File: fusion_segmenter.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (628 lines) | stat: -rw-r--r-- 20,891 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
#pragma once

#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_base_nodes.h>
#include <torch/csrc/jit/codegen/cuda/kernel_cache.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/all_schedulers.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/registry.h>
#include <torch/csrc/jit/codegen/cuda/utils.h>

#include <deque>
#include <list>
#include <unordered_set>
#include <vector>

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

class SegmentedGroup;
class SegmentCandidateFinder;

// A directed edge on DAG,
// Wrapper for values, edges between segmented groups which are made up
// of Exprs. Multiple edges can exist between segmented groups.
struct SegmentedEdge {
  SegmentedEdge(SegmentedGroup* from, SegmentedGroup* to, Val* val)
      : from(from), to(to), val(val) {}

  SegmentedGroup* from;
  SegmentedGroup* to;
  Val* val;

  void print() const;
};

std::ostream& operator<<(std::ostream& os, const SegmentedEdge* edge);

//! Groups together expressions which create a segmented group
//! Can be used to produce fusions
class TORCH_CUDA_CU_API SegmentedGroup {
 public:
  SegmentedGroup(SegmentedFusion* segmented_fusion)
      : segmented_fusion_(segmented_fusion) {}

  SegmentedGroup(Expr* expr, SegmentedFusion* segmented_fusion)
      : segmented_fusion_(segmented_fusion) {
    exprs_.push_back(expr);
  }

  //! Checks if this group takes original fusion's input
  bool isInputGroup() {
    return !input_vals.empty();
  };

  //! Checks if this group is used any where in the segmented fusion
  bool isConnected() const {
    return !producer_edges.empty() || !consumer_edges.empty() ||
        !output_vals.empty();
  }

  //! returns the id assigned by segment pass
  int groupId() const {
    return group_id_;
  }

  //! Returns inputs that this group shares with the original fusion
  const auto& inputs() const {
    return input_vals;
  }

  //! Returns outputs that this group shares with the original fusion
  const auto& outputs() const {
    return output_vals;
  }

  //! Returns the schedule heuristic associated with this group
  ScheduleHeuristic heuristic() const {
    return heuristic_;
  }

  //! Returns the exprs that make up this group
  const auto& exprs() const {
    return exprs_;
  }

  //! Debug print function
  void print() const;

  //! Returns the segmented fusion that this group is in
  SegmentedFusion* segmentedFusion() const {
    return segmented_fusion_;
  }

  //! Utility to re-collect the operators included in this
  //!  segmented group after updating the group boundary.
  void resetExprList();

  //! Try to get a scheduler entry for this group with
  //!  the given runtime info.
  //! Returns a new scheduler with the same heuristics
  //!  for this group if possible.
  //!  Note that the schedule params can be different.
  //! Returns a nullopt if this group cannot be scheduled
  //!  with the same heuristics.
  c10::optional<std::unique_ptr<SchedulerEntry>> getMaybeSchedulerEntry(
      SchedulerRuntimeInfo& runtime_info);

 public:
  //! "Ancestor nodes", towards inputs of segmentedDAG
  std::vector<SegmentedEdge*> producer_edges;

  //! "Descendent nodes", towards outputs of segmentedDAG
  std::vector<SegmentedEdge*> consumer_edges;

  //! Composite Fusion inputs in this group
  std::vector<Val*> input_vals;

  //! Composite Fusion outputs in this group
  std::vector<Val*> output_vals;

 private:
  friend class SegmentCandidateFinder;
  friend class SegmentedFusion;
  friend class FusionKernelRuntime;
  friend class TranslateApplicableWelford;

  //! unique identifier of group in the segmented fusion
  int group_id_ = -1;

  //! The scheduler to use for compiling this group
  ScheduleHeuristic heuristic_ = ScheduleHeuristic::None;

  //! Exprs that make up the group
  std::vector<Expr*> exprs_;

  //! Maximum path distance from an input segmented group required for
  //! Theorem 4.2
  int level_ = -1;

  //! traversal marker, has this node already been processed
  bool visited_ = false;

  //! Did we select another group to merge with
  SegmentedGroup* merge_with_ = nullptr;

  //! if we selected another group to merge, which edge is to be contracted
  SegmentedEdge* merge_through_ = nullptr;

  //! Has this node been merged?
  bool merged_ = false;

 private:
  //! Utility to convert edge vector to value vector
  std::vector<Val*> edgesToVals(const std::vector<SegmentedEdge*>& se_v);

