1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
#include <torch/csrc/jit/codegen/cuda/ir_builder.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/root_domain_map.h>
#include <torch/csrc/jit/codegen/cuda/transform_iter.h>
#include <torch/csrc/jit/codegen/cuda/grouped_reduction.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace {
// Return if ref and other are transformed in the same way.
bool hasMatchingTransformations(TensorView* ref, TensorView* other) {
std::unordered_map<IterDomain*, IterDomain*> ref_2_other;
for (const auto i : c10::irange(ref->getRootDomain().size())) {
ref_2_other.emplace(
ref->getRootDomain().at(i), other->getRootDomain().at(i));
}
auto replay =
BestEffortReplay(
other->domain()->domain(), ref->domain()->domain(), ref_2_other)
.getReplay();
for (const auto i : c10::irange(ref->nDims())) {
auto ref_id = ref->axis(i);
auto other_id = other->axis(i);
auto it = replay.find(ref_id);
if (it == replay.end() || it->second != other_id) {
return false;
}
}
return true;
}
// Validate grouping of reductions and return a new max producer position
unsigned int validateReductionGrouping(
const std::vector<Val*>& inputs,
const std::vector<Val*>& outputs) {
TORCH_INTERNAL_ASSERT(inputs.size() == outputs.size());
TORCH_INTERNAL_ASSERT(!inputs.empty());
auto fusion = dynamic_cast<Fusion*>(outputs[0]->container());
TORCH_INTERNAL_ASSERT(
fusion != nullptr, "Grouping of reductions must be done within a Fusion");
ExactRootDomainMap exact_map(fusion);
// Pick the first output TV as a reference and compare it with the
// rest. Do not allow grouping if any mismatch is detected.
auto ref_tv = outputs[0]->as<TensorView>();
const auto ref_domain = ref_tv->getRootDomain();
const auto num_root_dims = ref_domain.size();
const auto num_dims = ref_tv->nDims();
const auto ref_ca_pos = ref_tv->getComputeAtPosition();
auto max_producer_pos = ref_tv->getMaxProducerPosition();
for (const auto i : c10::irange(inputs.size())) {
auto output_tv = outputs.at(i)->as<TensorView>();
const auto& output_domain = output_tv->getRootDomain();
if (ref_tv == output_tv) {
continue;
}
TORCH_INTERNAL_ASSERT(
output_domain.size() == num_root_dims,
"Invalid grouped reduction due to mismatched number of root dimensions. "
"Expected: ",
num_root_dims,
". Detected: ",
output_domain.size(),
". Invalid output tensor: ",
output_tv->toString());
TORCH_INTERNAL_ASSERT(
output_tv->nDims() == num_dims,
"Invalid grouped reduction due to mismatched number of dimensions. "
"Expected: ",
num_dims,
". Detected: ",
output_tv->nDims(),
". Invalid output tensor: ",
output_tv->toString());
for (const auto i : c10::irange(num_root_dims)) {
auto ref_id = ref_domain.at(i);
auto output_id = output_domain.at(i);
// If an IterDomain is broadcast, require the other
// corresponding IterDomains are also broadcast. This may not be
// necessary but not completely certain.
TORCH_INTERNAL_ASSERT(
ref_id->isBroadcast() == output_id->isBroadcast(),
"Invalid grouped reduction due to mismatched broadcast root domains. ",
"Reference domain: ",
ref_id->toString(),
". Mismatched domain: ",
output_id->toString(),
". Invalid tensor: ",
output_tv->toString());
if (ref_id->isBroadcast()) {
continue;
}
TORCH_INTERNAL_ASSERT(
ref_id->isReduction() == output_id->isReduction(),
"Invalid grouped reduction due to mismatched reduction root domains. ",
"Reference domain: ",
ref_id->toString(),
". Mismatched domain: ",
output_id->toString(),
". Invalid tensor: ",
output_tv->toString());
TORCH_INTERNAL_ASSERT(
exact_map.areMapped(ref_id, output_id) || ref_id->sameAs(output_id),
"Invalid grouped reduction due to mismatched root domains. ",
"Reference domain: ",
ref_id->toString(),
". Mismatched domain: ",
output_id->toString(),
". Invalid tensor: ",
output_tv->toString());
}
TORCH_INTERNAL_ASSERT(
hasMatchingTransformations(ref_tv, output_tv),
"Invalid grouped reduction due to mismatched transformations. ",
"Reference tensor: ",
ref_tv->toString(),
". Mismatched tensor: ",
output_tv->toString());
// Must have the same computeAt position
TORCH_INTERNAL_ASSERT(
output_tv->getComputeAtPosition() == ref_ca_pos,
"Invalid grouped reduction due to mismatched computeAt position. ",
"Reference tensor: ",
ref_tv->toString(),
". Mismatched tensor: ",
output_tv->toString());
max_producer_pos =
std::max(max_producer_pos, output_tv->getMaxProducerPosition());
}
// Must not have any data dependency from outputs to inputs
const auto all_dep_vals = DependencyCheck::getAllValsBetween(
{outputs.begin(), outputs.end()}, inputs);
if (!all_dep_vals.empty()) {
std::stringstream ss;
ss << "Invalid dependency:";
for (auto val : all_dep_vals) {
ss << " " << val->toString();
}
TORCH_INTERNAL_ASSERT(all_dep_vals.empty(), ss.str());
}
return max_producer_pos;
}
} // namespace
void groupReductions(const std::vector<TensorView*>& reduction_outputs) {
TORCH_CHECK(!reduction_outputs.empty(), "No tensor is given");
auto container = reduction_outputs[0]->container();
const auto num_reductions = reduction_outputs.size();
std::vector<BinaryOpType> op_types(num_reductions);
std::vector<Val*> init_vals(num_reductions);
std::vector<Val*> outputs(num_reductions);
std::vector<Val*> inputs(num_reductions);
for (const auto i : c10::irange(num_reductions)) {
auto reduction_out = reduction_outputs.at(i);
TORCH_CHECK(
reduction_out->definition() != nullptr,
"Invalid tensor to group: ",
reduction_out->toString(),
". Definition not found");
auto rop = dynamic_cast<ReductionOp*>(reduction_out->definition());
TORCH_CHECK(
rop != nullptr,
"Invalid tensor to group: ",
reduction_out->toString(),
". Not an output of a ReductionOp: ",
reduction_out->definition()->toString());
// Fused reduction is only enabled during the lowering, so at this
// point it should be false.
TORCH_INTERNAL_ASSERT(
!rop->isAllreduce(), "Invalid ReductionOp: ", rop->toString());
op_types.at(i) = rop->getReductionOpType();
init_vals.at(i) = rop->init();
outputs.at(i) = rop->out();
inputs.at(i) = rop->in();
}
auto max_producer_pos = validateReductionGrouping(inputs, outputs);
for (auto output : ir_utils::filterByType<TensorView>(outputs)) {
output->setMaxProducer(max_producer_pos);
}
IrBuilder::create<GroupedReductionOp>(
container, op_types, init_vals, outputs, inputs);
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|