true on copy, but copying for completeness.
  to->is_during_update_uses_ = from->is_during_update_uses_;

  return ir_cloner;
}

// Clang tidy complains when using default constructor for IrContainer instead
// of copy constructor. Fusion::copy has a call to IrContainer::copy, so it's
// redundant to use the IrContainer copy constructor, but it is harmless since
// Fusion::copy starts by calling clear().
Fusion::Fusion(const Fusion& other) : IrContainer(other) {
  FUSER_PERF_SCOPE("Fusion copy");
  Fusion::copy(&other, this);
}

Fusion::Fusion(Fusion&& other) noexcept {
  FUSER_PERF_SCOPE("Fusion move");
  swap(*this, other);
}

Fusion& Fusion::operator=(const Fusion& other) {
  FUSER_PERF_SCOPE("Fusion copy assign");
  Fusion copy(other);
  clear();
  swap(*this, copy);
  return *this;
}

Fusion& Fusion::operator=(Fusion&& other) noexcept {
  FUSER_PERF_SCOPE("Fusion move assign");
  clear();
  swap(*this, other);
  return *this;
}

Fusion::~Fusion() {
  clear();
}

void Fusion::clear() noexcept {
  FUSER_PERF_SCOPE("Fusion clear");

  IrContainer::clear();

  inputs_.clear();
  outputs_.clear();

  io_alias_.clear();

  permuted_input_map_.clear();
  permuted_output_map_.clear();

  all_tv_uses_valid_ = false;
  is_during_update_uses_ = false;
}

void Fusion::removeExpr(Expr* expr) {
  assertInContainer(expr, "Cannot remove expr ");
  // If we hit this error too frequently, we could lighten the restrictions so
  // that removing something that doesn't exist simply does nothing. For now,
  // we're going with the strictest model which errors.

  for (auto out : expr->outputs()) {
    out->setDefinition(nullptr);
  }

  for (auto inp : expr->inputs()) {
    auto uses_copy = inp->uses();
    auto it = std::find(uses_copy.begin(), uses_copy.end(), expr);
    if (it != uses_copy.end()) {
      uses_copy.erase(it);
      inp->setUses(uses_copy);
    }
  }

  IrContainer::removeExpr(expr);
}

void Fusion::removeVal(Val* val) {
  assertInContainer(val, "Cannot remove val ");

  TORCH_CHECK(
      !val->isFusionInput(),
      "Cannot remove val as it is an input of the fusion.");
  TORCH_CHECK(
      !val->isFusionOutput(),
      "Cannot remove val as it is an output of the fusion.");

  Expr* orig = val->definition();
  if (orig != nullptr)
    removeExpr(val->definition());

  for (Expr* use : unordered_uses(val)) {
    removeExpr(use);
  }
  IrContainer::removeVal(val);
}

void Fusion::addInput(Val* input) {
  assertInContainer(input, "Cannot register input ");

  TORCH_INTERNAL_ASSERT(
      input->getDataType() != DataType::Index,
      "Data type Index is a local compile time data type only, it cannot be used as an input in case it was generated from another kernel.");

  if (input->getValType().value() == ValType::TensorView) {
    auto tv = input->as<TensorView>();
    tv->setMemoryType(MemoryType::Global);
  } else if (input->getValType().value() == ValType::Scalar) {
    TORCH_CHECK(
        !input->isConst(),
        "Immediate scalar value cannot be added as an input. It is not necessary to pass it as an input.");
  }

  inputs_.push_back(input);
  input->setIsFusionInput(true);

  all_tv_uses_valid_ = false;
}

void Fusion::addOutput(Val* output) {
  // We currently don't support explicitly outputing aliased inputs. This is
  // because they are already marked as output for in-place update. It's tricky
  // to allow marking them explicitly as real output, since that requires us to
  // register/identify output not only by `Val*` pointer, but also by indices;
  // it also requires us to magically arrange `outputs_` entries in proper order
  // ^^^ this doesn't look intuitive on `outputs_` in fusion.
  // I think we can solve this by marking addOutput on io_alias_ keys after
  // fusion is fully defined. Tracking this in #1488
  // Apparently we can't do this neither at the time. I think segmentation
  // unfortunately would call addOutput after we marked io_alias_ map.
  // TORCH_CHECK(io_alias_.count(output) == 0,
  //     "can't register aliased output as real output");

  assertInContainer(output, "Cannot register output ");
  if (output->getValType().value() == ValType::TensorView) {
    auto tv = output->as<TensorView>();
    tv->setMemoryType(MemoryType::Global);
  }
  outputs_.push_back(output);
  output->setIsFusionOutput(true);

  all_tv_uses_valid_ = false;
}

void Fusion::removeInput(Val* input) {
  auto find_input = std::find(inputs_.begin(), inputs_.end(), input);
  if (find_input != inputs_.end()) {
    inputs_.erase(find_input);
  }
  input->setIsFusionInput(false);
  all_tv_uses_valid_ = false;
}

void Fusion::removeOutput(Val* output) {
  auto find_output = std::find(outputs_.begin(), outputs_.end(), output);
  if (find_output != outputs_.end()) {
    outputs_.erase(find_output);
  }
  output->setIsFusionOutput(false);
  all_tv_uses_valid_ = false;
}

void Fusion::replaceOutput(Val* output, Val* replacement) {
  auto find_output = std::find(outputs_.begin(), outputs_.end(), output);
  TORCH_CHECK(find_output != outputs_.end(), "Unable to find output in Fusion");

  if (find_output != outputs_.end()) {
    std::replace_if(
        outputs_.begin(),
        outputs_.end(),
        [&output](Val* v) { return v == output; },
        replacement);

    if (replacement->getValType().value() == ValType::TensorView) {
      replacement->setIsFusionOutput(true);
      replacement->as<TensorView>()->setMemoryType(MemoryType::Global);
    }
    if (output->getValType().value() == ValType::TensorView) {
      output->setIsFusionOutput(false);
      output->as<TensorView>()->setMemoryType(MemoryType::Local);
    }
    resetTvUses();
  }

  // Temporary WAR for issue #1112
  // (https://github.com/csarofeen/pytorch/issues/1112)
  if (io_alias_.count(output) != 0) {
    auto input = io_alias_[output];
    io_alias_.erase(output);
    io_alias_[replacement] = input;
  }
}

std::vector<Expr*> Fusion::exprs() {
  return StmtSort::getExprs(this);
}

std::vector<Val*> Fusion::inputsOf(Val* val) {
  return InputsOf::output(this, val);
}

void Fusion::validateInputs() {
  std::unordered_set<Val*> all_inputs;
  for (Val* out : outputs()) {
    for (Val* input : inputsOf(out)) {
      all_inputs.insert(input);
    }
  }

  std::unordered_set<Val*> input_dims;
  auto inp_tvs = ir_utils::filterByType<TensorView>(inputs());
  for (auto tv : inp_tvs) {
    for (auto id : tv->getMaybeRFactorDomain()) {
      input_dims.emplace(id->extent());
    }
  }
  for (Val* input : all_inputs) {
    if (!input->isConstScalar()) {
      TORCH_CHECK(
          input->isFusionInput() ||
              // TODO: Switch:
              inContainer(input),
          // to: input_dims.find(input) != input_dims.end(),
          // https://github.com/csarofeen/pytorch/issues/1365
          "Could not figure out how ",
          input->toString(),
          " is generated, however it was not specified as an input.");
    }
  }
}

void Fusion::print() {
  FUSER_PERF_SCOPE("Fusion::print");

