File: inline_propagator.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (385 lines) | stat: -rw-r--r-- 13,013 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#include <torch/csrc/jit/codegen/cuda/inline_propagator.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/root_domain_map.h>
#include <torch/csrc/jit/codegen/cuda/transform_iter.h>

#include <utility>

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

MaxPosCalculator::MaxPosCalculator(
    ComputeAtMode mode,
    std::unordered_set<IterDomain*> uninlinable_ids)
    : mode_(mode), uninlinable_ids_(std::move(uninlinable_ids)) {
  buildUnmappableDims();
}

void MaxPosCalculator::buildUnmappableDims() {
  ComputeAtRootDomainMap root_map;
  root_map.build();

  auto all_tvs = ir_utils::allTvs(FusionGuard::getCurFusion());
  for (auto tv : all_tvs) {
    auto consumers = ir_utils::consumerTvsOf(tv);
    for (auto consumer : consumers) {
      // Grab dimensions in producer and consumer that are mappable to eachother
      // based on the computeAtRootDomainMap. This will tell us which dimensions
      // can be inlined based on avoiding trying to inline non-trivial
      // reduction structures.
      auto mappable_roots =
          root_map.getMappableDims(tv->domain(), consumer->domain());
      for (auto tv_root_id : tv->getMaybeRFactorDomain()) {
        if (mappable_roots.find(tv_root_id) == mappable_roots.end() &&
            !tv_root_id->isTrivialReduction()) {
          unmappable_dims_.emplace(tv_root_id);
        }
      }
    }
  }
}

bool MaxPosCalculator::isAllowedID(
    IterDomain* id,
    TensorView* tv,
    bool allow_reduction,
    bool allow_vectorize,
    bool allow_unmappable) const {
  bool allowed = true;

  if (!allow_reduction) {
    allowed = allowed && !id->isReduction();
  }

  if (uninlinable_ids_.count(id)) {
    return false;
  }

  if (!allow_vectorize) {
    // Avoid inlining if marked as Vectorize or Group. In the case of
    // BestEffort and MostInlined modes, avoid Unroll as well.
    bool is_vectorize = isParallelTypeVectorize(id->getParallelType()) ||
        id->getParallelType() == ParallelType::Group ||
        ((mode_ == ComputeAtMode::BestEffort ||
          mode_ == ComputeAtMode::MostInlined) &&
         id->getParallelType() == ParallelType::Unroll);
    allowed = allowed && !is_vectorize;
  }

  if (!allow_unmappable) {
    auto root_dom = tv->getMaybeRFactorDomain();
    std::unordered_set<Val*> root_dom_set(root_dom.begin(), root_dom.end());
    auto all_vals = DependencyCheck::getAllValsBetween(root_dom_set, {id});
    bool is_unmappable = false;
    for (auto val : all_vals) {
      auto id = val->as<IterDomain>();
      if (root_dom_set.count(val) > 0 && unmappable_dims_.count(id) > 0) {
        is_unmappable = true;
        break;
      }
    }
    allowed = allowed && !is_unmappable;
  }

  return allowed;
}

size_t MaxPosCalculator::getMaxPosSelf(
    TensorView* tv,
    bool allow_reduction,
    bool allow_vectorize,
    bool allow_unmappable) const {
  auto dom = tv->domain()->domain();
  auto iter = std::find_if(dom.begin(), dom.end(), [=](IterDomain* id) {
    return !isAllowedID(
        id, tv, allow_reduction, allow_vectorize, allow_unmappable);
  });
  return std::distance(dom.begin(), iter);
}

// Return the max position in producer that can be inlined to consumer
// Cannot inline:
//   Vectorized dimensions in consumer
//   Unrolled dimensions in consumer
size_t MaxPosCalculator::getMaxProducerPosFromConsumer(
    TensorView* producer,
    TensorView* consumer) const {
  auto pairwise_root_map = PairwiseRootDomainMap(producer, consumer);
  auto replay_CasP =
      BestEffortReplay::replayCasP(consumer, producer, -1, pairwise_root_map);
  auto p2c_replay_map = replay_CasP.getReplay();

  for (size_t producer_pos = 0; producer_pos < producer->nDims();
       producer_pos++) {
    // If the producer position is mismatching with the consumer, then we can
    // not inline into this position, otherwise the max producer position of
    // the consumer will become invalid and expression sort will fail.
    if (TransformReplay::getMatchedLeafPosWithoutReplayCasP(
            consumer, producer, producer_pos + 1) < 0) {
      return producer_pos;
    }
    auto map_it = p2c_replay_map.find(producer->axis(producer_pos));
    if (map_it != p2c_replay_map.end()) {
      auto c_id = map_it->second;
      if (!isAllowedID(c_id, consumer, true, false, true)) {
        return producer_pos;
      }
    }
  }
  return producer->nDims();
}

size_t InlinePropagator::getMaxPosAll(TensorView* tv, bool check_siblings) {
  auto max_pos = max_pos_calc.getMaxPosSelf(tv, false, false, false);
  for (auto consumer_tv : ir_utils::consumerTvsOf(tv)) {
    max_pos = std::min<size_t>(
        max_pos, max_pos_calc.getMaxProducerPosFromConsumer(tv, consumer_tv));
  }
  if (check_siblings) {
    for (auto sibling_tv : ir_utils::siblingTvsOf(tv)) {
      max_pos = std::min<size_t>(max_pos, getMaxPosAll(sibling_tv, false));
    }
  }
  return max_pos;
}

void InlinePropagator::setCAPos(TensorView* tv) {
  bool debug = isDebugDumpEnabled(DebugDumpOption::InlinePropagator);
  size_t pos = mapped_reference_pos_.at(tv);
  if (debug) {
    std::cout << "  Setting CA pos of " << tv << ":" << std::endl;
    std::cout << "    mapped position: " << pos << std::endl;
  }
  if ((selected_.empty() || selected_.count(tv)) && !tv->isFusionInput()) {
    auto max_pos = getMaxPosAll(tv);
    if (debug) {
      std::cout << "    max inlinable position: " << max_pos << std::endl;
    }
    if (mode_ == ComputeAtMode::Standard) {
      TORCH_INTERNAL_ASSERT(
          pos <= max_pos,
          "Invalid compute at position detected in InlinePropagator when trying to set the CA position of: ",
          tv,
          " to ",
          pos,
          ",  max position that's allowed is ",
          max_pos);
    } else if (mode_ == ComputeAtMode::BestEffort) {
      pos = std::min<size_t>(pos, max_pos);
    } else {
      pos = max_pos;
    }
    // hoist inner most broadcast
    while (pos > 0 && tv->axis(pos - 1)->isBroadcast()) {
      pos--;
    }
    auto current_ca_pos = tv->getComputeAtPosition();
    if (debug) {
      std::cout << "    current CA position: " << current_ca_pos << std::endl;
    }
    if (pos > current_ca_pos) {
      if (debug) {
        std::cout << "    new CA position: " << pos << std::endl;
      }
      tv->setComputeAt(pos);
      for (auto consumer_tv : ir_utils::consumerTvsOf(tv)) {
        needs_update_max_producer_.insert(consumer_tv);
      }
    } else if (debug) {
      std::cout << "    CA position not changed" << std::endl;
    }
  } else if (debug) {
    std::cout << "    tensor not selected, skip" << std::endl;
  }
}

InlinePropagator::InlinePropagator(
    TensorView* reference,
    int64_t reference_pos,
    ComputeAtMode mode,
    std::unordered_set<TensorView*> selected,
    std::unordered_set<IterDomain*> uninlinable_ids)
    : max_pos_calc(mode, std::move(uninlinable_ids)),
      selected_(std::move(selected)),
      reference_(reference),
      mode_(mode) {
  if (reference_pos < 0) {
    reference_pos += int64_t(reference->nDims()) + 1;
  }
  TORCH_INTERNAL_ASSERT(
      reference_pos >= 0 && reference_pos <= reference->nDims(),
      "Invalid computeAt axis, received ",
      reference_pos,
      " but should be > -",
      reference->nDims(),
      " and <= ",
      reference->nDims(),
      ".");
  reference_pos_ = reference_pos;
}

void InlinePropagator::setUp() {
  bool debug = isDebugDumpEnabled(DebugDumpOption::InlinePropagator);
  mapped_reference_pos_[reference_] = reference_pos_;
  if (debug) {
    std::cout << "InlinePropagator::setUp" << std::endl;
    std::cout << "  reference: " << reference_ << " @ " << reference_pos_
              << std::endl;
  }
  setCAPos(reference_);
}

namespace {

// Try to find the aligned position on consumer's domain corresponding to the
//  compute at position of producer domain. Used in InlinePropagator pass only.
//  No checking on actual producer-consumer relationship.
unsigned int getConsumerPosAlignedToProducerCA(
    TensorView* consumer,
    TensorView* producer) {
  // Locate consumer's position that aligns with
  //  the producer's new compute at axis. We need broadcast axes forwarded so we
  //  need to replay PasC as CasP will not forward braodcast dims. For example
  //  if we have:
  // T2[ iS22{( 3 * 1 )} ] ca_pos( 1 ) = broadcast( T1[ iS1{3} ] ca_pos( 1 )
  // produce_pos( 1) ) CasP will have the mapping iS1{3} -> iS2{3} and PasC will
  // have the mapping iS22{( 3 * 1 )} <- iS1{3} We need the latter. Refer to
  // NVFuserTest.FusionComplexBCast1_CUDA

  auto disjoint_sets =
      BestEffortReplay::replayPasC(
          producer, consumer, -1, PairwiseRootDomainMap(producer, consumer))
          .getDisjointSets();

  // Find the innermost position of consumer that has
  //  been mapped within the producer ca axis.
  unsigned int consumer_pos = consumer->nDims();
  while (consumer_pos > 0) {
    auto consumer_id = consumer->axis((int)consumer_pos - 1);
    auto p_dom = producer->domain()->domain();
    if (std::any_of(
            p_dom.begin(),
            p_dom.begin() + producer->getComputeAtPosition(),
            [&consumer_id, &disjoint_sets](IterDomain* p_id) {
              return disjoint_sets.permissiveAreMapped(consumer_id, p_id);
            })) {
      break;
    }
    consumer_pos--;
  }

  return consumer_pos;
}

} // namespace

void InlinePropagator::tearDown() {
  for (auto consumer : needs_update_max_producer_) {
    unsigned int consumer_pos = 0;
    for (auto producer : ir_utils::producerTvsOf(consumer)) {
      consumer_pos = std::max(
          consumer_pos, getConsumerPosAlignedToProducerCA(consumer, producer));
    }
    consumer->setMaxProducer(consumer_pos);
  }
}

void InlinePropagator::propagateC2P(TensorView* from, TensorView* to) {
  bool debug = isDebugDumpEnabled(DebugDumpOption::InlinePropagator);
  if (debug) {
    std::cout << "InlinePropagator::propagateC2P" << std::endl;
    std::cout << "  from: " << from << std::endl;
    std::cout << "  to: " << to << std::endl;
  }
  // Step 1: find mapped_reference_pos_[to]
  int from_pos = mapped_reference_pos_.at(from);
  auto to_pos =
      TransformReplay::getMatchedLeafPosWithoutReplayPasC(to, from, from_pos);
  if (mode_ == ComputeAtMode::Standard) {
    TORCH_CHECK(
        to_pos >= 0,
        "Unable to propagate CA position from consumer ",
        from,
        " at ",
        from_pos,
        " to producer ",
        to,
        " because this would require replay.");
  } else {
    // For MostInlined and BestEffort inline propagation, we allow the DAG to
    // be not replayed fully consistently. For such case, we just don't inline
    // into the mismatched dimension.
    while (to_pos < 0) {
      from_pos--;
      to_pos = TransformReplay::getMatchedLeafPosWithoutReplayPasC(
          to, from, from_pos);
    }
  }
  mapped_reference_pos_[to] = to_pos;
  // Step 2: set CA position of `to`
  setCAPos(to);
}

void InlinePropagator::propagateP2C(TensorView* from, TensorView* to) {
  bool debug = isDebugDumpEnabled(DebugDumpOption::InlinePropagator);
  if (debug) {
    std::cout << "InlinePropagator::propagateP2C" << std::endl;
    std::cout << "  from: " << from << std::endl;
    std::cout << "  to: " << to << std::endl;
  }
  // Step 1: find mapped_reference_pos_[to]
  int from_pos = mapped_reference_pos_.at(from);
  auto to_pos =
      TransformReplay::getMatchedLeafPosWithoutReplayCasP(to, from, from_pos);
  if (mode_ == ComputeAtMode::Standard) {
    TORCH_CHECK(
        to_pos >= 0,
        "Unable to propagate CA position from producer ",
        from,
        " at ",
        from_pos,
        " to consumer ",
        to,
        " because this would require replay.");
  } else {
    // For MostInlined and BestEffort inline propagation, we allow the DAG to
    // be not replayed fully consistently. For such case, we just don't inline
    // into the mismatched dimension.
    while (to_pos < 0) {
      from_pos--;
      to_pos = TransformReplay::getMatchedLeafPosWithoutReplayCasP(
          to, from, from_pos);
    }
  }
  mapped_reference_pos_[to] = to_pos;
  // Step 2: set CA position of `to`
  setCAPos(to);
}

void InlinePropagator::propagateSibling(TensorView* from, TensorView* to) {
  bool debug = isDebugDumpEnabled(DebugDumpOption::InlinePropagator);
  if (debug) {
    std::cout << "InlinePropagator::propagateSibling" << std::endl;
    std::cout << "  from: " << from << std::endl;
    std::cout << "  to: " << to << std::endl;
  }
  // Step 1: find mapped_reference_pos_[to]
  auto from_pos = mapped_reference_pos_.at(from);
  TORCH_CHECK(
      TransformReplay::fullSelfMatching(to, from),
      "Unable to propagate CA position from ",
      from,
      " to sibling ",
      to,
      " because this would require replay.");
  mapped_reference_pos_[to] = from_pos;
  // Step 2: set CA position of `to`
  setCAPos(to);
}

} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch