1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
|
#include <torch/csrc/jit/codegen/cuda/interface.h>
#include <ATen/core/dispatch/OperatorOptions.h>
#include <ATen/native/NonSymbolicBC.h>
#include <ATen/native/TensorShape.h>
#include <c10/util/CallOnce.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/codegen/cuda/transform_view.h>
#include <torch/csrc/jit/runtime/custom_operator.h>
#include <torch/csrc/jit/runtime/register_ops_utils.h>
// NOLINTNEXTLINE
C10_DEFINE_bool(
torch_jit_nvfuser_singleton_fusion,
false,
"enable single node fusion for nvfuser");
// NOLINTNEXTLINE
C10_DEFINE_bool(
torch_jit_nvfuser_horizontal_fusion,
true,
"enable horizontal fusion for nvfuser");
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
static std::atomic<bool> cuda_fusion_guard_mode{true};
// There are 3 sources of information on whether to enable nvfuser:
// 1. assigned value from setEnabled() - takes precendence if it has been set
// 2. value from environment variable - only used if setEnabled() is unset
// 3. default value - used if both 1 and 2 are unset.
//
// If 1 or 2 tries to enable nvfuser when it cannot be enabled (e.g. cuda not
// available), then an error will be thrown. The default will not error.
class NVFuserEnabler {
private:
c10::optional<bool> runtime_assigned_fuser_enabled_ = c10::nullopt;
c10::once_flag enabled_check_flag_;
std::mutex mutex_;
public:
static bool nvfuserCanBeEnabled() {
return at::globalContext().hasCUDA() &&
NVFuserPassManager::isRegistered() && getExecutorMode();
}
private:
static void assertFuserCanBeEnabled(bool is_enabled) {
if (!is_enabled) {
return;
}
TORCH_CHECK(
nvfuserCanBeEnabled(),
"Running CUDA fuser is only supported on CUDA builds.");
}
static c10::optional<bool> getFuserEnabledEnvVar() {
static const char* enable_c_str = std::getenv("PYTORCH_JIT_ENABLE_NVFUSER");
if (!enable_c_str) {
return c10::nullopt;
}
std::string enable(enable_c_str);
if (enable == "0" || enable == "OFF") {
return false;
}
return true;
}
static c10::optional<bool> getCachedFuserEnabledEnvVar() {
static c10::optional<bool> default_enabled = getFuserEnabledEnvVar();
return default_enabled;
}
static bool getNNCNotNVFuser() {
static const char* env_c_str =
std::getenv("PYTORCH_JIT_USE_NNC_NOT_NVFUSER");
if (!env_c_str) {
return false;
}
std::string env(env_c_str);
if (env == "1" || env == "ON") {
return true;
}
return false;
}
static bool getCachedNNCNotNVFuser() {
static bool force_disable = getNNCNotNVFuser();
return force_disable;
}
bool isEnabledImpl() {
// 0. opportunity to force disable NVFuser
if (getCachedNNCNotNVFuser()) {
return false;
}
c10::call_once(enabled_check_flag_, [&]() {
// if environment variable is setting the value, we must
if (!runtime_assigned_fuser_enabled_.has_value() &&
getCachedFuserEnabledEnvVar().has_value()) {
assertFuserCanBeEnabled(*getCachedFuserEnabledEnvVar());
}
});
// 1. if user has explicitly assigned fuser value, that value takes
// precedence.