  FusionGuard fg(this);
  std::cout << "\n%kernel {\n";
  IrMathPrinter op_exprs(std::cout);
  op_exprs.handle(this);
  std::cout << "\nTransformPrinter : \n";
  IrTransformPrinter t_exprs(std::cout);
  t_exprs.handle(this);
  std::cout << "}\n\n";
}

void Fusion::printKernel(DataType index_type) {
  FUSER_PERF_SCOPE("Fusion::printKernel");
  TORCH_INTERNAL_ASSERT(
      !this->isA<kir::Kernel>(),
      "Cannot \"print kernel\" of a kernel container. ",
      "This would require lowering during lowering.");
  std::cout << codegen::generateCudaKernel(GpuLower(this, index_type).kernel());
}

void Fusion::printMath(bool from_outputs_only) {
  FUSER_PERF_SCOPE("Fusion::printMath");

  FusionGuard fg(this);
  auto exprs_for_print = exprs();
  std::cout << "Inputs:" << std::endl;
  for (auto inp : inputs()) {
    std::cout << "  " << inp << ", " << inp->getDataType().value() << std::endl;
  }

  std::cout << "Outputs:" << std::endl;
  for (auto out : outputs()) {
    std::cout << "  " << out << ", " << out->getDataType().value() << std::endl;
  }

  // If we want everything in the fusion, grab all values without uses to
  // traverse from.
  if (!from_outputs_only) {
    std::vector<Val*> leaf_vals;
    for (auto val : deterministic_vals()) {
      if (val->uses().empty()) {
        leaf_vals.push_back(val);
      }
    }
    exprs_for_print = StmtSort::getExprs(this, leaf_vals);
  }

  std::cout << "\n%kernel_math {\n";
  for (auto expr : exprs_for_print) {
    std::cout << expr;
  }
  std::cout << "}\n\n";
}

std::vector<Val*> Fusion::inputsAndCreated() {
  auto result = inputs_;
  for (auto expr : exprs()) {
    auto tv_inputs = ir_utils::filterByType<TensorView>(expr->inputs());
    if (tv_inputs.empty()) {
      for (auto v : expr->outputs()) {
        result.emplace_back(v);
      }
    }
  }
  return result;
}

void Fusion::printTransforms() {
  FUSER_PERF_SCOPE("Fusion::printTransforms");

  FusionGuard fg(this);
  IrTransformPrinter t_exprs(std::cout);
  t_exprs.handle(this);
}

void Fusion::registerVal(Val* val) {
  if (inContainer(val)) {
    return;
  }

  if (val->fusion()) {
    TORCH_CHECK(
        val->fusion() == this, val, " was not found in the active fusion.");
  }

  IrContainer::registerVal(val);
}

void Fusion::registerExpr(Expr* expr) {
  if (inContainer(expr)) {
    return;
  }

  if (expr->fusion()) {
    TORCH_CHECK(
        expr->fusion() == this, expr, " was not found in the active fusion.");
  }

  IrContainer::registerExpr(expr);

  bool has_tv = false;

  for (Val* input : expr->inputs()) {
    has_tv = has_tv || input->isA<TensorView>();
    assertInContainer(input, "Input to expr is invalid, ");
    auto uses_copy = input->uses();
    if (std::find(uses_copy.begin(), uses_copy.end(), expr) ==
        uses_copy.end()) {
      uses_copy.push_back(expr);
      input->setUses(uses_copy);
    }
  }

  // Kernel is the only container type that is non-ssa. This is mainly (maybe
  // only) because of initialization expressions which would overwrite tensor
  // view definitions.
  bool is_ssa = !this->isA<kir::Kernel>();

  for (Val* output : expr->outputs()) {
    has_tv = has_tv || output->isA<TensorView>();
    assertInContainer(output, "Output to expr is invalid, ");
    if (output->definition() != nullptr && is_ssa) {
      removeExpr(output->definition());
    }
    if (is_ssa || (!is_ssa && output->definition() == nullptr)) {
      output->setDefinition(expr);
    }
  }

  if (has_tv) {
    resetTvUses();
  }
}

void Fusion::resetTvUses() {
  FUSER_PERF_SCOPE("Fusion::resetTvUses");
  is_during_update_uses_ = true;

  // getExprs only uses definition, so even if we've modified uses already to
  // remove dead exprs, this could reinsert them. getExprs is also boundeds by
  // inputs as registered inputs will return nullptr as their definition.
  const auto all_tvs = ir_utils::filterByType<TensorView>(vals_);
  const auto used_exprs = StmtSort::getExprs(this);

  for (auto tv : all_tvs) {
    tv->setUses({});
  }

  // Same as in register expr
  for (auto expr : used_exprs) {
    for (Val* input : expr->inputs()) {
      auto uses_copy = input->uses();
      if (std::find(uses_copy.begin(), uses_copy.end(), expr) ==
          uses_copy.end()) {
        uses_copy.push_back(expr);
        input->setUses(uses_copy);
      }
    }
  }

  all_tv_uses_valid_ = true;
  is_during_update_uses_ = false;
}

std::vector<Val*> Fusion::usedMathVals() {
  // Note that using fusion->inputs() as the argument for the first
  // parameter of getAllValsBetween does not grab all used vals as
  // there can be vals that are created inside a fusion without using
  // anything from inputs. See, for example, tv0 in the
  // FusionOuterSplit test.
  const auto inputs = InputsOf::outputs(this, outputs());
  auto used_math_vals = DependencyCheck::getAllValsBetween(
      {inputs.begin(), inputs.end()}, outputs());
  // When an expre has multiple outputs and only some of them are
  // used, the rest aren't included in used_math_vals as they are not
  // used. However, we want them to be included as they must show up
  // in the fusion.
  std::vector<Val*> vals_to_add;
  std::unordered_set<Val*> added_vals;

  for (auto val : used_math_vals) {
    auto def = val->definition();
    if (def == nullptr || def->outputs().size() < 2) {
      continue;
    }
    for (auto out : def->outputs()) {
      if (std::find(used_math_vals.begin(), used_math_vals.end(), out) ==
          used_math_vals.end()) {
        if (!added_vals.count(out)) {
          vals_to_add.push_back(out);
          added_vals.insert(out);
        }
      }
    }
  }

  used_math_vals.insert(
      used_math_vals.end(), vals_to_add.begin(), vals_to_add.end());

  return used_math_vals;
}

std::vector<Val*> Fusion::terminatingMathVals() {
  VectorOfUniqueEntries<Val*> result;
  auto used_vals = usedMathVals();
  for (auto v : used_vals) {
    // Locate the vals that are not expr outputs but have valid definitions.
    if (unordered_uses(v).empty() && v->definition() != nullptr) {
      result.pushBack(v);
    }
  }
  return result.vector();
}

std::unordered_set<Expr*> Fusion::unordered_uses(const Val* val) const {
  return std::unordered_set<Expr*>(val->uses().begin(), val->uses().end());
}

Expr* Fusion::definition(const Val* val) const {
  assertInContainer(val, "Cannot detect the definition of val, ");
  return val->definition();
}

// Indicate to kernel to set itself up to generate random numbers
bool Fusion::isStochastic() {
  for (auto expr : exprs()) {
    if (expr->getExprType() == ExprType::RNGOp) {
      return true;
    }
  }
  return false;
}

std::vector<Val*> Fusion::getTerminatingOutputs() const {
  FUSER_PERF_SCOPE("getTerminatingOutputs");

  auto is_reachable_to_output = [](Val* val) {
    // traverse to consumers of val and see if there is an output
    std::deque<Val*> consumers;
    for (auto use : val->uses()) {
      for (auto consumer : use->outputs()) {
        consumers.push_back(consumer);
      }
    }
    while (!consumers.empty()) {
      auto consumer = consumers.back();
      consumers.pop_back();
      if (consumer->isFusionOutput()) {
        return true;
      }
      // consumer is not an output; proceed to its consumers
      for (auto use : consumer->uses()) {
        for (auto consumer_of_consumer : use->outputs()) {
          consumers.push_back(consumer_of_consumer);
        }
      }
    }
    return false;
  };

  std::vector<Val*> terminating_outputs;

  for (auto out : outputs()) {
    // If there is another output reachable from this output, it's not
    // terminating.
    if (is_reachable_to_output(out)) {
      continue;
    }
    terminating_outputs.push_back(out);
  }

  return terminating_outputs;
}

bool Fusion::isAliasCompatible(Val* left, Val* right) {
  // Nullptr check
  if (left == nullptr || right == nullptr) {
    return false;
  }

  // DataType check
  if (!left->getDataType().has_value() || !right->getDataType().has_value() ||
      left->getDataType().value() != right->getDataType().value()) {
    return false;
  }

  // ValType check
  if (!left->getValType().has_value() || !right->getValType().has_value() ||
      left->getValType().value() != right->getValType().value()) {
    return false;
  }

  // Check same number of dimensions if both values are TensorViews
  if (ir_utils::isTV(left) && ir_utils::isTV(right)) {
    return left->as<TensorView>()->nDims() == right->as<TensorView>()->nDims();
  }
  return false;
}

void Fusion::aliasOutputToInput(Val* output, Val* input) {
  // Because we could cast output when input is cast.
  TORCH_INTERNAL_ASSERT(
      !output->isFusionOutput(),
      "Do NOT add aliased output to fusion output outside of `aliasOutputToInput");

  if (!input->isFusionInput()) {
    auto input_expr = input->definition();
    // TORCH_INTERNAL_ASSERT(input_def.etype() == ExprType::UnaryOp, "expected
    // unary op for aliased input");
    TORCH_INTERNAL_ASSERT(
        input_expr->isA<UnaryOp>(), "expected unary op for aliased input");
    auto input_uop = input_expr->as<UnaryOp>();
    TORCH_INTERNAL_ASSERT(
        input_uop->getUnaryOpType() == UnaryOpType::Cast,
        "expected aliased input to be output of cast op");
    input = input_uop->in();
  }
  TORCH_INTERNAL_ASSERT(
      input->getDataType().has_value() && output->getDataType().has_value(),
      "requires DataType to be available for aliased output to input");

  if (input->getDataType().value() != output->getDataType().value()) {
    output = castOp(input->getDataType().value(), output);
  }
  // TODO: output should be marked at the end of fusion definition #1488
  addOutput(output);

  TORCH_INTERNAL_ASSERT(
      isAliasCompatible(input, output),
      "The input and output values are not alias-compatible.");
  io_alias_[output] = input;
}

Val* Fusion::getOutputAlias(Val* output) {
  auto search = io_alias_.find(output);
  if (search != io_alias_.end()) {
    return search->second;
  }
  return nullptr;
}

std::unordered_set<int> Fusion::getOutputAliasIndices() const {
  if (io_alias_.empty()) {
    return {};
  }

  std::unordered_set<int> alias_indices;

  for (const auto i : c10::irange(outputs_.size())) {
    if (io_alias_.count(outputs_[i]) != 0) {
      alias_indices.insert(i);
    }
  }
  return alias_indices;
}

std::vector<std::pair<int, int>> Fusion::getInputAliasIndices() const {
  if (io_alias_.empty()) {
    return {};
  }

  std::vector<std::pair<int, int>> alias_indices;
  for (const auto i : c10::irange(outputs_.size())) {
    if (io_alias_.count(outputs_[i]) != 0) {
      bool found = false;
      for (const auto j : c10::irange(inputs_.size())) {
        if (io_alias_.at(outputs_[i]) == inputs_[j]) {
          alias_indices.emplace_back(i, j);
          found = true;
          break;
        }
      }
      TORCH_INTERNAL_ASSERT(
          found,
          "io_alias_ mapping failure, alias output is not present in inputs");
    }
  }
  // can't assert here, we could have segmented fusion where not all alias
  // outputs are present

  return alias_indices;
}

} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch