1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
|
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/fusion_segmenter.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_cloner.h>
#include <torch/csrc/jit/codegen/cuda/ir_graphviz.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/debug_utils.h>
#include <sstream>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace {
using GroupSet = VectorOfUniqueEntries<SegmentedGroup*>;
} // namespace
std::vector<SegmentedGroup::NeighborGroup> SegmentedGroup::getNeighborGroups() {
std::vector<NeighborGroup> neighbors;
for (auto inp : producer_edges) {
if (inp->val->isFusionOutput()) {
// Don't fuse across output nodes, would need to find another path.
continue;
}
neighbors.emplace_back(inp->from, inp);
}
for (auto out : consumer_edges) {
if (out->val->isFusionOutput()) {
// Don't fuse across output nodes, would need to find another path.
continue;
}
neighbors.emplace_back(out->to, out);
}
return neighbors;
}
std::vector<SegmentedGroup*> SegmentedGroup::getNeighbors() {
std::vector<SegmentedGroup*> neighbors;
auto neighbors_pair = getNeighborGroups();
std::transform(
neighbors_pair.begin(),
neighbors_pair.end(),
std::back_inserter(neighbors),
[](auto& neighbor_group) { return neighbor_group.group; });
return neighbors;
}
std::vector<SegmentedGroup::NeighborGroup> SegmentedGroup::
getMergeCandidates() {
// Don't look for candidates if already merged
if (merged_) {
return {};
}
std::vector<NeighborGroup> neighbors = getNeighborGroups();
// Can this node be merged with another? Check if neighbors are merged, if
// so and merged neighbor is within 1 level or node merged with neighbor is
// within 1 level, can't merge this node with anything else.
bool can_merge_this = true;
for (auto& neighbor : neighbors) {
if (!neighbor.group->merged_) {
continue;
}
if (std::abs(neighbor.group->level_ - level_) <= 1) {
can_merge_this = false;
}
if (std::abs(neighbor.group->merge_with_->level_ - level_) <= 1) {
can_merge_this = false;
}
}
if (!can_merge_this) {
return {};
}
std::vector<bool> can_merge(neighbors.size(), true);
// Find neighbors with a level that is only 1 differant than this groups level
for (const auto i : c10::irange(neighbors.size())) {
if (std::abs(neighbors[i].group->level_ - level_) > 1) {
can_merge[i] = false;
}
}
// Check neighbor of neighbors we're considering, if any of them are merged
// with another node, make sure the resulting edge wouldn't have a level
// difference of 1
for (const auto i : c10::irange(neighbors.size())) {
if (!can_merge[i]) {
continue;
}
for (auto neighbor_neighbor : neighbors[i].group->getNeighbors()) {
// Don't check self
if (neighbor_neighbor == neighbors[i].group) {
continue;
}
if (neighbor_neighbor->merged_) {
// check neighbor_neighbor level
if (std::abs(neighbor_neighbor->level_ - level_) <= 1) {
can_merge[i] = false;
}
if (std::abs(neighbor_neighbor->level_ - neighbors[i].group->level_) <=
1) {
can_merge[i] = false;
}
// check neighbor_neighber->merged_->level_
if (std::abs(neighbor_neighbor->merge_with_->level_ - level_) <= 1) {
can_merge[i] = false;
}
if (std::abs(
neighbor_neighbor->merge_with_->level_ -
neighbors[i].group->level_) <= 1) {
can_merge[i] = false;
}
}
}
}
std::vector<NeighborGroup> merge_candidates;
for (const auto i : c10::irange(neighbors.size())) {
if (can_merge[i]) {
merge_candidates.push_back(neighbors[i]);
}
}
return merge_candidates;
}
void SegmentedGroup::clearTraversalInfo() {
level_ = -1;
visited_ = false;
merge_with_ = nullptr;
merge_through_ = nullptr;
merged_ = false;
}
std::vector<Val*> SegmentedGroup::edgesToVals(
const std::vector<SegmentedEdge*>& se_v) {
std::vector<Val*> ret_v;
ret_v.reserve(se_v.size());
std::transform(
se_v.cbegin(),
se_v.cend(),
std::back_inserter(ret_v),
[](SegmentedEdge* se) { return se->val; });
return ret_v;
}
template <typename PREDICATE>
void insertUniquePredicated(
std::vector<Val*>& v,
const std::vector<SegmentedEdge*>& e,
PREDICATE pred) {
VectorOfUniqueEntries<Val*> to_add;
for (auto edge : e) {
to_add.pushBack(edge->val);
}
std::copy_if(
to_add.vector().begin(),
to_add.vector().end(),
std::back_inserter(v),
[pred](Val* val) { return pred(val); });
}
void SegmentedGroup::finalize() {
// Move all the edges to group input/output
// Inputs
insertUniquePredicated(
input_vals, producer_edges, [](Val* v) { return !v->isFusionInput(); });
std::unordered_set<Val*> input_set(input_vals.begin(), input_vals.end());
for (auto expr : exprs_) {
for (auto i : expr->inputs()) {
if (i->isAnInt() && i->definition() == nullptr && !i->isConstScalar() &&
!i->isFusionInput() && !input_set.count(i)) {
input_set.insert(i);
input_vals.push_back(i);
}
}
}
// Outputs
insertUniquePredicated(
output_vals, consumer_edges, [](Val* v) { return !v->isFusionOutput(); });
// alias aware segmentation. we add inputs that are aliased by output
// generated in this SegmentedGroup
for (auto output : output_vals) {
if (auto aliased_input = segmented_fusion_->findAlias(output)) {
// aliasing currently only supported as output to input
TORCH_INTERNAL_ASSERT(
aliased_input->isFusionInput(),
"aliased input is not found in the complete fusion");
if (!input_set.count(aliased_input)) {
input_set.insert(aliased_input);
input_vals.push_back(aliased_input);
}
}
}
}
std::ostream& operator<<(std::ostream& os, const SegmentedGroup* group) {
os << "g{";
auto expr_to_print = group->exprs();
std::sort(
expr_to_print.begin(),
expr_to_print.end(),
[](auto expr_a, auto expr_b) -> bool {
return expr_a->name() < expr_b->name();
});
for (const auto i : c10::irange(expr_to_print.size())) {
os << expr_to_print[i]->name();
if (i + 1 != expr_to_print.size())
os << ", ";
}
os << "}\n";
return os;
}
void SegmentedGroup::print() const {
std::cout << this << "\n";
}
std::string toString(const SegmentedGroup* group) {
std::stringstream ss;
ss << group;
return ss.str();
}
std::ostream& operator<<(std::ostream& os, const SegmentedEdge* edge) {
os << "e{ " << edge->from << " -> " << edge->to << "(";
IrPrinter irp(os);
irp.handle(edge->val);
os << ") }\n";
return os;
}
void SegmentedEdge::print() const {
std::cout << this << "\n";
}
std::string toString(const SegmentedEdge* edge) {
std::stringstream ss;
ss << edge;
return ss.str();
}
std::unique_ptr<SegmentedFusion> SegmentedFusion::fromCompleteFusion(
std::unique_ptr<Fusion> fusion_ptr,
ScheduleHeuristic heuristic) {
auto fusion = fusion_ptr.get();
auto segmented_fusion_ptr =
std::make_unique<SegmentedFusion>(std::move(fusion_ptr));
// Make a group for the single fusion
auto single_group = segmented_fusion_ptr->newGroup();
// Add input and output vals
single_group->input_vals = fusion->inputs();
single_group->output_vals = fusion->outputs();
// Get ordered expression list
single_group->resetExprList();
// Assign heuristics and id for the complete fusion
// to share the runtime path of segmented fusion.
single_group->setHeuristic(heuristic);
single_group->setID(0);
return segmented_fusion_ptr;
}
SegmentedFusion::SegmentedFusion(std::unique_ptr<Fusion> fusion)
: impl_(this), complete_fusion_(std::move(fusion)) {
segmented_fusion_name_ = segmentedFusionName();
annotateFP16IntermediateTensors();
}
SegmentedGroup* SegmentedFusion::Impl::makeGroup() {
groups_.emplace_back(std::make_unique<SegmentedGroup>(owning_fusion_));
return groups_.back().get();
}
SegmentedGroup* SegmentedFusion::Impl::makeGroup(Expr* expr) {
groups_.emplace_back(std::make_unique<SegmentedGroup>(expr, owning_fusion_));
return groups_.back().get();
}
SegmentedEdge* SegmentedFusion::Impl::makeEdge(
SegmentedGroup* from,
SegmentedGroup* to,
Val* val) {
edges_.emplace_back(std::make_unique<SegmentedEdge>(from, to, val));
return edges_.back().get();
}
void SegmentedFusion::Impl::cleanUnused() {
std::unordered_set<SegmentedGroup*> g_used(
owning_fusion_->groups().begin(), owning_fusion_->groups().end());
std::unordered_set<SegmentedEdge*> e_used(
owning_fusion_->edges().begin(), owning_fusion_->edges().end());
groups_.erase(
std::remove_if(
groups_.begin(),
groups_.end(),
[&g_used](auto& g) { return g_used.count(g.get()) == 0; }),
groups_.end());
edges_.erase(
std::remove_if(
edges_.begin(),
edges_.end(),
[&e_used](auto& e) { return e_used.count(e.get()) == 0; }),
edges_.end());
}
SegmentedGroup* SegmentedFusion::newGroup() {
SegmentedGroup* g = impl_.makeGroup();
groups_.push_back(g);
return g;
}
SegmentedGroup* SegmentedFusion::newGroup(Expr* expr) {
SegmentedGroup* g = impl_.makeGroup(expr);
groups_.push_back(g);
return g;
}
SegmentedEdge* SegmentedFusion::newEdge(
SegmentedGroup* from,
SegmentedGroup* to,
Val* val) {
SegmentedEdge* e = impl_.makeEdge(from, to, val);
edges_.push_back(e);
return e;
}
void SegmentedFusion::draw() {
size_t group_index = 0;
std::unordered_map<const Expr*, size_t> expr_color_map;
for (auto group : groups()) {
for (auto expr : group->exprs()) {
if (ir_utils::isTvOp(expr)) {
expr_color_map[expr] = group_index;
}
}
group_index++;
}
std::stringstream sstream;
sstream << "segmented_fusion" << segmented_fusion_name_ << ".dot";
auto filename = sstream.str();
IrGraphGenerator::print(
completeFusion(),
filename.c_str(),
IrGraphGenerator::DetailLevel::ComputeOnly,
&expr_color_map);
}
namespace {
std::vector<Val*> uniqueValConcat(
const std::vector<std::vector<Val*>>& val_vecs) {
std::vector<Val*> unique_vals;
std::unordered_set<Val*> added;
for (const auto& vec : val_vecs) {
for (auto val : vec) {
if (added.find(val) == added.end()) {
unique_vals.push_back(val);
added.emplace(val);
}
}
}
return unique_vals;
}
// Concat's producer edges of sg1 and sg2, but removes any edges from/to sg1/sg2
std::vector<SegmentedEdge*> getMergedProducerEdges(
const SegmentedGroup* sg1,
const SegmentedGroup* sg2) {
TORCH_INTERNAL_ASSERT(
sg1 != nullptr && sg2 != nullptr,
"This function doesn't handle trivial.");
auto producer_edges = sg1->producer_edges;
producer_edges.insert(
producer_edges.end(),
sg2->producer_edges.begin(),
sg2->producer_edges.end());
// Register producers into sg2
std::unordered_set<Val*> sg2_vals;
for (auto se : sg2->producer_edges) {
sg2_vals.emplace(se->val);
}
producer_edges.erase(
std::remove_if(
producer_edges.begin(),
producer_edges.end(),
[&sg1, &sg2, &sg2_vals](SegmentedEdge* se) {
// remove edges in between the groups and common uses
return (se->to == sg1 && se->from == sg2) ||
(se->to == sg2 && se->from == sg1) ||
(se->to == sg1 && sg2_vals.count(se->val));
}),
producer_edges.end());
// Remove Duplicate Edges
return producer_edges;
}
// Concat's consumer edges of sg1 and sg2, but removes any edges from/to sg1/sg2
std::vector<SegmentedEdge*> getMergedConsumerEdges(
const SegmentedGroup* sg1,
const SegmentedGroup* sg2) {
TORCH_INTERNAL_ASSERT(
sg1 != nullptr && sg2 != nullptr,
"This function doesn't handle trivial.");
auto consumer_edges = sg1->consumer_edges;
consumer_edges.insert(
consumer_edges.end(),
sg2->consumer_edges.begin(),
sg2->consumer_edges.end());
consumer_edges.erase(
std::remove_if(
consumer_edges.begin(),
consumer_edges.end(),
[&sg1, &sg2](SegmentedEdge* se) {
return (se->to == sg1 && se->from == sg2) ||
(se->to == sg2 && se->from == sg1);
}),
consumer_edges.end());
return consumer_edges;
}
// Returns a determinstic, unique set of inputs of the segment group, sg1, or
// the combined group sg1 + sg2
std::vector<Val*> getAllInputs(
const SegmentedGroup* sg1,
const SegmentedGroup* sg2 = nullptr) {
std::vector<SegmentedEdge*> merged_producer_edges;
if (sg1 != nullptr && sg2 != nullptr) {
merged_producer_edges = getMergedProducerEdges(sg1, sg2);
} else if (sg1 != nullptr) {
merged_producer_edges = sg1->producer_edges;
} else if (sg2 != nullptr) {
merged_producer_edges = sg2->producer_edges;
}
std::vector<Val*> producer_edge_vals;
std::transform(
merged_producer_edges.begin(),
merged_producer_edges.end(),
std::back_inserter(producer_edge_vals),
[](SegmentedEdge* se) { return se->val; });
return uniqueValConcat(
{sg1 == nullptr ? std::vector<Val*>() : sg1->input_vals,
sg2 == nullptr ? std::vector<Val*>() : sg2->input_vals,
producer_edge_vals});
}
// Returns a determinstic, unique set of outputs of the segment group, sg1, or
// the combined group sg1 + sg2
std::vector<Val*> getAllOutputs(
const SegmentedGroup* sg1,
const SegmentedGroup* sg2 = nullptr) {
std::vector<SegmentedEdge*> merged_consumer_edges;
if (sg1 != nullptr && sg2 != nullptr) {
merged_consumer_edges = getMergedConsumerEdges(sg1, sg2);
} else if (sg1 != nullptr) {
merged_consumer_edges = sg1->consumer_edges;
} else if (sg2 != nullptr) {
merged_consumer_edges = sg2->consumer_edges;
}
std::vector<Val*> consumer_edge_vals;
std::transform(
merged_consumer_edges.begin(),
merged_consumer_edges.end(),
std::back_inserter(consumer_edge_vals),
[](SegmentedEdge* se) { return se->val; });
auto output_vals = uniqueValConcat(
{sg1 == nullptr ? std::vector<Val*>() : sg1->output_vals,
sg2 == nullptr ? std::vector<Val*>() : sg2->output_vals,
consumer_edge_vals});
return output_vals;
}
// Set version of getting merged input or output if segmented_groups were
// merged
// outputs respects order in segmented_groups for deterministic
// merge trace
// will get input if get_inputs otherwise will get ouputs
// TODO: merge with the binary counter parts
std::vector<Val*> allInputsIfTrueElseOutputs(
const std::vector<SegmentedGroup*>& segmented_groups,
bool get_inputs = true) {
// Helper to distinguish if we are getting inputs or outputs
using EdgeVec = std::vector<SegmentedEdge*>;
using ValVec = std::vector<Val*>;
// Get producer edges to get inputs, consumer edges to get outputs
auto edges_to_process_from_or_to_group =
[get_inputs](SegmentedGroup* group) -> EdgeVec& {
return get_inputs ? group->producer_edges : group->consumer_edges;
};
// Get the group that is connected to current group
auto global_vals_from_or_to_group =
[get_inputs](SegmentedGroup* group) -> ValVec& {
return get_inputs ? group->input_vals : group->output_vals;
};
// Get the group that is connected to current group by given edge
auto opposite_end_of_edge = [get_inputs](SegmentedEdge* edge) {
return get_inputs ? edge->from : edge->to;
};
// Keep track of value and order to ensure deterministic result
std::vector<Val*> merged_vals;
std::unordered_set<Val*> merged_vals_set;
// Put groups in a set for quick look up
std::unordered_set<SegmentedGroup*> segmented_groups_set(
segmented_groups.begin(), segmented_groups.end());
// Collect vals associated with edges
for (auto group : segmented_groups) {
for (auto edge : edges_to_process_from_or_to_group(group)) {
if (
// Need to de-duplicate values so we don't get multiple of any input
!merged_vals_set.count(edge->val) &&
// One side of this edge will be `group`, if the other end is
// also in segmented_groups, then this is an internal edge
// that we don't want.
!segmented_groups_set.count(opposite_end_of_edge(edge))) {
merged_vals.push_back(edge->val);
merged_vals_set.insert(edge->val);
}
}
}
// Collect original fusion's inputs/outputs and append at the end
for (auto group : segmented_groups) {
for (auto global_val : global_vals_from_or_to_group(group)) {
// de-duplicate
if (!merged_vals_set.count(global_val)) {
merged_vals.push_back(global_val);
merged_vals_set.insert(global_val);
}
}
}
return merged_vals;
}
// A sorting utility used for debug printing only
// sorts the given vector of expressions in topological
// order, with equal cases respecting the original order
// in the vector.
std::vector<Expr*> groupExprPrintSorting(const std::vector<Expr*>& exprs) {
std::vector<Expr*> exprs_to_print(exprs.begin(), exprs.end());
std::unordered_set<Expr*> exprs_to_print_set(exprs.begin(), exprs.end());
std::unordered_set<Expr*> exprs_visited;
std::vector<Expr*> sorted_list;
while (!std::all_of(
exprs_to_print.begin(),
exprs_to_print.end(),
[&exprs_visited](auto expr) { return exprs_visited.count(expr); })) {
bool expr_added_to_sorted_list = false;
for (auto expr : exprs_to_print) {
if (!exprs_visited.count(expr)) {
bool add_this_expr = true;
// Check if any of the inputs of current
// expression within the group
// hasn't been visited
for (auto input : expr->inputs()) {
if (input->definition() &&
exprs_to_print_set.count(input->definition()) &&
!exprs_visited.count(input->definition())) {
add_this_expr = false;
break;
}
}
// Append the current group to sorted list
// and mark visited
if (add_this_expr) {
expr_added_to_sorted_list = true;
exprs_visited.insert(expr);
sorted_list.push_back(expr);
break;
}
}
}
TORCH_INTERNAL_ASSERT(
expr_added_to_sorted_list,
"group debug print failed, exprs within given vector not a DAG");
}
return sorted_list;
}
// Utility function to list all expressions in a group
void detailGroupPrint(std::ostream& os, const SegmentedGroup* group) {
IrPrinter irp(os);
auto sort_val_by_name = [](std::vector<Val*> vals_to_sort) {
std::sort(vals_to_sort.begin(), vals_to_sort.end(), [](Val* a, Val* b) {
return a->name() < b->name();
});
return vals_to_sort;
};
os << "g{"
<< "(" << toString(group->heuristic()) << ")\n";
os << "inputs: \n";
for (auto input : sort_val_by_name(getAllInputs(group))) {
os << input << " " << input->getDataType().value() << "\n";
}
os << "outputs: \n";
for (auto output : sort_val_by_name(getAllOutputs(group))) {
os << output << " " << output->getDataType().value() << "\n";
}
os << "\n\n";
auto expr_to_print = groupExprPrintSorting(group->exprs());
for (const auto i : c10::irange(expr_to_print.size())) {
irp.handle(expr_to_print[i]);
}
os << "}\n\n";
}
//! Insert casts for an intermediate tensorview, i.e. ones
//! that are in segmentedEdges. The insertion is done on
//! the complete fusion, which should be owned by a segmented
//! fusion so that only one segmented fusion will be affected.
//! The replacement pattern is:
//! TV0
//! replaced as:
//! fp16_tv = cast(TV0)
//! fp32_tv = cast(fp16_tv)
//!
//! All segmented groups that take TV0 as input will then
//! take fp16_tv or bf16_tv instead and the cast to fp32 will be
//! automatically included in each of the groups.
TensorView* castIntermediateValueInCompleteFusion(
Fusion* fusion,
TensorView* original_tv,
std::unordered_set<Expr*> edge_from_group_uses,
DataType dtype) {
FusionGuard fg(fusion);
// A utility lambda that creates consumer tensordomain of
// the given tv and create a new tensorview around the
// new tensordomain with the given data type.
auto make_consumer_tv = [&](TensorView* from, DataType data_type) {
// Keep broadcast axes and remove reduction axes
size_t i = 0;
auto no_reduction_root_domain =
TensorDomain::noReductions(original_tv->getMaybeRFactorDomain());
std::vector<IterDomain*> new_root_domain(no_reduction_root_domain.size());
for (const auto& dom : no_reduction_root_domain) {
new_root_domain[i++] = dom->cloneWithoutRFactor();
}
// Create the actual domain and tv.
return IrBuilder::create<TensorView>(
IrBuilder::create<TensorDomain>(
new_root_domain, std::vector<bool>(new_root_domain.size(), true)),
data_type);
};
// create the tv's to cast
auto half_precision_tv = make_consumer_tv(original_tv, dtype);
auto fp32_tv = make_consumer_tv(original_tv, DataType::Float);
// replace uses of original tv with fp32_tv in the complete
// fusion
for (auto expr : fusion->unordered_uses(original_tv)) {
// Don't modify internal uses of buffers, only cast for outputs.
if (edge_from_group_uses.find(expr) == edge_from_group_uses.end()) {
ir_utils::replaceValInExpr(expr, original_tv, fp32_tv);
}
}
// Insert the cast ops.
IrBuilder::create<UnaryOp>(UnaryOpType::Cast, half_precision_tv, original_tv);
IrBuilder::create<UnaryOp>(UnaryOpType::Cast, fp32_tv, half_precision_tv);
// Return the new tv to replace original tv with
// on the segmented edges.
return half_precision_tv;
}
} // namespace
void SegmentedFusion::finalize() {
impl_.cleanUnused();
// Insert casts for the tensorviews that are on
// segmented edges and also on the force_to_fp16 list
//
// Note:
// The cast is inserted after the segmenter canSchedule check, which
// shouldn't cause problem short-term. The reason we put the cast here
// is we don't want to keep making copies of the original fusion
// during segmentation. Could consider making the cast insertion
// reversible if we do have to test canSchedule with the casts inserted
// during segmentation process in the future.
// Keep track of groups that need to update expr list,
// including both the producer and consumer of the selected tv's that
// we cast to fp16.
std::unordered_set<SegmentedGroup*> affected_group_set;
// A map to keep track of the tv's that have been inserted cast
// and its fp16 version.
std::unordered_map<TensorView*, TensorView*> fp32_to_half_cast_map;
// Go through all edges of the segmented fusion.
for (auto edge : edges()) {
TORCH_INTERNAL_ASSERT(edge->val->isA<TensorView>());
auto edge_tv = edge->val->as<TensorView>();
// Uses of the edge value within the from group should not be replaced. This
// will cause the group to have an intermediate tensor
// tv -> float2half -> output
// \ -> half2float -> other uses in group
// The conversion back and forth from half precision can hurt numerics.
// Collect expressions that use the edge value of concern within the from
// group to avoid replacing with the cast tensor.
std::unordered_set<Expr*> uses_in_from_group;
// All expressions in the from group of the edge
std::unordered_set<Expr*> from_group_exprs(
edge->from->exprs().begin(), edge->from->exprs().end());
// All uses of the edge val
for (auto edge_val_use_expr : edge_tv->uses()) {
if (from_group_exprs.count(edge_val_use_expr)) {
// Find uses in the to group of the val
uses_in_from_group.emplace(edge_val_use_expr);
}
}
// Only look at ones that need to cast to fp16 or bf16
if ((force_fp16_tv_set_.count(edge_tv) > 0)) {
auto cast_tv_it = fp32_to_half_cast_map.find(edge->val->as<TensorView>());
TensorView* cast_tv = nullptr;
// Insert cast ops for this tv if we haven't done so.
if (cast_tv_it == fp32_to_half_cast_map.end()) {
cast_tv = castIntermediateValueInCompleteFusion(
complete_fusion_.get(),
edge_tv,
uses_in_from_group,
force_half_precision_type_);
fp32_to_half_cast_map[edge->val->as<TensorView>()] = cast_tv;
} else {
cast_tv = cast_tv_it->second;
}
// Update the edge to use the fp16 version
edge->val = cast_tv;
// Mark the groups for update later
affected_group_set.insert(edge->from);
affected_group_set.insert(edge->to);
// The expr pointers on the group's expr list might have been freed
// by now after `ir_utils::replaceValInExpr`.
// Need a valid expression list to continue. Update from and to group.
edge->from->resetExprList();
edge->to->resetExprList();
}
}
}
//! An utility class to compute and maintain the "producers of"
//! relationship in a segmented graph. Space heavy and should
//! avoid use on very large graphs.
//!
//! Currently trying to move as far as possible with only a
//! producer map, without transposing it to make a consumer map.
//! Making it NonCopyable because we should never need to
//! copy an instance of this class.
//! TODO: Space efficiency of this class will be important,
//! because we need it in the pre-merging of segmentedGroups,
//! currently O(n^2). O(nlogn) would be a reasonable
//! goal to achieve.
class GroupDependencyAnalysis : public NonCopyable, public SegmenterAnalysis {
using GroupSetOwningPtr = std::unique_ptr<GroupSet>;
using DependencyMap = std::unordered_map<SegmentedGroup*, GroupSetOwningPtr>;
public:
//! Populate producers of all groups in segmented fusion
explicit GroupDependencyAnalysis(const SegmentedFusion* segmented_fusion)
: segmented_fusion_(segmented_fusion) {
computeAllProducers();
}
//! Checks if group is consumer of any group in groups_to_check
//! TODO: refactor this similar to isConsumerOf
bool isConsumerOfAny(
SegmentedGroup* group,
const std::vector<SegmentedGroup*>& groups_to_check) {
auto& producers_of_group = getAllKnownProducersSet(group);
for (const auto& potential_producer : groups_to_check) {
if (producers_of_group->has(potential_producer)) {
return true;
}
}
return false;
}
bool isConsumerOf(SegmentedGroup* a, SegmentedGroup* b) {
auto it = known_producers_of_.find(a);
if (it == known_producers_of_.end()) {
return false;
}
return it->second->has(b);
}
bool isProducerOf(SegmentedGroup* a, SegmentedGroup* b) {
return isConsumerOf(b, a);
}
//! Finds the common producers of given set of groups
GroupSet getCommonProducersOf(std::vector<SegmentedGroup*> groups);
//! Update the map when the given two groups have been merged to create `ab`
//! this method is for book keeping and query only, doesn't implicitly check
//! for DAG
void mergeGroups(SegmentedGroup* a, SegmentedGroup* b, SegmentedGroup* ab);
//! Update the map when the given two groups have been merged to create
//! `merged` this method is for book keeping and query only, doesn't
//! implicitly check
//! for DAG
void mergeGroups(const GroupSet& groups, SegmentedGroup* merged);
//! Populate all values that is on a path from producer to consumer
//! efficiency can be important here. (TODO)
GroupSet valuesBetween(SegmentedGroup* producer, SegmentedGroup* consumer) {
if (producer == consumer) {
return {};
}
GroupSet values_between;
auto& all_producers_of_consumer = known_producers_of_.at(consumer);
TORCH_INTERNAL_ASSERT(
all_producers_of_consumer->has(producer),
"Fusion segment: Trying to compute path between two nodes that are not producer-consumer pairs");
for (auto producer_of_consumer : *all_producers_of_consumer) {
if (known_producers_of_.at(producer_of_consumer)->has(producer)) {
values_between.pushBack(producer_of_consumer);
}
}
return values_between;
}
//! Checks if the segmented fusion this class tracks is still a DAG
//! used for generating assertions after transforms
bool isproducerMapDAG() const {
for (auto& it : known_producers_of_) {
if (it.second->has(it.first)) {
return false;
}
}
return true;
}
private:
//! Collect initial producer info using
//! a work list algorithm through forward traversal
//! a backward DFS would do the same
void computeAllProducers();
//! Add all consumers of `producer` to `to_visit`
void addConsumersToWorkList(SegmentedGroup* producer, GroupSet& to_visit) {
for (auto e : producer->consumer_edges) {
// A consumer wouldn't have been worked before any of its producer
to_visit.pushBack(e->to);
}
}
//! Propagate all known producers of `from` into `into`, used to keep track
//! of:
//! 1. `from` is a producer of `into`
//! 2. `from` has been merged with other group to create `into`
void mergeAllKnownProducersIntoFrom(
SegmentedGroup* into,
SegmentedGroup* from) {
auto& producer_set_to_merge = *getAllKnownProducersSet(from);
for (auto group : producer_set_to_merge) {
getAllKnownProducersSet(into)->pushBack(group);
}
}
//! Utility to access known producers of a group so far
GroupSetOwningPtr& getAllKnownProducersSet(SegmentedGroup* group) {
auto& producer_set_ptr = known_producers_of_[group];
if (!producer_set_ptr) {
producer_set_ptr = std::make_unique<GroupSet>();
}
return producer_set_ptr;
}
// utility to compute the set intersection of group sets a,b
GroupSet groupSetIntersection(const GroupSet& a, const GroupSet& b) {
bool a_is_smaller = a.size() < b.size();
const auto& smaller_group_set = a_is_smaller ? a : b;
const auto& bigger_group_set = a_is_smaller ? b : a;
GroupSet intersection;
for (auto group : smaller_group_set) {
if (bigger_group_set.has(group)) {
intersection.pushBack(group);
}
}
return intersection;
}
private:
const SegmentedFusion* segmented_fusion_;
DependencyMap known_producers_of_;
};
//! Finds the common producers of given set of groups
GroupSet GroupDependencyAnalysis::getCommonProducersOf(
std::vector<SegmentedGroup*> groups) {
if (groups.empty()) {
return {};
}
// Optimization: start with the smallest producer set
std::sort(
groups.begin(),
groups.end(),
[this](SegmentedGroup* a, SegmentedGroup* b) {
return known_producers_of_.at(a)->size() <
known_producers_of_.at(b)->size();
});
// Get intersection of producers
GroupSet common_producers = *(known_producers_of_.at(groups[0]));
for (const auto i : c10::irange(1, groups.size())) {
common_producers = groupSetIntersection(
common_producers, *(known_producers_of_.at(groups[i])));
}
return common_producers;
}
//! Update the map when the given two groups have been merged to create `ab`
//! this method is for book keeping and query only, doesn't implicitly check
//! for DAG
void GroupDependencyAnalysis::mergeGroups(
SegmentedGroup* a,
SegmentedGroup* b,
SegmentedGroup* ab) {
// Access/Create the producer set of ab
auto& ab_set = getAllKnownProducersSet(ab);
// propagate a's and b's known producers into ab
mergeAllKnownProducersIntoFrom(ab, a);
mergeAllKnownProducersIntoFrom(ab, b);
// a, b are now merged, so no longer exist
ab_set->erase(a);
ab_set->erase(b);
// a, b no longer exist, remove their producer sets
known_producers_of_.erase(a);
known_producers_of_.erase(b);
// update producer maps of other groups
for (auto& it : known_producers_of_) {
// for all groups that are produced by either a or b
if (it.second->has(a) || it.second->has(b)) {
// insert ab as the new producer
it.second->pushBack(ab);
// all producers of both a and b are now producers of `it`
mergeAllKnownProducersIntoFrom(it.first, ab);
}
// a, b no longer exist, remove them from `it`
it.second->erase(a);
it.second->erase(b);
}
}
//! Update the map when the given two groups have been merged to create
//! `merged` this method is for book keeping and query only, doesn't
//! implicitly check
//! for DAG
void GroupDependencyAnalysis::mergeGroups(
const GroupSet& groups,
SegmentedGroup* merged) {
// Access/Create the producer set of merged
auto& merged_set = getAllKnownProducersSet(merged);
// Populate all producers of groups and
// write into producer map of merged
std::for_each(
groups.begin(), groups.end(), [this, merged](SegmentedGroup* group) {
mergeAllKnownProducersIntoFrom(merged, group);
});
// Erase all groups that was merged from producer map
std::for_each(
groups.begin(), groups.end(), [this, &merged_set](SegmentedGroup* group) {
// erase inter dependencies
merged_set->erase(group);
// erase producer map tracking merged entires
known_producers_of_.erase(group);
});
// Update producer relationships with other groups in producer map
for (auto& it : known_producers_of_) {
auto producer_intersection = groupSetIntersection(*(it.second), groups);
// if current node has any producer that was merged
if (producer_intersection.size() > 0) {
for (auto merged_producer : producer_intersection) {
// delete all disappearing producers
it.second->erase(merged_producer);
}
// insert the new group as producer
it.second->pushBack(merged);
}
}
}
//! Collect initial producer info using
//! a work list algorithm through forward traversal
//! a backward DFS would do the same
void GroupDependencyAnalysis::computeAllProducers() {
GroupSet visited;
GroupSet to_visit;
// Collect source nodes, with no producers we are guaranteed
// a source node on a DAG
for (auto group : segmented_fusion_->cgroups()) {
if (group->producer_edges.empty()) {
visited.pushBack(group);
}
}
// visited now only contain source nodes
// they can go backward to nowhere
for (auto group : visited) {
addConsumersToWorkList(group, to_visit);
}
while (!to_visit.empty()) {
SegmentedGroup* to_update = nullptr;
for (auto visiting_group : to_visit) {
if (std::all_of(
visiting_group->producer_edges.begin(),
visiting_group->producer_edges.end(),
[&visited](SegmentedEdge* e) { return visited.has(e->from); })) {
// filter multi-edges
GroupSet producers_of_visiting_group;
for (auto edge : visiting_group->producer_edges) {
producers_of_visiting_group.pushBack(edge->from);
}
// populate all possible paths
// from producer backward, including
// the producer
for (auto producer : producers_of_visiting_group) {
getAllKnownProducersSet(visiting_group)->pushBack(producer);
mergeAllKnownProducersIntoFrom(visiting_group, producer);
}
to_update = visiting_group;
break;
}
}
if (to_update) {
addConsumersToWorkList(to_update, to_visit);
to_visit.erase(to_update);
visited.pushBack(to_update);
} else {
TORCH_INTERNAL_ASSERT(false, "unreachable, original graph not a DAG");
}
}
}
std::ostream& operator<<(
std::ostream& os,
const SegmentedFusion* segmented_fusion) {
// Topologically sort groups
GroupDependencyAnalysis dependency(segmented_fusion);
std::vector<SegmentedGroup*> groups_to_print(
segmented_fusion->cgroups().begin(), segmented_fusion->cgroups().end());
std::vector<SegmentedGroup*> sorted_groups_to_print;
// Sort groups topologically from producer to consumer before printing
while (!groups_to_print.empty()) {
auto group_it_to_append = groups_to_print.begin();
for (auto group_it_to_compare = groups_to_print.begin();
group_it_to_compare != groups_to_print.end();
group_it_to_compare++) {
if (dependency.isProducerOf(*group_it_to_compare, *group_it_to_append)) {
group_it_to_append = group_it_to_compare;
}
}
sorted_groups_to_print.push_back(*group_it_to_append);
groups_to_print.erase(group_it_to_append);
}
// Do a reverse look up to check the order of sorted groups
std::unordered_map<SegmentedGroup*, size_t> group_order;
for (const auto i : c10::irange(sorted_groups_to_print.size())) {
group_order[sorted_groups_to_print[i]] = i;
}
// Sort edges to print
std::vector<SegmentedEdge*> sorted_edges_to_print(
segmented_fusion->cedges().begin(), segmented_fusion->cedges().end());
std::sort(
sorted_edges_to_print.begin(),
sorted_edges_to_print.end(),
[&group_order](SegmentedEdge* edge_a, SegmentedEdge* edge_b) {
return group_order.at(edge_a->from) < group_order.at(edge_b->from);
});
os << "Segmented_Fusion Dump: -- fusion segments:\n";
os << "Segmented_Fusion{ \n";
os << "groups: \n";
for (const auto g : sorted_groups_to_print) {
os << g << "\n";
}
os << "edges: \n";
for (const auto e : sorted_edges_to_print) {
os << e << "\n";
}
os << "\ngroup details:\n";
for (const auto g : sorted_groups_to_print) {
detailGroupPrint(os, g);
}
os << "} //Segmented_Fusion\n";
return os;
}
void SegmentedFusion::print() const {
std::cout << "Segmented_Fusion Dump: -- Re-written complete fusion:{\n";
completeFusion()->printMath();
std::cout << "} // {Re-written complete fusion}\n";
std::cout << this << "\n";
}
std::string toString(SegmentedFusion* segmented_fusion) {
std::stringstream ss;
ss << segmented_fusion;
return ss.str();
}
std::unique_ptr<Fusion> SegmentedFusion::makeFusion(SegmentedGroup* sg) {
std::unique_ptr<Fusion> fusion_segment = std::make_unique<Fusion>();
auto complete_to_segment_map =
Fusion::copy(completeFusion(), fusion_segment.get());
std::vector<Val*> input_list(
fusion_segment->inputs().begin(), fusion_segment->inputs().end());
for (auto inp : input_list) {
fusion_segment->removeInput(inp);
}
std::vector<Val*> output_list(
fusion_segment->outputs().begin(), fusion_segment->outputs().end());
for (auto out : output_list) {
fusion_segment->removeOutput(out);
}
std::vector<TensorView*> view_tvs;
for (auto inp : getAllInputs(sg)) {
auto clone_tv = complete_to_segment_map.clone(inp);
fusion_segment->addInput(clone_tv);
if (inp->isDefinitionType(ExprType::ViewOp)) {
TORCH_INTERNAL_ASSERT(clone_tv != nullptr && clone_tv->isA<TensorView>());
view_tvs.push_back(clone_tv->as<TensorView>());
}
}
for (auto out : getAllOutputs(sg)) {
fusion_segment->addOutput(complete_to_segment_map.clone(out));
}
for (auto tv : view_tvs) {
tv->convertRfactorToRootDomain();
}
return fusion_segment;
}
void SegmentCandidateFinder::resetTraversal() {
for (auto group : groups()) {
// Start traversal at input groups
if (group->producer_edges.empty()) {
to_visit_.push_back(group);
}
group->visited_ = false;
group->level_ = 0;
}
}
void SegmentCandidateFinder::resetLevels() {
while (!to_visit_.empty()) {
auto visit = to_visit_.front();
to_visit_.pop_front();
// All inputs processed?
bool ready = true;
if (!visit->producer_edges.empty()) {
ready = std::all_of(
visit->producer_edges.begin(),
visit->producer_edges.end(),
[&](SegmentedEdge* dep) { return dep->from->visited_; });
}
if (!ready) {
// In case traversal doesn't complete because there's an error in the
// DAG topology.
next_to_visit_.push_back(visit);
continue;
}
visit->visited_ = true;
to_visit_.insert(
to_visit_.end(), next_to_visit_.begin(), next_to_visit_.end());
next_to_visit_.clear();
for (auto out : visit->consumer_edges) {
to_visit_.push_back(out->to);
}
visit->level_ = 0;
for (auto inp : visit->producer_edges) {
visit->level_ = std::max(visit->level_, inp->from->level_ + 1);
}
}
TORCH_INTERNAL_ASSERT(
next_to_visit_.empty(), "Error in graph, is not a DAG.");
}
// Disconect group from neighbors, and return edges that were disconnected
std::unordered_set<SegmentedEdge*> SegmentCandidateFinder::disconnectGroup(
SegmentedGroup* group) {
std::unordered_set<SegmentedEdge*> removed_edges(
group->producer_edges.begin(), group->producer_edges.end());
for (auto edge : group->producer_edges) {
auto from = edge->from;
auto& from_edges = from->consumer_edges;
auto from_edge_it = std::find(from_edges.begin(), from_edges.end(), edge);
TORCH_INTERNAL_ASSERT(
from_edge_it != from_edges.end(), "Could not find edge to remove.");
from_edges.erase(from_edge_it);
}
for (auto edge : group->consumer_edges) {
removed_edges.insert(edge);
auto to = edge->to;
auto& to_edges = to->producer_edges;
auto to_edge_it = std::find(to_edges.begin(), to_edges.end(), edge);
TORCH_INTERNAL_ASSERT(
to_edge_it != to_edges.end(), "Could not find edge to remove.");
to_edges.erase(to_edge_it);
}
group->producer_edges.clear();
group->consumer_edges.clear();
return removed_edges;
}
void SegmentCandidateFinder::eraseGroups(
std::unordered_set<SegmentedGroup*>& groups_to_erase) {
std::unordered_set<SegmentedEdge*> edges_to_erase;
for (auto group : groups_to_erase) {
auto disconnected_edges = disconnectGroup(group);
edges_to_erase.insert(disconnected_edges.begin(), disconnected_edges.end());
}
edges().erase(
std::remove_if(
edges().begin(),
edges().end(),
[&edges_to_erase](SegmentedEdge* edge) {
if (edges_to_erase.find(edge) != edges_to_erase.end()) {
return true;
};
return false;
}),
edges().end());
groups().erase(
std::remove_if(
groups().begin(),
groups().end(),
[&groups_to_erase](SegmentedGroup* group) {
if (groups_to_erase.find(group) != groups_to_erase.end()) {
return true;
};
return false;
}),
groups().end());
}
SegmentedGroup* SegmentCandidateFinder::mergeNodes() {
SegmentedGroup* last_merged = nullptr;
auto it = to_merge_.begin();
TORCH_INTERNAL_ASSERT(to_merge_.size() % 2 == 0);
while (it != to_merge_.end()) {
auto group1 = *it++;
auto group2 = *it++;
clean_up_groups_.emplace(group1);
clean_up_groups_.emplace(group2);
// Make the new joined node
auto joined_group = segmented_fusion_->newGroup();
joined_group->input_vals =
uniqueValConcat({group1->input_vals, group2->input_vals});
joined_group->output_vals =
uniqueValConcat({group1->output_vals, group2->output_vals});
joined_group->exprs_ = group1->exprs_;
joined_group->exprs_.insert(
joined_group->exprs_.end(),
group2->exprs_.begin(),
group2->exprs_.end());
auto producer_edges = getMergedProducerEdges(group1, group2);
// Connect joined group to resulting neighbors
for (auto edge : producer_edges) {
auto from = edge->from;
auto val = edge->val;
auto new_edge = segmented_fusion_->newEdge(from, joined_group, val);
joined_group->producer_edges.push_back(new_edge);
from->consumer_edges.push_back(new_edge);
}
auto consumer_edges = getMergedConsumerEdges(group1, group2);
for (auto edge : consumer_edges) {
auto to = edge->to;
auto val = edge->val;
auto new_edge = segmented_fusion_->newEdge(joined_group, to, val);
joined_group->consumer_edges.push_back(new_edge);
edge->to->producer_edges.push_back(new_edge);
}
joined_group->setHeuristic(deriveHeuristic(joined_group));
// Need to maintain the group dependency data if it has been intialized
// by previous merging
if (group_dependency_) {
group_dependency_->as<GroupDependencyAnalysis>()->mergeGroups(
group1, group2, joined_group);
}
last_merged = joined_group;
}
to_merge_.clear();
for (auto group : clean_up_groups_) {
auto disconnected_edges = disconnectGroup(group);
clean_up_edges_.insert(
disconnected_edges.begin(), disconnected_edges.end());
}
edges().erase(
std::remove_if(
edges().begin(),
edges().end(),
[this](SegmentedEdge* edge) {
if (this->clean_up_edges_.find(edge) !=
this->clean_up_edges_.end()) {
return true;
};
return false;
}),
edges().end());
groups().erase(
std::remove_if(
groups().begin(),
groups().end(),
[this](SegmentedGroup* group) {
if (this->clean_up_groups_.find(group) !=
this->clean_up_groups_.end()) {
return true;
};
return false;
}),
groups().end());
clean_up_edges_.clear();
clean_up_groups_.clear();
return last_merged;
}
// Logic largely parallels mergeNodes, but they are used
// in different phases of segmentation. Should consider
// a clean up and share the implementations.
SegmentedGroup* SegmentCandidateFinder::mergeAllGivenGroups(
const std::vector<SegmentedGroup*>& groups_to_merge) {
TORCH_INTERNAL_ASSERT(
!groups_to_merge.empty(),
"fusion segment :(mergeAllGivenGroups) tried to merge no groups")
// Make a set to detect internal edges
std::unordered_set<SegmentedGroup*> group_set(
groups_to_merge.begin(), groups_to_merge.end());
// Sets to de-duplicate multiple uses of
// input/edge values and re-computations of exprs
std::unordered_set<Val*> used_edge_vals_set;
std::unordered_set<Val*> used_input_vals_set;
std::unordered_set<Expr*> exprs_set;
// Create new group
auto joined_group = segmented_fusion_->newGroup();
// Populate edges, exprs, global vals
// from each of the groups
for (auto group : groups_to_merge) {
// Populate complete fusion inputs to the group
for (auto input_val : group->input_vals) {
if (!used_input_vals_set.count(input_val)) {
used_input_vals_set.insert(input_val);
joined_group->input_vals.push_back(input_val);
}
}
// Populate complete fusion outputs from the group
for (auto output_val : group->output_vals) {
joined_group->output_vals.push_back(output_val);
}
// Populate producer edges to the group
for (auto edge : group->producer_edges) {
if (
// Check this is not internal edge
!group_set.count(edge->from) &&
// Check this val has been added or not
!used_edge_vals_set.count(edge->val)) {
used_edge_vals_set.insert(edge->val);
auto new_producer_edge =
segmented_fusion_->newEdge(edge->from, joined_group, edge->val);
joined_group->producer_edges.push_back(new_producer_edge);
edge->from->consumer_edges.push_back(new_producer_edge);
}
}
// Populate consumer edges from the group
for (auto edge : group->consumer_edges) {
if (
// Check this is not internal edge
!group_set.count(edge->to)) {
auto new_consumer_edge =
segmented_fusion_->newEdge(joined_group, edge->to, edge->val);
joined_group->consumer_edges.push_back(new_consumer_edge);
edge->to->producer_edges.push_back(new_consumer_edge);
}
}
// Populate exprs
for (auto expr : group->exprs_) {
if (!exprs_set.count(expr)) {
joined_group->exprs_.push_back(expr);
exprs_set.insert(expr);
}
}
}
// Clean up original groups from segmented fusion
for (auto group : groups_to_merge) {
auto disconnected_edges = disconnectGroup(group);
clean_up_edges_.insert(
disconnected_edges.begin(), disconnected_edges.end());
}
edges().erase(
std::remove_if(
edges().begin(),
edges().end(),
[this](SegmentedEdge* edge) { return clean_up_edges_.count(edge); }),
edges().end());
groups().erase(
std::remove_if(
groups().begin(),
groups().end(),
[&group_set](SegmentedGroup* group) -> bool {
return group_set.count(group);
}),
groups().end());
clean_up_edges_.clear();
joined_group->setHeuristic(deriveHeuristic(joined_group));
return joined_group;
}
namespace {
// Guard to temporarily change the inputs and outputs of a fusion. On
// destruction will return fusion to original state.
// Not used temporarily but will be useful when adding more mergin heuristics
class FusionSegmentGuard : public NonCopyable {
public:
FusionSegmentGuard() = delete;
FusionSegmentGuard(
Fusion* fusion,
std::vector<Val*> inputs,
std::vector<Val*> outputs)
: fusion_(fusion),
old_inputs_(fusion->inputs()),
old_outputs_(fusion->outputs()),
new_inputs_(std::move(inputs)),
new_outputs_(std::move(outputs)) {
FUSER_PERF_SCOPE("Segmenter::FusionSegmentGuard");
TORCH_INTERNAL_ASSERT(fusion_ != nullptr);
for (auto old_inp : old_inputs_) {
fusion_->removeInput(old_inp);
}
for (auto old_out : old_outputs_) {
fusion_->removeOutput(old_out);
}
for (auto new_inp : new_inputs_) {
fusion_->addInput(new_inp);
}
for (auto new_out : new_outputs_) {
fusion_->addOutput(new_out);
}
}
~FusionSegmentGuard() {
FUSER_PERF_SCOPE("~Segmenter::FusionSegmentGuard");
if (fusion_ == nullptr) {
return;
}
for (auto new_inp : new_inputs_) {
fusion_->removeInput(new_inp);
}
for (auto new_out : new_outputs_) {
fusion_->removeOutput(new_out);
}
for (auto old_inp : old_inputs_) {
fusion_->addInput(old_inp);
}
for (auto old_out : old_outputs_) {
fusion_->addOutput(old_out);
}
}
private:
Fusion* const fusion_ = nullptr;
const std::vector<Val*> old_inputs_;
const std::vector<Val*> old_outputs_;
const std::vector<Val*> new_inputs_;
const std::vector<Val*> new_outputs_;
};
c10::optional<ScheduleHeuristic> tryMerge(
Fusion* fusion,
SchedulerRuntimeInfo& runtime_info,
SegmentedGroup* a,
SegmentedGroup* b = nullptr) {
FusionSegmentGuard fsg(fusion, getAllInputs(a, b), getAllOutputs(a, b));
scheduler_debug_utils::canScheduleMessage(
"\n**Segmenter** Considering fusion:\n", fusion);
return SchedulerEntry::proposeHeuristics(fusion, runtime_info);
}
c10::optional<ScheduleHeuristic> tryMerge(
Fusion* fusion,
SchedulerRuntimeInfo& runtime_info,
const std::vector<SegmentedGroup*>& segmented_groups) {
FusionSegmentGuard fsg(
fusion,
allInputsIfTrueElseOutputs(segmented_groups, true),
allInputsIfTrueElseOutputs(segmented_groups, false));
scheduler_debug_utils::canScheduleMessage(
"\n**Segmenter** Considering fusion:\n", fusion);
return SchedulerEntry::proposeHeuristics(fusion, runtime_info);
}
// This function is for cleanup and
// easier debugging. It shouldn't affect functionality
// since segmented fusions are compiled with fusion
// guard on the edges instead of actually looking
// at the exprs.
void deDuplicateScalarExprs(std::vector<Expr*>& exprs) {
// Exprs in SegmentedGroup are not ordered
// so it is ok to insert them from unordered
// set
std::unordered_set<Expr*> scalar_expr_set;
std::copy_if(
exprs.begin(),
exprs.end(),
std::inserter(scalar_expr_set, scalar_expr_set.end()),
[](Expr* expr) { return ir_utils::isScalarOp(expr); });
if (!scalar_expr_set.empty()) {
exprs.erase(
std::remove_if(
exprs.begin(),
exprs.end(),
[&scalar_expr_set](Expr* expr) {
return scalar_expr_set.count(expr);
}),
exprs.end());
exprs.insert(exprs.end(), scalar_expr_set.begin(), scalar_expr_set.end());
}
}
} // namespace
c10::optional<std::unique_ptr<SchedulerEntry>> SegmentedGroup::
getMaybeSchedulerEntry(SchedulerRuntimeInfo& runtime_info) {
FUSER_PERF_SCOPE("SegmentedGroup::getMaybeSchedulerEntry");
auto fusion = segmented_fusion_->completeFusion();
auto data_cache = segmented_fusion_->getCachedHeuristicDataFor(this);
FusionSegmentGuard fsg(fusion, getAllInputs(this), getAllOutputs(this));
if (!SchedulerEntry::canSchedule(
heuristic(), fusion, runtime_info, data_cache)) {
return c10::nullopt;
}
return SchedulerEntry::makeEntry(
heuristic(), fusion, runtime_info, data_cache);
}
void SegmentedGroup::resetExprList() {
auto input_group_vec = getAllInputs(this);
std::unordered_set<Val*> input_group_set(
input_group_vec.begin(), input_group_vec.end());
auto expr_set =
DependencyCheck::getAllExprsBetween(input_group_set, getAllOutputs(this));
exprs_ = std::vector<Expr*>(expr_set.begin(), expr_set.end());
}
// Custom merge node passes:
// These passes are added at the beginning or the end of
// the node merging process to direct the heuristics of
// node merging process
//
// Should consider generalization and make a proper interface
// if we have more merge node heuristics like this
//! Translate Welford
//!
//! This pass can be inserted at any stages of segmentation,
//! and it tries to replace welford ops with persistent
//! mean and var ops.
//!
//! The checking of feasibility of persistent kernels
//! is through normalization schedulers. The general idea
//! is to first try to translate on a copy, and see if
//! normalization scheduler is willing to produce a
//! persistent kernel.
//!
//! For complete fusion this pass checks if all the
//! welford ops can be translated simultaneously to
//! produce a persistent normalization kernel and
//! will perform translation if checks pass.
//!
//! For segmented fusion, same check is performed within
//! each segmented group to collect applicable welford ops,
//! and actual translations are performed on the complete
//! fusion after all the checks are done.
class TranslateApplicableWelford {
public:
//! Try translation on each segmented group of
//! given segmented fusion
//! returns true if any welford has been translated
static bool run(
SegmentedFusion* segmented_fusion,
const KernelArgumentHolder& runtime_inputs) {
TranslateApplicableWelford translate_welford(
segmented_fusion, runtime_inputs);
return translate_welford.translated_any_welford_;
}
//! Try translation on complete fusion,
//! returns true if any welford has been translated
static bool run(Fusion* fusion, const KernelArgumentHolder& runtime_inputs) {
TranslateApplicableWelford translate_welford(fusion, runtime_inputs);
return translate_welford.translated_any_welford_;
}
private:
explicit TranslateApplicableWelford(
SegmentedFusion* segmented_fusion,
const KernelArgumentHolder& runtime_inputs);
explicit TranslateApplicableWelford(
Fusion* fusion,
const KernelArgumentHolder& runtime_inputs);
//! Given vector of welford ops from the same fusion,
//! checks if translating all of them result in a
//! persistent normalization kernel by try-runs on
//! a test copy of the original fusion.
//!
//! Supported use cases are either un-segmented fusion,
//! or all the given welfords are within the same
//! segmented group. In the latter case, the segmented
//! group containing all the welford ops needs to be
//! provided.
bool wouldTranslateToPersistent(
const std::vector<WelfordOp*>& orignal_welfords,
SegmentedGroup* group = nullptr);
//! Translate the given welford op into separate
//! average and standard deviation calculation.
void translateSingleWelford(WelfordOp* welford);
//! Utility to test if a translated fusion
//! gives a persistent kernel. Uses normalization
//! scheduler to do the test.
bool isValidPersistentFusion(
Fusion* translated_fusion,
SchedulerRuntimeInfo& runtime_info);
private:
//! Indicates any translation happened.
bool translated_any_welford_ = false;
//! a reference to global fusion runtime inputs
const KernelArgumentHolder& runtime_inputs_;
//! For translation within group only,
//! group boundary at test copy
//! (see wouldTranslateToPersistent implementation )
std::vector<Val*> test_group_inputs_;
std::vector<Val*> test_group_outputs_;
};
TranslateApplicableWelford::TranslateApplicableWelford(
Fusion* fusion,
const KernelArgumentHolder& runtime_inputs)
: runtime_inputs_(runtime_inputs) {
auto exprs = fusion->exprs();
std::vector<WelfordOp*> orignal_welfords(
ir_utils::filterByType<WelfordOp>(exprs).begin(),
ir_utils::filterByType<WelfordOp>(exprs).end());
if (wouldTranslateToPersistent(orignal_welfords)) {
for (auto welford : orignal_welfords) {
translateSingleWelford(welford);
}
translated_any_welford_ = true;
}
}
TranslateApplicableWelford::TranslateApplicableWelford(
SegmentedFusion* segmented_fusion,
const KernelArgumentHolder& runtime_inputs)
: runtime_inputs_(runtime_inputs) {
std::vector<SegmentedGroup*> translated_groups;
std::vector<WelfordOp*> welford_to_translate;
// Find welfords that can be translated in each group
for (auto group : segmented_fusion->groups()) {
std::vector<WelfordOp*> welford_in_group(
ir_utils::filterByType<WelfordOp>(group->exprs()).begin(),
ir_utils::filterByType<WelfordOp>(group->exprs()).end());
if (wouldTranslateToPersistent(welford_in_group, group)) {
translated_groups.push_back(group);
welford_to_translate.insert(
welford_to_translate.end(),
welford_in_group.begin(),
welford_in_group.end());
}
}
// Actually translate the welford ops
// and record all the vals that have been
// replaced by the translation.
for (auto welford : welford_to_translate) {
translateSingleWelford(welford);
}
for (auto translated_group : translated_groups) {
// Update heuristics and expr list of translated groups
translated_group->heuristic_ = ScheduleHeuristic::Persistent;
translated_group->resetExprList();
}
}
bool TranslateApplicableWelford::isValidPersistentFusion(
Fusion* translated_fusion,
SchedulerRuntimeInfo& runtime_info) {
if (!SchedulerEntry::canSchedule(
ScheduleHeuristic::Persistent, translated_fusion, runtime_info)) {
return false;
}
auto scheduler = SchedulerEntry::makeEntry(
ScheduleHeuristic::Persistent, translated_fusion, runtime_info);
return scheduler->reductionParams().persistent_kernel;
}
bool TranslateApplicableWelford::wouldTranslateToPersistent(
const std::vector<WelfordOp*>& orignal_welfords,
SegmentedGroup* group) {
if (orignal_welfords.empty()) {
return false;
}
// Make sure all welford ops come from the same complete fusion
auto fusion = orignal_welfords[0]->fusion();
TORCH_INTERNAL_ASSERT(
std::all_of(
orignal_welfords.begin(),
orignal_welfords.end(),
[fusion](WelfordOp* welford) { return welford->fusion() == fusion; }),
"Welfords in given vector not in the same fusion");
// Make initial `in-progress copy`
auto test_copy = std::make_unique<Fusion>();
auto original_to_test_map = Fusion::copy(fusion, test_copy.get());
std::vector<WelfordOp*> copied_welfords;
std::transform(
orignal_welfords.begin(),
orignal_welfords.end(),
std::back_inserter(copied_welfords),
[&original_to_test_map](auto welford) {
return original_to_test_map.clone(welford);
});
// Copied welfords will be invalidated on translation, but Vals will be
// reused, keep a reference to them.
std::vector<Val*> welford_avgs;
std::vector<Val*> welford_vars;
for (auto welford : copied_welfords) {
welford_avgs.push_back(welford->outAvg());
welford_vars.push_back(welford->outVar());
}
// Translate the welford ops
for (auto welford_to_translate : copied_welfords) {
translateSingleWelford(welford_to_translate);
}
SchedulerRuntimeInfo runtime_info(test_copy.get(), runtime_inputs_, true);
// If we are looking at a segment of fusion,
// we maintain the segmented group boundary,
// one set for in_progress copy and one set
// for `test copy`
if (group != nullptr) {
auto original_inputs = getAllInputs(group);
auto original_outputs = getAllOutputs(group);
test_group_inputs_.clear();
test_group_outputs_.clear();
std::transform(
original_inputs.begin(),
original_inputs.end(),
std::back_inserter(test_group_inputs_),
[&original_to_test_map](Val* in) {
return original_to_test_map.clone(in);
});
std::transform(
original_outputs.begin(),
original_outputs.end(),
std::back_inserter(test_group_outputs_),
[&original_to_test_map](Val* out) {
return original_to_test_map.clone(out);
});
// If only average is used from welford, we should still translate, but we
// might not detect persistence if variance isn't actually used/marked as an
// output in the test.
for (auto outs_i : c10::irange(welford_avgs.size())) {
auto avg = welford_avgs[outs_i];
auto var = welford_vars[outs_i];
if (avg->uses().empty()) {
test_group_outputs_.push_back(avg);
}
if (var->uses().empty()) {
test_group_outputs_.push_back(var);
}
}
// Temporarily localize test copy around
// the group boundary
FusionSegmentGuard fsg(
test_copy.get(), test_group_inputs_, test_group_outputs_);
// Test if the translated copy is persistent
return isValidPersistentFusion(test_copy.get(), runtime_info);
}
// In the case where we work on un-segmented
// fusion, no group boundary logic, just
// translate and test.
return isValidPersistentFusion(test_copy.get(), runtime_info);
}
void TranslateApplicableWelford::translateSingleWelford(WelfordOp* welford) {
auto fusion = welford->fusion();
FusionGuard fg(fusion);
// Only support translation of welford ops that
// doesn't take inputs that are already statistics,
// i.e. an r-factor product.
// This translation works on un-scheduled fusions so
// shouldn't expect to see this.
TORCH_INTERNAL_ASSERT(welford->inN()->isOneInt());
// Grab the inputs and outputs of the welford
auto in_val = welford->in()->as<TensorView>();
auto out_avg = welford->outAvg()->as<TensorView>();
auto out_var = welford->outVar()->as<TensorView>();
auto out_N = welford->outN()->as<TensorView>();
fusion->removeExpr(welford);
// Not safe to use welford anymore
welford = nullptr;
// Create normalization based welford graph
// largely taken from batchnorm cpp benchmark
const auto& in_root =
TensorDomain::noReductions(in_val->getMaybeRFactorDomain());
const auto& out_root = out_avg->getRootDomain();
std::vector<int> red_axes;
TORCH_INTERNAL_ASSERT(
in_root.size() == out_root.size(),
"Invalid root domains of Welford input and output.",
" Input: ",
ir_utils::toString(in_root),
". Output: ",
ir_utils::toString(out_root));
// Create scalar version of the feature element
// counting.
Val* num_features = IrBuilder::create<Double>(1);
std::vector<bool> broadcast_mask(in_root.size(), false);
for (const auto i : c10::irange(in_root.size())) {
if (out_root.at(i)->isReduction()) {
red_axes.push_back(i);
broadcast_mask[i] = true;
num_features = mul(num_features, out_root.at(i)->extent());
}
}
// Build a normalization expression group that is
// equivalent to a welford operation.
auto x_sum = sum(in_val, red_axes);
IrBuilder::create<BinaryOp>(BinaryOpType::Div, out_avg, x_sum, num_features);
// welford.avg may be broadcast. Reuse it if found.
TensorView* x_avg_bcast = nullptr;
for (auto& use_expr : out_avg->uses()) {
if (auto bcast = dynamic_cast<BroadcastOp*>(use_expr)) {
if (bcast->getBroadcastDimFlags() == broadcast_mask) {
// Same broadcast found.
x_avg_bcast = bcast->out()->as<TensorView>();
break;
}
}
}
// x_mean_sub may already exist. Reuse it if found.
TensorView* x_mean_sub = nullptr;
if (x_avg_bcast != nullptr) {
for (auto& use_expr : x_avg_bcast->uses()) {
if (auto bop = dynamic_cast<BinaryOp*>(use_expr)) {
if (bop->getBinaryOpType() == BinaryOpType::Sub) {
if (bop->lhs() == in_val && bop->rhs() == x_avg_bcast) {
x_mean_sub = bop->out()->as<TensorView>();
}
}
}
}
}
if (x_avg_bcast == nullptr) {
x_avg_bcast = broadcast(out_avg, broadcast_mask);
}
if (x_mean_sub == nullptr) {
x_mean_sub = sub(in_val, x_avg_bcast);
}
auto x_mean_sub_pow = mul(x_mean_sub, x_mean_sub);
IrBuilder::create<ReductionOp>(
BinaryOpType::Add,
IrBuilder::create<Double>(0.0),
out_var,
x_mean_sub_pow);
IrBuilder::create<UnaryOp>(UnaryOpType::Set, out_N, num_features);
// out_avg, out_N are now outputs of a pointwise ops and we
// need to clear out its reduction domains.
out_avg->clearReductionIterDomains();
out_N->clearReductionIterDomains();
}
bool SegmentCandidateFinder::TranslateWelfordInFusion(
Fusion* fusion,
const KernelArgumentHolder& runtime_inputs) {
return TranslateApplicableWelford::run(fusion, runtime_inputs);
}
//! CombineReductions:
//! This pass works before the main merge node process
//! It identifies reduction operations that can be combined
//! together to form a normalization kernel.
//! Two reductions are considered the same type if they have
//! the same root domain length, and the reduction axis are the same.
//! This pass tries to merge nodes with the same reduction type based
//! on the graph structure.
class CombineReductions {
using GroupVec = std::vector<SegmentedGroup*>;
class ReductionSignature;
public:
static void run(SegmentCandidateFinder* segment_candidate_finder) {
CombineReductions combine_reductions(segment_candidate_finder);
}
static bool shouldRun(SegmentCandidateFinder* segment_candidate_finder);
private:
CombineReductions(SegmentCandidateFinder* segment_candidate_finder)
: segment_candidate_finder_(segment_candidate_finder) {
// Run pass over the segments
// Collect segmented groups with reductions in them,
// Assuming running before any merge happened, so
// should see exactly one non-trivial reduction in each group
for (auto group : segment_candidate_finder_->groups()) {
if (auto rop_signature =
ReductionSignature::makeReductionSignature(group)) {
// Ignore pure squeeze operations in this analysis
if (!rop_signature->hasNonTrivialReduction()) {
continue;
}
groups_with_reductions_.push_back(group);
// Check if this reduction signature is one that we have seen before
auto signature_match_it = std::find_if(
known_reduction_signatures_.begin(),
known_reduction_signatures_.end(),
[&rop_signature](auto& know_signature) {
return know_signature->sameAs(rop_signature.get());
});
// Unmatched: Create a new signature entry if not known
if (signature_match_it == known_reduction_signatures_.end()) {
group_reduction_signature_map_[group] = rop_signature.get();
known_reduction_signatures_.emplace_back(std::move(rop_signature));
} else {
// Matched known signature: Mark that this groups belongs to know
// signature
group_reduction_signature_map_[group] = signature_match_it->get();
}
}
}
// Keep trying to merge groups with compatible reductions and compatible
// paths
// until no more merge opportunity can be identified
bool merged_groups = true;
while (merged_groups) {
merged_groups = false;
// Merge one pair of reduction groups at a time, and need
// the pass to update dependency info along the way to avoid cycles
for (const auto first_group_index :
c10::irange(groups_with_reductions_.size())) {
if (merged_groups) {
// Need to break and re-enter this loop because
// groups_with_reductions_ will be updated
break;
}
// Select one of the group to merge and get its reduction signature
auto first_group = groups_with_reductions_[first_group_index];
auto first_group_signature =
group_reduction_signature_map_.at(first_group);
for (const auto second_group_index : c10::irange(
first_group_index + 1, groups_with_reductions_.size())) {
if (merged_groups) {
// Need to break and re-enter this loop because
// groups_with_reductions_ will be updated
break;
}
auto second_group = groups_with_reductions_[second_group_index];
auto second_group_signature =
group_reduction_signature_map_.at(second_group);
// Cannot merge if their signatures are not the same
if (!first_group_signature->sameAs(second_group_signature)) {
continue;
}
// first try a vertical merge
merged_groups =
verticalReductionMerge(first_group, second_group) != nullptr;
if (!merged_groups) {
// vertical merge didn't happen, try a horizontal merge
merged_groups =
horizontalReductionMerge(first_group, second_group) != nullptr;
}
}
}
}
}
//! Merge a vertical pair of producers and consumers,
//! the resulting group will include all nodes that are
//! also consumers of producer and producers of consumer,
//! i.e. values between the given producer-consumer pair.
//! Can be proven that:
//! 1. Including all of these nodes will be cycle-free
//! 2. These nodes are the minimal set of nodes to include if
//! for producer-consumer pair to be in the same group cycle-free
//!
//! Returns nullptr if such merge cannot be achieved.
//! Reasons for not merging will include:
//! 1. Given groups do not form producer-consumer pair
//! 2. Merge will create cycle on the graph
//! 3. The merged joined group cannot be scheduled
SegmentedGroup* verticalReductionMerge(
SegmentedGroup* first_group,
SegmentedGroup* second_group) {
// This is part of ReductionCombine pass, and we should only call this
// function on a pair of reduction/normalization groups
TORCH_INTERNAL_ASSERT(
group_reduction_signature_map_.at(first_group)
->sameAs(group_reduction_signature_map_.at(second_group)));
TORCH_INTERNAL_ASSERT(first_group != second_group);
// Get the group dependency data from segment finder
auto dependency_analysis = segment_candidate_finder_->getGroupDependency();
// Check producer-consumer relationship
SegmentedGroup* producer = nullptr;
SegmentedGroup* consumer = nullptr;
if (dependency_analysis->isConsumerOf(first_group, second_group)) {
producer = second_group;
consumer = first_group;
} else if (dependency_analysis->isProducerOf(first_group, second_group)) {
producer = first_group;
consumer = second_group;
} else {
// Given groups aren't producer-consumer pair, won't merge
return nullptr;
}
// Collect all groups that we need to merge along with the producer and
// consumer
auto all_groups_to_merge =
getValidMinVerticalMergedGroupSet(producer, consumer);
if (all_groups_to_merge.empty()) {
// The vertical paths from producer to consumer have in-compatible
// reductions
// so this vertical merge cannot be done.
return nullptr;
}
// TODO: this step would not be deterministic, because valuesBetween isn't
// could fix this by a topological order
std::vector<SegmentedGroup*> all_groups_to_merge_vec(
all_groups_to_merge.begin(), all_groups_to_merge.end());
// Final sanity check: the merged group can actually be scheduled
Fusion* fusion =
segment_candidate_finder_->segmented_fusion_->completeFusion();
if (!tryMerge(
fusion,
segment_candidate_finder_->runtimeInfo(),
all_groups_to_merge_vec)) {
return nullptr;
}
// Merge this group
auto joined_group =
segment_candidate_finder_->mergeAllGivenGroups(all_groups_to_merge_vec);
// Update dependency analysis
dependency_analysis->mergeGroups(all_groups_to_merge, joined_group);
// Update the reduction groups that are merged
groups_with_reductions_.push_back(joined_group);
group_reduction_signature_map_[joined_group] =
group_reduction_signature_map_.at(first_group);
groups_with_reductions_.erase(
std::remove_if(
groups_with_reductions_.begin(),
groups_with_reductions_.end(),
[&all_groups_to_merge](SegmentedGroup* group) {
return all_groups_to_merge.has(group);
}),
groups_with_reductions_.end());
return joined_group;
}
//! Horizontal reduction merging:
//! merge two horizontal groups with reduction expressions to make a joined
//! normalization group. A pair of horizontal groups are ones that are not
//! a producer-consumer pair, and share either a common producer or a common
//! consumer.
//!
//! TODO: This implementation looks at common producers only, since common
//! consumers are not computed easily with current dependency analysis.
SegmentedGroup* horizontalReductionMerge(
SegmentedGroup* first_group,
SegmentedGroup* second_group) {
// This is part of ReductionCombine pass, and we should only call this
// function on a pair of
// reduction/normalization groups
TORCH_INTERNAL_ASSERT(
group_reduction_signature_map_.at(first_group)
->sameAs(group_reduction_signature_map_.at(second_group)));
TORCH_INTERNAL_ASSERT(first_group != second_group);
auto dependency_analysis = segment_candidate_finder_->getGroupDependency();
// Check that the two groups are not producer-consumer's
if (dependency_analysis->isConsumerOf(first_group, second_group) ||
dependency_analysis->isProducerOf(first_group, second_group)) {
// This merge pass will not handle producer-consumer pairs
return nullptr;
}
// Get common producers of the two group
auto common_producers_set =
dependency_analysis->getCommonProducersOf({first_group, second_group});
if (common_producers_set.empty()) {
// The given pair doesn't have a common producer.
// Either they have a common consumer, which we don't handle for now,
// or maybe the two given groups are not connected.
return nullptr;
}
// We are looking for a very specific patterns here. The cases that this
// pattern will not capture are ones that reductions of different
// signatures are so interleaved that we cannot find a clear cut as
// explained below, without graph rewriting. Some graph re-writing on the
// segmented groups level could provide extra merging opportunities for
// free, which could be part of next step.
//
// The specific pattern we look for contains a common producer P with
// immediate consumers C1, C2 such that all paths from C1 to first_group and
// all paths from C2 to second_group won't hit a reduction with a different
// signature.
// Topologically sort the common producers and start with the topologically
// minimal,
// i.e. one that are closest to the two groups. This will cut the search
// space.
std::vector<SegmentedGroup*> common_producers;
for (auto producer : common_producers_set) {
if (!std::any_of(
common_producers_set.begin(),
common_producers_set.end(),
[dependency_analysis, producer](SegmentedGroup* group) {
return dependency_analysis->isProducerOf(producer, group);
})) {
common_producers.push_back(producer);
}
}
// Visit the common producers found, starting from topologically minimum,
// i.e. the ones closer to the groups
for (auto common_producer : common_producers) {
// Visit this common producer
// Use a double loop in case the schedulers like some patterns
// better than the other
for (auto first_consumer_edge : common_producer->consumer_edges) {
auto producer_of_first_group = first_consumer_edge->to;
auto to_merge_with_first_group = getValidMinVerticalMergedGroupSet(
producer_of_first_group, first_group);
if (to_merge_with_first_group.empty()) {
// There's no valid merge path from this consumer of common producer,
// either due to a conflicting reduction signature, or simply there's
// no path to first group
continue;
}
TORCH_INTERNAL_ASSERT(!dependency_analysis->isProducerOf(
producer_of_first_group, second_group));
for (auto second_consumer_edge : common_producer->consumer_edges) {
auto producer_of_second_group = second_consumer_edge->to;
auto to_merge_with_second_group = getValidMinVerticalMergedGroupSet(
producer_of_second_group, second_group);
if (to_merge_with_second_group.empty()) {
// There's no valid merge path from this consumer of common
// producer,
// either due to a conflicting reduction signature, or simply
// there's no path to second group
continue;
}
TORCH_INTERNAL_ASSERT(!dependency_analysis->isProducerOf(
producer_of_second_group, first_group));
// At this point we should have a pair of valid candidates,final check
// is to see if the combined group
// can be scheduled by schedulers
// merge the two paths and de-duplicate,
// re-using container here with to_merge_with_second_group
auto& groups_to_merge_set = to_merge_with_second_group;
groups_to_merge_set.insert(
to_merge_with_first_group.begin(),
to_merge_with_first_group.end());
std::vector<SegmentedGroup*> groups_to_merge_vec(
groups_to_merge_set.begin(), groups_to_merge_set.end());
Fusion* fusion =
segment_candidate_finder_->segmented_fusion_->completeFusion();
if (tryMerge(
fusion,
segment_candidate_finder_->runtimeInfo(),
groups_to_merge_vec)) {
// Found a valid horizontal merge, want to proceed with merging here
auto joined_group = segment_candidate_finder_->mergeAllGivenGroups(
groups_to_merge_vec);
dependency_analysis->mergeGroups(groups_to_merge_set, joined_group);
groups_with_reductions_.push_back(joined_group);
group_reduction_signature_map_[joined_group] =
group_reduction_signature_map_.at(first_group);
groups_with_reductions_.erase(
std::remove_if(
groups_with_reductions_.begin(),
groups_with_reductions_.end(),
[&groups_to_merge_set](SegmentedGroup* group) {
return groups_to_merge_set.has(group);
}),
groups_with_reductions_.end());
return joined_group;
}
}
}
}
// Searched all possibilities and there is no valid horizontal merge pattern
// found.
return nullptr;
}
//! This is a utility method that is used in both vertical merging and
//! horizontal merging.
//! It is used to identify the smallest set of groups to merge vertically
//! involving the
//! two given nodes.
//! Given a pair of nodes this utility distinguishes 3 cases:
//! 1. if maybe_producer is the same as maybe_consumer, then returns
//! {maybe_producer}
//! 2. if maybe_producer is actually a producer of consumer, returns a set
//! containing
//! the smallest merged group that would contain producer and consumer and
//! would not introduce a cycle. Returns empty set if such group has
//! a conflicting reduction signature.
//! 3. returns empty set if neither conditions above apply.
GroupSet getValidMinVerticalMergedGroupSet(
SegmentedGroup* maybe_producer,
SegmentedGroup* maybe_consumer) {
auto dependency_analysis = segment_candidate_finder_->getGroupDependency();
if (maybe_consumer == maybe_producer) {
// maybe producer is the same as maybe_consumer
return {maybe_consumer};
} else if (dependency_analysis->isConsumerOf(
maybe_consumer, maybe_producer)) {
auto groups_to_check =
dependency_analysis->valuesBetween(maybe_producer, maybe_consumer);
groups_to_check.pushBack(maybe_producer);
groups_to_check.pushBack(maybe_consumer);
// Check that either no group has a reduction or all groups have the same
// reduction signature
ReductionSignature* reduction_signature = nullptr;
// Iterate through the minimal group set to see if any conflicts
for (auto group : groups_to_check) {
// Check that this group does not involve a output edge contraction
// This pass is intended to be a pre-merging pass. Since contracting an
// output edge does not generate much saving of global memory access
// we want to postpone merging these edges till the very final pass
for (auto producer_edge_of_group : group->producer_edges) {
if (groups_to_check.has(producer_edge_of_group->from) &&
producer_edge_of_group->val->isFusionOutput()) {
return {};
}
}
for (auto consumer_edge_of_group : group->consumer_edges) {
if (groups_to_check.has(consumer_edge_of_group->to) &&
consumer_edge_of_group->val->isFusionOutput()) {
return {};
}
}
// Check that this group does not have a conflicting reduction signature
if (group_reduction_signature_map_.count(group)) {
if (reduction_signature != nullptr) {
if (!group_reduction_signature_map_.at(group)->sameAs(
reduction_signature)) {
// Found a conflict in reduction signature, cannot do a vertical
// merge
return {};
}
} else {
reduction_signature = group_reduction_signature_map_.at(group);
}
}
}
return groups_to_check;
}
// maybe producer is not a producer of maybe consumer
return {};
}
private:
SegmentCandidateFinder* segment_candidate_finder_;
// Wrapper class for reduction type
// Assuming there wouldn't be too many of them
// so won't need to create a hash
// TODO:
// Want to reconsider this for transpose operations,
// need refactoring to handle reduction fusions across a transpose operation
class ReductionSignature {
public:
bool sameAs(const ReductionSignature* reduction_signature) {
if (reduction_signature == this) {
return true;
}
if (root_domain_size_ != reduction_signature->root_domain_size_ ||
has_nontrivial_reduction_ !=
reduction_signature->has_nontrivial_reduction_ ||
reduction_axes_.size() !=
reduction_signature->reduction_axes_.size()) {
return false;
}
for (const auto i : c10::irange(reduction_axes_.size())) {
if (reduction_axes_[i] != reduction_signature->reduction_axes_[i]) {
return false;
}
}
return true;
}
bool sameAs(const ReductionSignature& reduction_signature) {
return sameAs(&reduction_signature);
}
bool hasNonTrivialReduction() const {
return has_nontrivial_reduction_;
}
static std::unique_ptr<ReductionSignature> makeReductionSignature(
SegmentedGroup* group) {
std::unique_ptr<ReductionSignature> signature = nullptr;
for (auto expr : group->exprs()) {
std::unique_ptr<ReductionSignature> new_signature = nullptr;
if (auto rop = dynamic_cast<ReductionOp*>(expr)) {
new_signature = std::make_unique<ReductionSignature>(rop);
}
if (auto wop = dynamic_cast<WelfordOp*>(expr)) {
new_signature = std::make_unique<ReductionSignature>(wop);
}
if (new_signature != nullptr) {
TORCH_INTERNAL_ASSERT(
signature == nullptr || !signature->has_nontrivial_reduction_ ||
!new_signature->has_nontrivial_reduction_ ||
signature->sameAs(new_signature.get()),
"Conflicting signature found in this group");
signature = std::move(new_signature);
}
}
return signature;
}
template <typename REDUCTION = ReductionOp>
ReductionSignature(REDUCTION* rop) {
auto out_tv = rop->out()->template as<TensorView>();
has_nontrivial_reduction_ = out_tv->hasReduction();
TORCH_INTERNAL_ASSERT(out_tv != nullptr);
auto& root_domain = out_tv->getRootDomain();
root_domain_size_ = root_domain.size();
// Trivial reduction i.e. squeeze is tricky here:
// this pass doesn't want to touch any pure squeeze, i.e.:
// T0 [R(1), I(i0), I(i1)]
// meanwhile, for two reductions having
// squeezes, we do require they have squeeze at the
// same position so that they can be easily root domain mapped
// So T0 and T1 are the same signature,
// T0 [R(1), R(i0), I(i1)]
// T1 [R(1), R(i0), I(i1)]
// but T2 and T3 below are not
// T0 [R(1), R(1), R(i0), I(i1)]
// T1 [R(1), R(i0), I(i1)]
for (const auto i : c10::irange(root_domain_size_)) {
if (root_domain[i]->isReduction()) {
reduction_axes_.push_back(i);
}
if (!root_domain[i]->isTrivialReduction()) {
has_nontrivial_reduction_ = true;
}
}
}
private:
size_t root_domain_size_ = 0;
std::vector<int> reduction_axes_;
bool has_nontrivial_reduction_ = false;
};
//! Keeps track of groups with reduction expressions,
//! using a vector here to maintain a deterministic ordering
GroupVec groups_with_reductions_;
//! Maps groups to their corresponding signature type
std::unordered_map<SegmentedGroup*, ReductionSignature*>
group_reduction_signature_map_;
//! Maintains all reduction signatures seen in the segmented fusion
std::vector<std::unique_ptr<ReductionSignature>> known_reduction_signatures_;
};
//! This is to be checked
bool CombineReductions::shouldRun(
SegmentCandidateFinder* segment_candidate_finder) {
std::vector<std::unique_ptr<ReductionSignature>> known_reductions;
// Iterate over group segments we have before segment candidate finder
// tries to merge any groups
for (auto group : segment_candidate_finder->groups()) {
if (auto reduction_signature =
ReductionSignature::makeReductionSignature(group)) {
if (reduction_signature->hasNonTrivialReduction() &&
std::any_of(
known_reductions.begin(),
known_reductions.end(),
[&reduction_signature](auto& know_signature) {
return know_signature->sameAs(reduction_signature.get());
})) {
// Found two reductions with the same signature, run pass
return true;
}
known_reductions.emplace_back(std::move(reduction_signature));
}
}
return false;
}
namespace {
//! Returns true if group1 and group2 are an immediate producer-consumer pair.
bool areDirectlyConnected(SegmentedGroup* group1, SegmentedGroup* group2) {
// Check if group1 is a immediate consumer of group2
if (std::any_of(
group1->producer_edges.begin(),
group1->producer_edges.end(),
[group2](SegmentedEdge* edge) { return edge->from == group2; })) {
return true;
}
// Check if group1 is a immediate producer of group2
if (std::any_of(
group1->consumer_edges.begin(),
group1->consumer_edges.end(),
[group2](SegmentedEdge* edge) { return edge->to == group2; })) {
return true;
}
return false;
}
} // namespace
bool SegmentCandidateFinder::codeGenSupportedMerge(
SegmentedGroup* group1,
SegmentedGroup* group2) {
TORCH_INTERNAL_ASSERT(
areDirectlyConnected(group1, group2),
"only support testing immediate producer-consumer groups");
Fusion* fusion = segmented_fusion_->completeFusion();
auto h = tryMerge(fusion, runtime_info_, group1, group2);
return h.has_value();
}
// TODO: consider caching the heuristics value so tryMerge doesn't have to be
// called twice
ScheduleHeuristic SegmentCandidateFinder::deriveHeuristic(
SegmentedGroup* group) {
Fusion* fusion = segmented_fusion_->completeFusion();
auto h = tryMerge(fusion, runtime_info_, group);
TORCH_INTERNAL_ASSERT(h.has_value());
return h.value();
}
SegmentCandidateFinder::SegmentCandidateFinder(
std::unique_ptr<Fusion> fusion,
const KernelArgumentHolder& inputs,
SegmentCandidateFinderOptions options)
: options_(options),
runtime_info_(fusion.get(), inputs, true),
runtime_inputs_(inputs) {
segmented_fusion_ = std::make_unique<SegmentedFusion>(std::move(fusion));
findSegments();
}
void SegmentCandidateFinder::findSegments() {
FUSER_PERF_SCOPE("Finding valid fusion segment solutions");
// TODO: Make traversal items local to this function.
// Need this for initialization of the DAG that is process
std::unordered_map<Expr*, SegmentedGroup*> expr2group;
// Keep track of complete fusion input use
std::unordered_map<Val*, SegmentedGroup*> input2group;
// Initialize DAG, convert each expr to a segment group
auto exprs = completeFusion()->exprs();
for (auto expr : exprs) {
if (!ir_utils::isScalarOp(expr)) {
auto new_group = segmented_fusion_->newGroup(expr);
expr2group.insert(std::make_pair(expr, new_group));
}
}
// Find all expresions that are simply unary ops from inputs. Don't segment
// these as they're easy targets for recomputation. Only go until the first
// expression that has multiple uses. We could continue, but the logic of
// hacking the fusion "inputs" logic gets a bit more complicated.
// Expressions to exclude from segmentation because they're just derived from
// unary ops on inputs to the complete fusion
VectorOfUniqueEntries<Expr*> excluded_inp_unary_exprs;
// "Terminating" outputs from the excluded input unary exprs, these will be
// treated as complete fusion inputs.
VectorOfUniqueEntries<Val*> forwarded_inputs;
{
std::deque<Expr*> to_visit;
for (auto inp : completeFusion()->inputs()) {
if (std::all_of(inp->uses().begin(), inp->uses().end(), [](Expr* expr) {
return expr->getExprType().value() == ExprType::UnaryOp;
})) {
to_visit.insert(to_visit.end(), inp->uses().begin(), inp->uses().end());
}
}
while (!to_visit.empty()) {
auto expr = to_visit.front();
to_visit.pop_front();
if (expr->getExprType().value() != ExprType::UnaryOp ||
expr->output(0)->isFusionOutput()) {
continue;
}
if (expr->output(0)->uses().size() > 1) {
excluded_inp_unary_exprs.pushBack(expr);
forwarded_inputs.pushBack(expr->output(0));
continue;
}
to_visit.emplace_back(expr->output(0)->uses()[0]);
}
}
auto excluded_fusion_inputs = IterVisitor::getInputsTo(
{forwarded_inputs.begin(), forwarded_inputs.end()});
// List of vals to treat as complete fusion inputs for segmentation
auto forwarded_fusion_inputs = completeFusion()->inputs();
forwarded_fusion_inputs.erase(
std::remove_if(
forwarded_fusion_inputs.begin(),
forwarded_fusion_inputs.end(),
[&excluded_fusion_inputs](Val* inp) {
return std::find(
excluded_fusion_inputs.begin(),
excluded_fusion_inputs.end(),
inp) != excluded_fusion_inputs.end();
}),
forwarded_fusion_inputs.end());
forwarded_fusion_inputs.insert(
forwarded_fusion_inputs.end(),
forwarded_inputs.begin(),
forwarded_inputs.end());
auto isFusionInput = [&forwarded_fusion_inputs](Val* val) -> bool {
return std::find(
forwarded_fusion_inputs.begin(),
forwarded_fusion_inputs.end(),
val) != forwarded_fusion_inputs.end();
};
// Insert auxiliary groups to use group dependency on inputs as well
// TODO: these groups should never merged into any other groups, but are
// just there to support the dependency analysis. Later re-factor should
// avoid introducing them explicitly on the segmented fusion.
for (auto input : forwarded_fusion_inputs) {
// These groups are used to represent input as a common
// producer in horizontal merges, and should never be
// seen as a candidate for vertical merge
auto new_group = segmented_fusion_->newGroup();
input2group.insert({input, new_group});
}
// Create edges between the Exprs. Mark inputs and outputs of the fusion.
for (auto expr : exprs) {
// No group created for scalar ops
if (ir_utils::isScalarOp(expr)) {
continue;
}
if (excluded_inp_unary_exprs.has(expr)) {
continue;
}
auto expr_group = expr2group.at(expr);
for (auto inp : expr->inputs()) {
if (isFusionInput(inp)) {
expr_group->input_vals.push_back(inp);
auto aux_group = input2group.at(inp);
auto new_edge = segmented_fusion_->newEdge(aux_group, expr_group, inp);
expr_group->producer_edges.push_back(new_edge);
aux_group->consumer_edges.push_back(new_edge);
continue;
}
// Could be something like a constant scalar, definition is nullptr, but
// isn't an "input" to the fusion. At least not one provided by an
// external source.
if (inp->definition() == nullptr) {
continue;
}
// No group created for scalar ops since they may need to be duplicated
// to avoid scalar edges. They are handled in resolveScalarsInGroup
if (inp->isScalar()) {
continue;
}
auto def_group = expr2group.at(inp->definition());
auto new_edge = segmented_fusion_->newEdge(def_group, expr_group, inp);
expr_group->producer_edges.push_back(new_edge);
def_group->consumer_edges.push_back(new_edge);
}
for (auto out : expr->outputs()) {
if (out->isFusionOutput()) {
expr_group->output_vals.push_back(out);
}
}
}
auto reduction_ops = ir_utils::getReductionOps(
segmented_fusion_->completeFusion(), true /* ignore_trivial */);
auto welford_ops = ir_utils::filterByType<WelfordOp>(reduction_ops);
if (options_.run_translate_welford &&
(welford_ops.begin() != welford_ops.end())) {
TranslateApplicableWelford::run(segmented_fusion_.get(), runtime_inputs_);
}
for (auto group : groups()) {
if (!group->outputs().empty()) {
// Set heuristics in case single reduction kernels were left out
group->setHeuristic(deriveHeuristic(group));
}
}
// Remove all scalar edges since they do not represent actual
// dependency among segmented groups.
removeScalarEdges();
// Run pre-merge heuristics
if (options_.run_combine_reductions && CombineReductions::shouldRun(this)) {
CombineReductions::run(this);
}
// All merges will be vertical beyond this point for now, so
// we can remove the input auxiliary groups. Should make the vertical
// merges avoid auxiliary group once we start general horizontal merges
std::unordered_set<SegmentedGroup*> input_groups;
for (auto input : forwarded_fusion_inputs) {
input_groups.insert(input2group.at(input));
}
eraseGroups(input_groups);
if (options_.run_herrmann_merge) {
bool merged_nodes = true;
// Initial merge iteration
while (merged_nodes) {
// Reset stateful traversal details in SegmentedGroups
resetTraversal();
resetLevels();
for (auto& group : groups()) {
if (group->merged_) {
continue;
}
auto candidates = group->getMergeCandidates();
if (candidates.empty()) {
continue;
}
auto candidate_it = candidates.begin();
while (candidate_it != candidates.end() &&
!codeGenSupportedMerge(group, candidate_it->group)) {
candidate_it++;
}
if (candidate_it == candidates.end()) {
continue;
}
to_merge_.emplace_back(group);
to_merge_.emplace_back(candidate_it->group);
group->merged_ = true;
group->merge_with_ = candidate_it->group;
group->merge_through_ = candidate_it->edge;
candidate_it->group->merged_ = true;
candidate_it->group->merge_with_ = group;
candidate_it->group->merge_through_ = candidate_it->edge;
}
if (to_merge_.empty()) {
merged_nodes = false;
}
mergeNodes();
}
}
if (options_.run_final_merge) {
// TODO: consider interleaving herrmman merge and bruteforce merge, as
// bruteforce merge can introduce opportunities for more herrmann merge
finalMerge();
}
finalize();
if (isDebugDumpEnabled(DebugDumpOption::FusionSegmentsDrawing)) {
segmented_fusion_->draw();
}
}
void SegmentCandidateFinder::finalMerge() {
auto producer_check = getGroupDependency();
bool merged_nodes = true;
while (merged_nodes) {
// Iterate all groups and check if a group
// can merge with one of its consumers
for (auto producer_group : groups()) {
// Populate consumers and their corresponding consumer edges
std::unordered_map<SegmentedGroup*, SegmentedEdge*> consumer_edge_map;
std::vector<SegmentedGroup*> all_consumers_of_producer_group;
for (auto consumer : producer_group->consumer_edges) {
// Since this is the last fusion pass, we can enable fusion through
// outputs. Priority of this was decreased because if the only
// connection between groups is an output node, best case scenario we
// can save a single pass in memory. Where if it wasn't an output it
// would be two passes.
consumer_edge_map.insert({consumer->to, consumer});
}
// Populate all consumers from the map to avoid duplicate
std::transform(
consumer_edge_map.begin(),
consumer_edge_map.end(),
std::back_inserter(all_consumers_of_producer_group),
[](auto& it) { return it.first; });
for (auto consumer : all_consumers_of_producer_group) {
if (!producer_check->isConsumerOfAny(
consumer, all_consumers_of_producer_group) &&
codeGenSupportedMerge(producer_group, consumer)) {
to_merge_.emplace_back(producer_group);
to_merge_.emplace_back(consumer);
producer_group->merged_ = true;
producer_group->merge_with_ = consumer;
producer_group->merge_through_ = consumer_edge_map.at(consumer);
consumer->merged_ = true;
consumer->merge_with_ = producer_group;
consumer->merge_through_ = producer_group->merge_through_;
break;
}
}
// Only want to merge one pair at a time so break if found any
if (!to_merge_.empty()) {
break;
}
}
if (to_merge_.empty()) {
merged_nodes = false;
} else {
TORCH_INTERNAL_ASSERT(
to_merge_.size() == 2, "merging more than 2 nodes in final iter");
mergeNodes();
}
}
}
void SegmentCandidateFinder::resolveScalarsInGroup(SegmentedGroup* group) {
std::vector<Val*> to_visit;
std::unordered_set<Val*> visited;
// Collect all scalar uses in the group
for (auto expr : group->exprs()) {
for (auto input : expr->inputs()) {
if (input->isScalar()) {
to_visit.push_back(input);
}
}
}
// Keep track of composite fusion inputs used in this group
std::unordered_set<Val*> input_set(
group->input_vals.begin(), group->input_vals.end());
// Record and append all missing scalar exprs at the end.
std::vector<Expr*> exprs_to_add;
// Do a stack based traversal of the scalar ops to avoid
// combinatorial duplication of exprs.
while (!to_visit.empty()) {
auto stack_top_val = to_visit.back();
if (visited.count(stack_top_val)) {
to_visit.pop_back();
} else if (stack_top_val->definition() == nullptr) {
// A scalar without def can be a scalar, a tensor dim,
// or a composite fusion input
// The first two cases are handled in finalize(),
// the last case needs to add new input_val to this group.
visited.insert(stack_top_val);
// If this is a composite fusion scalar input, make sure this group has it
if (stack_top_val->isFusionInput() && !input_set.count(stack_top_val)) {
group->input_vals.push_back(stack_top_val);
input_set.insert(stack_top_val);
}
to_visit.pop_back();
} else {
// A scalar with an actual definition
auto definition_expr = stack_top_val->definition();
bool all_inputs_visited = true;
// If any of the inputs are not visited, visit them first
for (auto input : definition_expr->inputs()) {
if (!visited.count(input)) {
all_inputs_visited = false;
to_visit.push_back(input);
}
}
// This node is ready to be visited
if (all_inputs_visited) {
// Collect the defining expr to insert into group
exprs_to_add.push_back(definition_expr);
visited.insert(stack_top_val);
to_visit.pop_back();
}
}
}
// Add all the defining expr to the group
for (auto expr : exprs_to_add) {
group->exprs_.push_back(expr);
}
}
void SegmentCandidateFinder::resolveInputsInGroup(SegmentedGroup* group) {
std::vector<Val*> to_visit;
std::unordered_set<Val*> visited;
// Collect all inputs to group that are not inputs of fusion
for (auto input : group->inputs()) {
if (!input->isFusionInput()) {
to_visit.push_back(input);
}
}
// Reset group inputs to real inputs
group->input_vals = IterVisitor::getInputsTo(group->inputs());
// Grab all expressions needed to produce to_visit
auto input_exprs = StmtSort::getExprs(completeFusion(), to_visit);
// Insert those expressions at the beginning of the group
group->exprs_.insert(
group->exprs_.begin(), input_exprs.begin(), input_exprs.end());
}
void SegmentCandidateFinder::removeScalarEdges() {
// Remove all scalar edges between groups
// They may have been created by welford
// translation.
// we will not need them after scalar
// resolution
auto remove_scalar_edges_from_vec = [](std::vector<SegmentedEdge*>& edges) {
edges.erase(
std::remove_if(
edges.begin(),
edges.end(),
[](SegmentedEdge* segmented_edge) {
return segmented_edge->val->isScalar();
}),
edges.end());
};
remove_scalar_edges_from_vec(edges());
for (auto group : groups()) {
remove_scalar_edges_from_vec(group->producer_edges);
remove_scalar_edges_from_vec(group->consumer_edges);
}
}
void SegmentCandidateFinder::finalize() {
// Remove unconnected groups
groups().erase(
std::remove_if(
groups().begin(),
groups().end(),
[](SegmentedGroup* sg) { return !sg->isConnected(); }),
groups().end());
// Add group labeling
int i = 0;
for (auto it = groups().begin(); it != groups().end(); it++, i++) {
deDuplicateScalarExprs((*it)->exprs_);
(*it)->setID(i);
}
// TODO: too many things are currently abstracted under the term
// finalize. Need to re-structure in a follow up.
// Finalize connections between segmented groups
segmented_fusion_->finalize();
// Resolve all the scalar expressions needed in each group
for (auto group : segmented_fusion_->groups()) {
resolveScalarsInGroup(group);
}
// Resolve all the scalar expressions needed in each group
for (auto group : segmented_fusion_->groups()) {
resolveInputsInGroup(group);
}
// Finalize each group, fill in the missing inputs, i.e. tensor dims.
for (auto g : groups()) {
g->setHeuristic(deriveHeuristic(g));
g->finalize();
}
}
GroupDependencyAnalysis* SegmentCandidateFinder::getGroupDependency() {
if (!group_dependency_) {
group_dependency_ =
std::make_unique<GroupDependencyAnalysis>(segmented_fusion_.get());
}
return group_dependency_->as<GroupDependencyAnalysis>();
}
FusionKernelRuntime::SchedulerEntryPtr SegmentedFusion::
makeInitialSchedulerEntry(
SegmentedGroup* sg,
SchedulerRuntimeInfo& runtime_info) {
auto local_fusion = completeFusion();
FusionSegmentGuard fsg(local_fusion, getAllInputs(sg), getAllOutputs(sg));
// This will be the first time each group is scheduled. So we'd want to
// construct the cache data here.
auto data_cache_ptr = std::make_unique<HeuristicSummary>(
local_fusion, sg->heuristic(), runtime_info);
auto data_cache = data_cache_ptr.get();
setCachedHeuristicDataFor(sg, std::move(data_cache_ptr));
return SchedulerEntry::makeEntry(
sg->heuristic(), local_fusion, runtime_info, data_cache);
}
std::unique_ptr<FusionHeuristics> SegmentedFusion::makeInitialHeuristics(
const KernelArgumentHolder& inputs) {
auto ret = std::make_unique<FusionHeuristics>();
SchedulerRuntimeInfo runtime_info(completeFusion(), inputs, true);
for (auto g : groups()) {
ret->emplaceBack(makeInitialSchedulerEntry(g, runtime_info));
}
return ret;
}
HeuristicSummary* SegmentedFusion::getCachedHeuristicDataFor(
SegmentedGroup* group) {
auto data_it = heuristic_summary_cache_.find(group);
if (data_it == heuristic_summary_cache_.end()) {
return nullptr;
}
return data_it->second.get();
}
void SegmentedFusion::setCachedHeuristicDataFor(
SegmentedGroup* group,
std::unique_ptr<HeuristicSummary> data) {
TORCH_INTERNAL_ASSERT(!heuristic_summary_cache_.count(group));
heuristic_summary_cache_[group] = std::move(data);
}
namespace {
//! A thin traversal class that collects all the tensorviews
//! that could cast to fp16 or bf16 if they were segmented edges.
//! The selected values are currently defined as all the
//! tensorviews that
//! 1. are not complete fusion input/output,
//! 2. have a use chain that ends with a fp16
//! complete fusion output
//! 3. are fp32 datatype
class ForceHalfAnnotation : public IterVisitor {
public:
static std::unordered_set<TensorView*> getFP16AnnotatedSet(Fusion* fusion) {
ForceHalfAnnotation annotation;
std::vector<Val*> fp16_outputs;
auto& cast_to_type = annotation.cast_to_type_;
auto other_half_type =
cast_to_type == DataType::Half ? DataType::BFloat16 : DataType::Half;
std::copy_if(
fusion->outputs().begin(),
fusion->outputs().end(),
std::back_inserter(fp16_outputs),
[&cast_to_type, &other_half_type](auto* val) {
auto dtype = val->getDataType().value();
if (cast_to_type) {
TORCH_INTERNAL_ASSERT(
other_half_type != dtype,
"Mix of BFloat16 and Float16 in the same graph is not supported.");
}
return val->template isA<TensorView>() &&
val->getDataType().has_value() &&
(val->getDataType().value() == DataType::Half ||
val->getDataType().value() == DataType::BFloat16);
});
annotation.traverseFrom(fusion, fp16_outputs);
return annotation.force_fp16_tv_set_;
}
private:
using IterVisitor::handle;
void handle(TensorView* tv) override {
auto dtype = tv->getDataType();
if (dtype.has_value() && dtype.value() == DataType::Float &&
!tv->isFusionOutput() && !tv->isFusionInput()) {
force_fp16_tv_set_.insert(tv);
}
}
std::unordered_set<TensorView*> force_fp16_tv_set_;
c10::optional<DataType> cast_to_type_ = c10::nullopt;
};
} // namespace
void SegmentedFusion::annotateFP16IntermediateTensors() {
force_fp16_tv_set_ =
ForceHalfAnnotation::getFP16AnnotatedSet(complete_fusion_.get());
for (auto out_tv :
ir_utils::filterByType<TensorView>(complete_fusion_->outputs())) {
if (out_tv) {
auto dtype = out_tv->getDataType().value();
if (dtype == DataType::Half || dtype == DataType::BFloat16) {
force_half_precision_type_ = dtype;
}
}
}
}
std::string toString(const SegmentCandidateFinderOptions& segment_options) {
std::stringstream ss;
ss << "segmentation phases {\n";
if (segment_options.run_combine_reductions) {
ss << "combine reductions\n";
}
if (segment_options.run_herrmann_merge) {
ss << "herrmann merging\n";
}
if (segment_options.run_final_merge) {
ss << "final merging\n";
}
ss << "\n}\n";
return ss.str();
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|