if (runtime_assigned_fuser_enabled_.has_value()) {
return *runtime_assigned_fuser_enabled_;
}
// 2. next precedence is any value assigned by
if (getCachedFuserEnabledEnvVar().has_value()) {
return *getCachedFuserEnabledEnvVar();
}
// 3. default value
#if defined(USE_ROCM) || defined(FBCODE_CAFFE2)
return false;
#else
return nvfuserCanBeEnabled();
#endif
}
public:
bool setEnabled(bool is_enabled) {
std::lock_guard<std::mutex> lock(mutex_);
assertFuserCanBeEnabled(is_enabled);
bool old_value = isEnabledImpl();
runtime_assigned_fuser_enabled_ = is_enabled;
return old_value;
}
bool isEnabled() {
std::lock_guard<std::mutex> lock(mutex_);
return isEnabledImpl();
}
};
static NVFuserEnabler nvfuser_enabler;
bool isEnabled() {
return nvfuser_enabler.isEnabled();
}
bool setEnabled(bool is_enabled) {
return nvfuser_enabler.setEnabled(is_enabled);
}
bool canBeEnabled() {
return nvfuser_enabler.nvfuserCanBeEnabled();
}
bool getSingletonFusion() {
return FLAGS_torch_jit_nvfuser_singleton_fusion;
}
bool setSingletonFusion(bool value) {
bool old_value = FLAGS_torch_jit_nvfuser_singleton_fusion;
FLAGS_torch_jit_nvfuser_singleton_fusion = value;
return old_value;
}
bool getHorizontalFusion() {
return FLAGS_torch_jit_nvfuser_horizontal_fusion;
}
bool setHorizontalFusion(bool value) {
bool old_value = FLAGS_torch_jit_nvfuser_horizontal_fusion;
FLAGS_torch_jit_nvfuser_horizontal_fusion = value;
return old_value;
}
std::atomic<bool>& getCudaFusionGuardMode() {
return cuda_fusion_guard_mode;
}
CudaFuserInterface* getFuserInterface() {
static CudaFuserInterface fuser_interface_;
return &fuser_interface_;
}
void compileFusionGroup(Node* fusion_node) {
TORCH_CHECK(
getFuserInterface()->fn_compile_n != nullptr,
"Running the CUDA fuser requires a CUDA build.");
getFuserInterface()->fn_compile_n(fusion_node);
}
void runFusionGroup(const Node* fusion_node, Stack& stack) {
TORCH_CHECK(
getFuserInterface()->fn_run_n_s != nullptr,
"Running the CUDA fuser requires a CUDA build.");
getFuserInterface()->fn_run_n_s(fusion_node, stack);
}
void fuseGraph(std::shared_ptr<Graph>& graph) {
if (!isEnabled()) {
return;
}
TORCH_CHECK(
getFuserInterface()->fn_fuse_graph != nullptr,
"Running the CUDA fuser requires a CUDA build.");
getFuserInterface()->fn_fuse_graph(graph);
}
bool canFuseNode(const Node* node) {
return getFuserInterface()->fn_can_fuse_n != nullptr &&
getFuserInterface()->fn_can_fuse_n(node);
}
void InsertProfileNodesForCUDAFuser(ProfilingRecord* pr) {
if (getFuserInterface()->fn_insert_profile_inodes) {
getFuserInterface()->fn_insert_profile_inodes(pr);
}
}
bool profileNode(const Node* node) {
return getFuserInterface()->fn_profile_n != nullptr &&
getFuserInterface()->fn_profile_n(node);
}
bool skipNode(const std::string& symbol_str, bool flip) {
return getFuserInterface()->fn_skip_n != nullptr &&
getFuserInterface()->fn_skip_n(symbol_str, flip);
}
AnalyzeViewConstraint getViewConstraint(
const std::vector<int64_t>& original_sizes,
const std::vector<int64_t>& new_sizes) {
if (getFuserInterface()->fn_analyze_view != nullptr) {
return getFuserInterface()->fn_analyze_view(original_sizes, new_sizes);
}
TORCH_INTERNAL_ASSERT(false, "Requires nvFuser which requires CUDA build.");
}
//! [ Note -- type guard logic in CudaFusionGuard ]
//!
//! CudaFusionGuard is used to Guard input tensor to `CudaFusionGroup` so that
//! we would not feed inputs that violates the graph defined in `GraphCache`.
//!
//! see [ Note -- 2 level cache implementation ] for definition of unique
//! computational graph.
//! see [ Note -- CudaFusionGuard implementation] for details on how guard works
//! in profiling executor
//!
//! Type guard logic is used to query whether a runtime input `tensor` compiles
//! with profiled `guard_tensor_type`. `guard_tensor_type` is the observed
//! tensor type during profiling runs.
//!
//! At this moment, we only do single profiling run, so `guard_tensor_type` has
//! static shape / stride / scalarType. *This might be a little confusing as our
//! implementation is actually more relaxed.
//!
//! Things that we check:
//! a. identical rank & scalar type
//! b. stride check:
//! b.1. identical stride order
//! b.2. identical contiguity
//! note that contiguity here is used for tensor collapsing. So
//! extra attention should be paid to contiguity across size-1
//! dimensions.
//! c. size check:
//! c.1 broadcast check:
//! making sure that broadcast semantics are identical. So we want to
//! make sure a given dimension either are both size-1 for `tensor` &
//! `guard_tensor_type`, or are both non-size-1.
//! This is due to the fact that we specialize size-1 dimension as
//! broadcasted dimension while translating PyTorch tensor to Fusion IR.
//! c.1 size-0 check:
//! we don't specialize this on codegen, but we do specialize fusion
//! logic for size-0 on reductoins, hence the check
//!
bool complyWith(
const at::Tensor& tensor,
const c10::TensorTypePtr& guard_tensor_type) {
// guard broadcast semantics, contiguity & stride order;
TORCH_INTERNAL_ASSERT(
guard_tensor_type && guard_tensor_type->dim().has_value());
// check a. if num_dimension check fails or scalar type check fails
if (*guard_tensor_type->dim() != static_cast<size_t>(tensor.ndimension()) ||
(guard_tensor_type->scalarType().has_value() &&
(guard_tensor_type->scalarType().value() != tensor.scalar_type())) ||
(guard_tensor_type->device().has_value() &&
(guard_tensor_type->device().value() != tensor.device())) ||
(guard_tensor_type->requiresGrad().has_value() &&
guard_tensor_type->requiresGrad().value() !=
(tensor.requires_grad() && at::GradMode::is_enabled()))) {
return false;
}
// TODO: should we get symbolic_size instead and check for size
// consistency across tensors as well?
const auto& sizes = guard_tensor_type->sizes();
// see [ Note -- stirde_properties in tensor type ]
const auto& stride_properties = guard_tensor_type->stride_properties();
const auto& t_sizes = tensor.sizes();
const auto& t_strides = tensor.strides();
int inner_dim = -1;
for (const auto j : c10::irange(*guard_tensor_type->dim())) {
// check b. for stride check, we go along dimensions from fastest stride to
// slowest stride
int sorted_index = stride_properties[j]->stride_index_
? static_cast<int>(*stride_properties[j]->stride_index_)
: -1;
// only apply stride check when we have stride_properties
if (sorted_index != -1) {
// check b.1. stride order [current dimension has stride larger
// than its inner dimension(s)], check only applies when both:
// i. already encountered an inner dimension
// ii. not at the fastest dimension
if (j != 0 && inner_dim != -1) {
// we are not looking at dim-j, but dim-sorted_index, which
// is the j-th fastest dim;
// Note: we ignore 0-stride dimension, since eager logic on stride
// indices is ambiguous
if (t_strides[sorted_index] != 0 && t_strides[inner_dim] != 0 &&
t_strides[sorted_index] < t_strides[inner_dim]) {
return false;
}
}
// check b.2. contiguity, we only check when it's marked as
// contiguous.
if (stride_properties[j]->contiguous_ &&
*stride_properties[j]->contiguous_) {
if (j != 0) {
// we use contiguity to collapse dimension, if size == 1, it is
// always collapsible
// computeStrideProps also default to contiguous when stride == 1
if (t_sizes[sorted_index] != 1 && t_strides[sorted_index] != 1) {
TORCH_INTERNAL_ASSERT(
stride_properties[j - 1]->stride_index_.has_value(),
"Counknown index is meaningless");
// TODO: merge this check up
if (t_strides[sorted_index] !=
t_strides[inner_dim] * t_sizes[inner_dim]) {
return false;
}
}
} else {
// TODO: merge this check up
if (t_strides[sorted_index] != 1) {
return false;
}
}
}
// update inner_dim to be current dim. Note that we try to skip update
// when current `t_size[sorted_index] == 1`, because:
// 1. stride comparison on a size-1 dimension is meaningless
// [check b.1]
// 2. contiguity on a size-1 dimension is misleading. For collapsing,
// we should actually look at the next non-size-1 dimension
// [check b.2]
if (inner_dim == -1 || t_sizes[sorted_index] != 1) {
inner_dim = sorted_index;
}
}
// check c.1, we go along semantic ordered dimensions
// check broadcast / size-1:
bool guard_bcast = sizes[j].has_value() && sizes[j].value() == 1;
if (guard_bcast != (t_sizes[j] == 1)) {
return false;
}
// check c.2, check for size-0
bool guard_size_0 = sizes[j].has_value() && sizes[j].value() == 0;
if (guard_size_0 != (t_sizes[j] == 0)) {
return false;
}
}
return true;
}
} // namespace cuda
} // namespace fuser
namespace {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators size_eq_guard({
Operator(
//"prim::CudaFusionSizeEq(int[] size, int[] ref) -> bool",
"prim::CudaFusionSizeEq(...) -> bool",
// prim::CudaFusionGuard returns a fresh Boolean type without aliasing.
// if we would ever return refined tensor, which would change aliasing
// analysis, we should update aliasdb pass.
[](const Node* node) -> Operation {
return [](Stack& stack) {
at::ArrayRef<IValue> inputs = last(stack, 2);
drop(stack, 2);
if (!fuser::cuda::getCudaFusionGuardMode()) {
push(stack, IValue(true));
return;
}
// auto inp = inputs[0].toIntList();
TORCH_INTERNAL_ASSERT(
inputs[1].isIntList(), "reference needs to be of int list");
auto ref = inputs[1].toIntList();
auto ret = true;
if (ref.empty()) {
ret = inputs[0].isNone();
} else {
if (inputs[0].isIntList()) {
auto inp = inputs[0].toIntList();
if (inp.size() != ref.size()) {
push(stack, IValue(false));
return;
}
for (const auto i : c10::irange(inp.size())) {
if (((inp[i] == 1) != (ref[i] == 1))) {
ret = false;
break;
}
}
} else {
ret = false;
}
}
push(stack, IValue(ret));
return;
};
},
aliasAnalysisFromSchema()),
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_fusion({
Operator(
prim::CudaFusionGroup,
[](const Node* node) -> Operation {
return [node](Stack& stack) {
fuser::cuda::runFusionGroup(node, stack);
};
},
aliasAnalysisSpecialCase()),
});
RegisterOperators reg_guard({
Operator(
"prim::CudaFusionGuard(...) -> bool",
// prim::CudaFusionGuard returns a fresh Boolean type without aliasing.
// if we would ever return refined tensor, which would change aliasing
// analysis, we should update aliasdb pass.
[](const Node* node) -> Operation {
return [node](Stack& stack) {
// TODO: check latency here!!!!
std::vector<TypePtr> types = node->tys(attr::types);
const auto num_inputs = types.size();
at::ArrayRef<IValue> inputs = last(stack, num_inputs);
drop(stack, num_inputs);
if (!fuser::cuda::getCudaFusionGuardMode()) {
push(stack, IValue(true));
return;
}
for (const auto i : c10::irange(num_inputs)) {
const c10::TensorTypePtr& guard_tensor_type =
types[i]->cast<TensorType>();
// TODO: maybe we should just push false and fallback
TORCH_INTERNAL_ASSERT(inputs[i].isTensor());
const at::Tensor& tensor = inputs[i].toTensor();
if (!fuser::cuda::complyWith(tensor, guard_tensor_type)) {
push(stack, IValue(false));
return;
}
}
// TODO: check type and return the right flag
// naively return true;
push(stack, IValue(true));
return;
};
},
aliasAnalysisFromSchema()),
});
// Infer dynamic axis (-1) in view_sizes given tensor_sizes
bool inferViewShape(
c10::List<int64_t> tensor_sizes,
c10::List<int64_t> view_sizes) {
int64_t dynamic_index = -1;
size_t view_size_num_elements = 1;
for (size_t idx = 0; idx < view_sizes.size(); ++idx) {
if (view_sizes[idx] == -1) {
TORCH_INTERNAL_ASSERT(
dynamic_index == -1, "Only one dimension can by inferred.")
dynamic_index = idx;
} else {
TORCH_INTERNAL_ASSERT(view_sizes[idx] > 0);
view_size_num_elements *= view_sizes[idx];
}
}
const size_t kNumElements = std::accumulate(
tensor_sizes.begin(), tensor_sizes.end(), 1, std::multiplies<>());
if (kNumElements % view_size_num_elements != 0) {
return false;
}
if (dynamic_index != -1) {
view_sizes[dynamic_index] = kNumElements / view_size_num_elements;
}
return true;
}
//!
//! CudaFusionViewGuard Example Graph:
//!
//! graph(%self : __torch__.BiasViewRelu,
//! %inputs.1 : Tensor):
//! %2 : int = prim::Constant[value=-1]() # dynamic_bvg.py:50:40
//! %3 : int = prim::Constant[value=1]() # dynamic_bvg.py:50:25
//! %4 : NoneType = prim::Constant()
//! %5 : int[] = prim::Constant[value=[2, 3]]()
//! %6 : int[] = aten::size(%inputs.1) # dynamic_bvg.py:50:25
//! %7 : int[] = aten::slice(%6, %4, %2, %3) # dynamic_bvg.py:50:25
//! %view_shape.1 : int[] = aten::add(%7, %5) # dynamic_bvg.py:50:25
//! %bias : Tensor = prim::GetAttr[name="bias"](%self)
//! %10 : int[] = aten::size(%bias)
//! %11 : int[] = prim::BroadcastSizes(%6, %10)
//! %12 : bool = prim::CudaFusionGuard[types=[...]](%inputs.1, %bias)
//! %13 : int[] = prim::Constant[value=[-1, -1, -1, 6]]()
//! %14 : int[] = prim::Constant[value=[-1, -1, -1, 2, 3]]()
//! %15 : bool = prim::CudaFusionViewGuard(%11, %view_shape.1, %13, %14)
//! %16 : bool[] = prim::ListConstruct(%15, %12)
//! %17 : bool = aten::all(%16)
//! %18 : Tensor = prim::If(%17)
//! block0():
//! %19 : Tensor = prim::CudaFusionGroup_0[cache_id=0](%inputs.1, %bias)
//! -> (%19)
//! block1():
//! %20 : Function = prim::Constant[name="fallback_fn", fallback=1]()
//! %21 : (...) = prim::CallFunction(%20, %inputs.1, %bias, %view_shape.1)
//! %22 : Float(...) = prim::TupleUnpack(%21)
//! -> (%22)
//! return (%18)
//! with prim::CudaFusionGroup_0 = graph(%0 : Float(...),
//! %1 : Float(...)):
//! %2 : int[] = prim::Constant[value=[2, 3, 4, 2, 3]]()
//! %3 : int = prim::Constant[value=1]() # dynamic_bvg.py:50:25
//! %o.1 : Float(...) = aten::add(%0, %1, %3) # dynamic_bvg.py:51:16
//! %5 : Float(...) = prim::view_copy(%o.1, %2)
//! %6 : Float(...) = aten::relu(%5) # dynamic_bvg.py:53:19
//! return (%6)
//!
RegisterOperators view_guard({
Operator(
"prim::CudaFusionViewGuard(...) -> bool",
// prim::CudaFusionViewGuard returns a fresh Boolean type without
// aliasing. if we would ever return refined tensor, which would change
// aliasing analysis, we should update aliasdb pass.
[](const Node* node) -> Operation {
return [](Stack& stack) {
// view_sizes_constraint - Constant List[Int]
at::ArrayRef<IValue> inputs = last(stack, 3);
// tensor_sizes is the runtime size for the self tensor
// tensor_sizes - dynamic size List[Int]
TORCH_INTERNAL_ASSERT(
inputs[0].isIntList(), "tensor_sizes needs to be Int List");
auto tensor_sizes = inputs[0].toIntList();
// profiled_view_sizes is the runtime view size
// profiled_view_sizes - profile_ivalue List[Int]
TORCH_INTERNAL_ASSERT(
inputs[1].isIntList(),
"profiled_view_sizes needs to be Int list");
auto profiled_view_sizes = inputs[1].toIntList();
// tensor_constraints is a constant List[Int]
// used to guard tensor_sizes
TORCH_INTERNAL_ASSERT(
inputs[2].isIntList(),
"tensor constraint needs to be Int List");
auto tensor_constraints = inputs[2].toIntList();
// Drop after gather all input arguments
// If an argument is moved, it is destroyed when dropped from stack
drop(stack, 3);
auto status = inferViewShape(tensor_sizes, profiled_view_sizes);
if (!status) {
push(stack, IValue(false));
return;
}
if (!fuser::cuda::getCudaFusionGuardMode()) {
push(stack, IValue(true));
return;
}
std::vector<int64_t> tensor_sizes_int_vec = tensor_sizes.vec();
std::vector<int64_t> view_sizes_int_vec = tensor_sizes.vec();
std::vector<int64_t> previous_constraints =
tensor_constraints.vec();
auto new_constraints = fuser::cuda::getViewConstraint(
tensor_sizes_int_vec, view_sizes_int_vec);
bool guard_status =
(new_constraints.conglomerateString() == previous_constraints);
push(stack, IValue(guard_status));
return;
};
},
aliasAnalysisFromSchema()),
});
RegisterOperators ivalue_guard({
Operator(
"prim::CudaFusionIvalGuard(...) -> bool",
[](const Node* node) -> Operation {
return [](Stack& stack) {
at::ArrayRef<IValue> inputs = last(stack, 2);
drop(stack, 2);
if (!fuser::cuda::getCudaFusionGuardMode()) {
push(stack, IValue(true));
return;
}
push(stack, inputs[0].equals(inputs[1]));
return;
};
},
aliasAnalysisFromSchema()),
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_add_optional({
Operator(
"prim::add_optional(Tensor(a) input, Tensor? bias) -> Tensor(a)",
[](const Node* node) -> Operation {
return [](Stack& stack) {
IValue input, bias;
pop(stack, input, bias);
if (bias.isNone()) {
push(stack, std::move(input));
} else {
push(stack, at::add(input.toTensor(), bias.toTensor(), 1.0));
}
};
},
aliasAnalysisFromSchema()),
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_view_copy({
Operator(
"prim::view_copy(Tensor self, int[] size) -> Tensor",
[](const Node* node) -> Operation {
return [node](Stack& stack) {
TORCH_CHECK(
node->s(attr::name) == "CudaFusionGroup",
"view_copy is only used by nvfuser to identify non-mutating ",
"alias ops, should be restored after fusion pass!");
IValue self, size;
pop(stack, self, size);
push(stack, at::native::view(self.toTensor(), size.toIntVector()));
};
},
aliasAnalysisFromSchema()),
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_flatten_copy({
Operator(
"prim::flatten_copy(Tensor self, int start_dim, int end_dim) -> Tensor",
[](const Node* node) -> Operation {
return [node](Stack& stack) {
TORCH_CHECK(
node->s(attr::name) == "CudaFusionGroup",
"flatten_copy is only used by nvfuser to identify non-mutating ",
"alias ops, should be restored after fusion pass!");
IValue self, start_dim, end_dim;
pop(stack, self, start_dim, end_dim);
push(
stack,
at::native::flatten(
self.toTensor(), start_dim.toInt(), end_dim.toInt()));
};
},
aliasAnalysisFromSchema()),
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_reshape_copy({
Operator(
"prim::reshape_copy(Tensor self, int[] shape) -> Tensor",
[](const Node* node) -> Operation {
return [node](Stack& stack) {
TORCH_CHECK(
node->s(attr::name) == "CudaFusionGroup",
"reshape_copy is only used by nvfuser to identify non-mutating ",
"alias ops, should be restored after fusion pass!");
IValue self, shape;
pop(stack, self, shape);
push(
stack,
at::native::reshape(self.toTensor(), shape.toIntVector()));
};
},
aliasAnalysisFromSchema()),
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_squeeze_copy({
Operator(
"prim::squeeze_copy(Tensor self) -> Tensor",
[](const Node* node) -> Operation {
return [node](Stack& stack) {
TORCH_CHECK(
node->s(attr::name) == "CudaFusionGroup",
"squeeze_copy is only used by nvfuser to identify non-mutating ",
"alias ops, should be restored after fusion pass!");
IValue self;
pop(stack, self);
push(stack, at::squeeze(self.toTensor()));
};
},
aliasAnalysisFromSchema()),
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_squeeze_dim_copy({
Operator(
"prim::squeeze_copy.dim(Tensor self, int dim) -> Tensor",
[](const Node* node) -> Operation {
return [node](Stack& stack) {
TORCH_CHECK(
node->s(attr::name) == "CudaFusionGroup",
"squeeze_dim_copy is only used by nvfuser to identify non-mutating ",
"alias ops, should be restored after fusion pass!");
IValue self, dim;
pop(stack, self, dim);
push(stack, at::squeeze(self.toTensor(), dim.toInt()));
};
},
aliasAnalysisFromSchema()),
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_unsqueeze_copy({
Operator(
"prim::unsqueeze_copy(Tensor self, int dim) -> Tensor",
[](const Node* node) -> Operation {
return [node](Stack& stack) {
TORCH_CHECK(
node->s(attr::name) == "CudaFusionGroup",
"unsqueeze_copy is only used by nvfuser to identify non-mutating ",
"alias ops, should be restored after fusion pass!");
IValue self, dim;
pop(stack, self, dim);
push(stack, at::unsqueeze(self.toTensor(), dim.toInt()));
};
},
aliasAnalysisFromSchema()),
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_infer_unsqueeze_size({
Operator(
"prim::infer_unsqueeze_size(int[] a, int dim) -> int[]",
[](const Node* node) -> Operation {
return [](Stack& stack) {
auto dim = pop(stack).toInt();
auto size = pop(stack).toIntVector();
if (dim < 0) {
dim = dim + 1 + size.size();
}
auto it = size.begin() + dim;
size.insert(it, 1);
push(stack, IValue(size));
};
},
aliasAnalysisFromSchema()),
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_infer_squeeze_dim_size({
Operator(
"prim::infer_squeeze_size.dim(int[] a, int dim) -> int[]",
[](const Node* node) -> Operation {
return [](Stack& stack) {
auto dim = pop(stack).toInt();
auto size = pop(stack).toIntVector();
if (dim < 0) {
dim = dim + size.size();
}
auto it = size.begin() + dim;
if (*it == 1) {
size.erase(it);
}
push(stack, IValue(size));
};
},
aliasAnalysisFromSchema()),
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_infer_squeeze_size({
Operator(
"prim::infer_squeeze_size(int[] a) -> int[]",
[](const Node* node) -> Operation {
return [](Stack& stack) {
auto size = pop(stack).toIntVector();
for (auto it = size.begin(); it != size.end(); it++) {
if (*it == 1) {
auto pre = it - 1;
size.erase(it);
it = pre;
}
}
push(stack, IValue(size));
};
},
aliasAnalysisFromSchema()),
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_expand_copy({
Operator(
"prim::expand_copy(Tensor self, int[] size, *, bool implicit=False) -> Tensor",
[](const Node* node) -> Operation {
return [node](Stack& stack) {
TORCH_CHECK(
node->s(attr::name) == "CudaFusionGroup",
"expand_copy is only used by nvfuser to identify non-mutating ",
"alias ops, should be restored after fusion pass!");
IValue self, size, implicit;
pop(stack, self, size, implicit);
push(stack, self.toTensor().expand(size.toIntVector()));
};
},
aliasAnalysisFromSchema()),
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_expand_as_copy({
Operator(
"prim::expand_as_copy(Tensor self, Tensor other) -> Tensor",
[](const Node* node) -> Operation {
return [node](Stack& stack) {
TORCH_CHECK(
node->s(attr::name) == "CudaFusionGroup",
"expand_as_copy is only used by nvfuser to identify non-mutating ",
"alias ops, should be restored after fusion pass!");
IValue self, other;
pop(stack, self, other);
push(
stack,
at::native::expand_as(self.toTensor(), other.toTensor()));
};
},
aliasAnalysisFromSchema()),
});
} // namespace
} // namespace jit
} // namespace torch
|