  //! Reset method to call at begining of each
  //!  merge node iteration
  void clearTraversalInfo();

  //! To be called at the very end of segment fusion
  //!  no more segment merging should be done beyond
  void finalize();

  //! Return all segmented groups connected with *this
  std::vector<SegmentedGroup*> getNeighbors();

  //! Utility struct to represent a group connection
  //!  both the group to connect with and the edge
  //!  to connect through
  struct NeighborGroup {
    NeighborGroup(SegmentedGroup* g, SegmentedEdge* e) : group(g), edge(e) {}
    SegmentedGroup* group;
    SegmentedEdge* edge;
  };

  //! TODO: May want to sort this based on size of connections between this and
  //! neighbors as well as if the connection is an output of the fusion (has to
  //! be saved to gmem anyways)
  std::vector<NeighborGroup> getNeighborGroups();

  //! Look at all neighbors of this and return who this could merge with based
  //! on level values of this, neighbors, and merged neighbors of neighbors
  std::vector<NeighborGroup> getMergeCandidates();

  //! Assign schedule heuristic to this group
  void setHeuristic(ScheduleHeuristic sh) {
    heuristic_ = sh;
  }

  //! Assign Id for this group
  void setID(int id) {
    TORCH_INTERNAL_ASSERT(group_id_ == -1);
    group_id_ = id;
  }

  //! SegmentedFusion this group belongs to
  SegmentedFusion* segmented_fusion_;
};

std::ostream& operator<<(std::ostream& os, const SegmentedGroup* group);

//! Auxiliary class for storing heuristics. The managed data is either
//!  a single scheduler entry for complete fusion,
//!  or a vector of schedulers, one for each segment, for segmented fusion.
class TORCH_CUDA_CU_API FusionHeuristics {
  using SchedulerEntryOwningPtr = std::unique_ptr<SchedulerEntry>;

 public:
  //! Constructor for segmented fusion case. Created with empty list and
  //!  uses emplaceBack for inserting heuristics in order
  explicit FusionHeuristics() = default;

  //! Constructor for complete fusion case, generates the scheduler entry
  //!  for the fusion owning the given expression
  explicit FusionHeuristics(
      ScheduleHeuristic schedule_heuristic,
      SchedulerRuntimeInfo& runtime_info,
      HeuristicSummary* data_cache = nullptr) {
    heuristics_.emplace_back(SchedulerEntry::makeEntry(
        schedule_heuristic, runtime_info.fusion(), runtime_info, data_cache));
    is_segmented_ = false;
  }

  FusionHeuristics(const FusionHeuristics&) = delete;
  FusionHeuristics& operator=(const FusionHeuristics&) = delete;

  //! Place a scheduler entry on the list. Applies to segmented fusion only.
  void emplaceBack(SchedulerEntryOwningPtr&& pt) {
    TORCH_INTERNAL_ASSERT(is_segmented_);
    heuristics_.emplace_back(std::move(pt));
  }

  //! Returns list of schedulers for a segmneted fusion.
  const std::vector<SchedulerEntryOwningPtr>& heuristicsList() const {
    return heuristics_;
  }

  //! Returns the single scheduler for a complete fusion.
  SchedulerEntry* singleKernelHeuristics() {
    TORCH_INTERNAL_ASSERT(!is_segmented_);
    return heuristics_.begin()->get();
  }

 private:
  std::vector<SchedulerEntryOwningPtr> heuristics_;
  bool is_segmented_ = true;
};

//! Exported Interface for representing segmented fusion graph
//!   this class owns the segmented groups
class TORCH_CUDA_CU_API SegmentedFusion {
 public:
  explicit SegmentedFusion(std::unique_ptr<Fusion> fusion);

  //! Factory function for the un-segmented case, directly
  //!  constructs a "SegmentedFusion", with the given Fusion
  //!  as the only group.
  static std::unique_ptr<SegmentedFusion> fromCompleteFusion(
      std::unique_ptr<Fusion> fusion,
      ScheduleHeuristic heuristic);

  //! Is the fusion segmented?
  bool isSegmented() const {
    return !groups_.empty();
  }

  std::vector<SegmentedGroup*>& groups() {
    return groups_;
  }

  std::vector<SegmentedEdge*>& edges() {
    return edges_;
  }

  const std::vector<SegmentedGroup*>& cgroups() const {
    return groups_;
  }

  const std::vector<SegmentedEdge*>& cedges() const {
    return edges_;
  }

  //! Returns the original un-segmented fusion
  Fusion* completeFusion() const {
    return complete_fusion_.get();
  }

  const auto& inputs() const {
    return complete_fusion_->inputs();
  }

  const auto& outputs() const {
    return complete_fusion_->outputs();
  }

  Val* findAlias(Val* val) const {
    auto alias_it = complete_fusion_->ioAlias().find(val);
    if (alias_it != complete_fusion_->ioAlias().end()) {
      return alias_it->second;
    }
    return nullptr;
  }

  //! Make a clone of the group and convert to fusion
  std::unique_ptr<Fusion> makeFusion(SegmentedGroup* sg);

  //! Make heuristics for all groups in this segmented fusion
  std::unique_ptr<FusionHeuristics> makeInitialHeuristics(
      const KernelArgumentHolder& inputs);

  //! Inline Debug print for segmented fusion
  std::string toString(int verbosity) const;

  //! Debug drawing for graphviz
  void draw();

  //! Debug print for segmented fusions
  void print() const;

  //! API for adding groups
  SegmentedGroup* newGroup();

  //! API shortcut for adding a singleton group
  SegmentedGroup* newGroup(Expr* expr);

  //! API for adding edges
  SegmentedEdge* newEdge(SegmentedGroup* from, SegmentedGroup* to, Val* val);

  HeuristicSummary* getCachedHeuristicDataFor(SegmentedGroup* group);

 private:
  //! Unique name for segmented fusion
  int segmented_fusion_name_;

  //! States representing segmentation
  std::vector<SegmentedEdge*> edges_;
  std::vector<SegmentedGroup*> groups_;

  //! Owning object to explicitly manage groups and edges
  class Impl {
   public:
    explicit Impl(SegmentedFusion* sf) : owning_fusion_(sf) {}

    SegmentedGroup* makeGroup();
    SegmentedGroup* makeGroup(Expr*);
    SegmentedEdge* makeEdge(SegmentedGroup* from, SegmentedGroup* to, Val* val);
    void cleanUnused();

   private:
    using GroupPtr = std::unique_ptr<SegmentedGroup>;
    using EdgePtr = std::unique_ptr<SegmentedEdge>;
    std::vector<GroupPtr> groups_;
    std::vector<EdgePtr> edges_;
    SegmentedFusion* owning_fusion_;
  };
  Impl impl_;

  //! A Copy of original full fusion
  std::unique_ptr<Fusion> complete_fusion_;

  //! A set of intermediate tensors that need to be cast to fp16
  std::unordered_set<TensorView*> force_fp16_tv_set_;

  DataType force_half_precision_type_;

  //! Static traversal information to be used for fast heuristics lookup
  std::unordered_map<SegmentedGroup*, std::unique_ptr<HeuristicSummary>>
      heuristic_summary_cache_;

  // TODO: this class needs cleanup
 protected:
  friend class SegmentCandidateFinder;
  //! Make a heuristics entry for a group and parameters
  std::unique_ptr<SchedulerEntry> makeInitialSchedulerEntry(
      SegmentedGroup* sg,
      SchedulerRuntimeInfo& runtime_info);

  //! Cleanup function to be call at the end of fusion
  //!  segment pass
  void finalize();

  //! Collect all the intermediate tensors between segmented
  //!  groups that will cast to fp16
  void annotateFP16IntermediateTensors();

  //! Keep heuristic checking intermediate data
  void setCachedHeuristicDataFor(
      SegmentedGroup* group,
      std::unique_ptr<HeuristicSummary> data);

  //! Utility to give unique name for each segmented fusion
  static size_t segmentedFusionName() {
    static size_t counter = 0;
    return counter++;
  }
};

//! This is a base class for segmenter analysis
//!  provides the minimal implementation on header so that
//!  a unique_ptr can use this base class
//!  actual implementations of analyses are in the .cpp files
//! TODO: In the next refactor PR, should put segment candidate
//!  finder in .cpp file completely since API doesn't require these
//!  details
class SegmenterAnalysis : public PolymorphicBase {};
class GroupDependencyAnalysis;

// Manual node merging passes
class CombineReductions;

//! Options to configure/debug candidate finder
struct TORCH_CUDA_CU_API SegmentCandidateFinderOptions {
  bool run_translate_welford = true;
  bool run_combine_reductions = true;
  bool run_herrmann_merge = true;
  bool run_final_merge = true;
};

//!  SegmentCandidateFinder
//!    Responsible for going through DAG and proposing things we could try to
//!    fuse together, calls "canGenerateCode" on these proposed segments to see
//!    if they are valid and we can generate code for them.
//!  FusionSegment
//!    A group of exprs that are segmented together
//!  FusionSegmentConnections
//!    Holds vals and what they connect. In other words it's a val that is an
//!    output of a FusionSegment "from" and an input of FusionSegment "to".
//!    There's nothing preventing from a val being between segments twice.
//!    TODO: make sure there's nothing wrong with segmentation on nodes that
//!    have the same value input twice. i.e. (B = A*A)
//! Selecting segments to propose is based on the theorem 4.2 in the paper which
//! makes sure when segment the segmented graph will be a DAG (assumes Fusion is
//! already a DAG). The segmentation code relies on assumptions of DAG-ness
//! during segmentation, meaning proposed merging of groups must maintain the
//! DAG property of the graph.
//!
//! Julien Herrmann, Yusuf Özkaya, Bora Uçar, Kamer Kaya, Umit Catalyurek.
//! Multilevel Algorithms for Acyclic Partitioning of Directed Acyclic Graphs.
//! SIAM Journal on Scientific Computing, Society for Industrial and Applied
//! Mathematics, 2019, 41 (4), pp.A2117-A2145. ff10.1137/18M1176865ff.
//! ffhal02306566f
class TORCH_CUDA_CU_API SegmentCandidateFinder {
 public:
  // Perform segmentation on a copy of the given fusion
  static std::unique_ptr<SegmentedFusion> segment(
      const Fusion* fusion,
      const KernelArgumentHolder& inputs,
      SegmentCandidateFinderOptions options = SegmentCandidateFinderOptions()) {
    auto fusion_copy = std::make_unique<Fusion>(*fusion);
    if (isDebugDumpEnabled(DebugDumpOption::FusionSegments)) {
      std::cout << "Segment the fusion (Original Fusion Un-modified): "
                << std::endl;
      fusion_copy->printMath();
    }
    SegmentCandidateFinder scf(std::move(fusion_copy), inputs, options);
    return std::move(scf.segmented_fusion_);
  }

  // Perform segmentation on and take ownership of the given fusion
  static std::unique_ptr<SegmentedFusion> segment(
      std::unique_ptr<Fusion> fusion,
      const KernelArgumentHolder& inputs,
      SegmentCandidateFinderOptions options = SegmentCandidateFinderOptions()) {
    SegmentCandidateFinder scf(std::move(fusion), inputs, options);
    if (isDebugDumpEnabled(DebugDumpOption::FusionSegments)) {
      std::cout << "Segment the fusion (Original Fusion Un-modified): "
                << std::endl;
      scf.completeFusion()->printMath();
    }
    return std::move(scf.segmented_fusion_);
  }

  static bool TranslateWelfordInFusion(
      Fusion* fusion,
      const KernelArgumentHolder& runtime_inputs);

 private:
  // Perform segmentation on and take ownership of the given fusion
  SegmentCandidateFinder(
      std::unique_ptr<Fusion> fusion,
      const KernelArgumentHolder& inputs,
      SegmentCandidateFinderOptions options);

  void resetTraversal();

  void resetLevels();

  SegmentedGroup* mergeNodes();

  bool codeGenSupportedMerge(SegmentedGroup* group1, SegmentedGroup* group2);

  void findSegments();

  std::unordered_set<SegmentedEdge*> disconnectGroup(SegmentedGroup* group);

  std::vector<SegmentedGroup*>& groups() {
    TORCH_INTERNAL_ASSERT(
        segmented_fusion_ != nullptr, "Segment finder not owinging any fusion");
    return segmented_fusion_->groups();
  }

  std::vector<SegmentedEdge*>& edges() {
    TORCH_INTERNAL_ASSERT(
        segmented_fusion_ != nullptr, "Segment finder not owinging any fusion");
    return segmented_fusion_->edges();
  }

  Fusion* completeFusion() {
    TORCH_INTERNAL_ASSERT(
        segmented_fusion_ != nullptr, "Segment finder not owinging any fusion");
    return segmented_fusion_->completeFusion();
  }

  SchedulerRuntimeInfo& runtimeInfo() {
    return runtime_info_;
  }

  ExpressionEvaluator& expressionEvaluator() {
    return runtime_info_.expressionEvaluator();
  }

  //! Additional merging iteration, clean up the rest of
  //!  the merging opportunities
  //!  Herrmann et al. is a fast and safe algorithm for finding merge candidates
  //!  but can become too conservative in our use cases because we place
  //!  additional qualifiers on valid merges other than having to generate DAGs,
  //!  i.e. canSchedule. So we need a bruteforce final merging iteration as a
  //!  clean up pass. Cost isn't expected to be high since the graph at this
  //!  stage is already quite merged. Example cf. test_gpu.cpp:
  //!  FusionDAGMerging_CUDA
  //!
  //!  This merging algorithm is based on Theorem 4.1 of Herrmann et al.,
  //!   to check if a producer-consumer pair can be merged into one group,
  //!   it's enough to check if any other consumer of the producer also
  //!   produces the consumer.
  void finalMerge();

  //! Duplicate and add all exprs producing the used
  //!  scalar values in group
  void resolveScalarsInGroup(SegmentedGroup* group);

  //! Duplicate and add all exprs from "inputs" in the group, to complete
  //! inputs. These expressions are simply unary ops of inputs that we want to
  //! recompute for each segment, instead of computing and producing a segmented
  //! val. For example if we have:
  //! tv1 = tv0 * 2;
  //! tv3 = tv1 + tv2;
  //! tv4 = tv1 + tv4
  //! If we segmented on tv1, we would be producing an output for tv1 for 2
  //! groups that have tv3 or tv4, instead we could easily recompute tv1 from
  //! tv0.
  void resolveInputsInGroup(SegmentedGroup* group);

  //! Remove all scalar edges in group
  //!  (TODO: need structure better so we don't have to do this)
  void removeScalarEdges();

  //! Utility function to merge a vector of groups in one step,
  //!  need to check for DAG condition before using this method
  SegmentedGroup* mergeAllGivenGroups(
      const std::vector<SegmentedGroup*>& groups);

  //! Utility to remove a group and corresponding edges
  //!  TODO: remove inline versions of this as much as possible
  void eraseGroups(std::unordered_set<SegmentedGroup*>& groups_to_erase);

  void finalize();

  //! Return the resulting heuristic corresponding to the merged
  //!  group built by merging the two groups connected by edge
  ScheduleHeuristic deriveHeuristic(SegmentedGroup* edge);

  GroupDependencyAnalysis* getGroupDependency();

 protected:
  //! These are the merge node heuristic passes, should
  //!  eventually should have a dedicated interface
  //!  instead of keeping adding friends
  friend class CombineReductions;

  //! options to configure and debug the segment process
  SegmentCandidateFinderOptions options_;

  std::deque<SegmentedGroup*> to_visit_;
  std::vector<SegmentedGroup*> next_to_visit_;

  std::unordered_set<SegmentedGroup*> clean_up_groups_;
  std::unordered_set<SegmentedEdge*> clean_up_edges_;

  std::vector<SegmentedGroup*> to_merge_;

  std::unique_ptr<SegmentedFusion> segmented_fusion_;

  std::unique_ptr<SegmenterAnalysis> group_dependency_;

  SchedulerRuntimeInfo runtime_info_;

  //! Note:
  //!  Segmenter should eventually rely only on runtime_info_ for
  //!  safe caching. runtime_inputs_ is only used in translateWelford
  //!  to initialize expression evaluators on copies of the original
  //!  fusion, which doesn't use any un-cached info and is safe.
  //!
  //!  Directly using runtime_inputs_ in other cases is in general
  //!   risky.
  //!
  //!  To get rid of runtime_inputs_ we need mechanisms
  //!  to copy expression evaluator values from fusion
  //!  to a copy, or even better to a copy of a
  //!  sub-graph of original fusion.
  //! TODO:
  //!  implement the expression evaluator transfer and
  //!  remove runtime_inputs_ in a follow up.
  const KernelArgumentHolder& runtime_inputs_;
};

// TODO: Make as member functions on classes instead of global scope
TORCH_CUDA_CU_API std::string toString(const SegmentedGroup* group);
TORCH_CUDA_CU_API std::string toString(const SegmentedEdge* edge);
TORCH_CUDA_CU_API std::string toString(const SegmentedFusion* segmented_fusion);
TORCH_CUDA_CU_API std::string toString(
    const SegmentCandidateFinderOptions& segment_options);

} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch