File: interface.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (873 lines) | stat: -rw-r--r-- 30,593 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
#include <torch/csrc/jit/codegen/cuda/interface.h>

#include <ATen/core/dispatch/OperatorOptions.h>
#include <ATen/native/NonSymbolicBC.h>
#include <ATen/native/TensorShape.h>
#include <c10/util/CallOnce.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/codegen/cuda/transform_view.h>
#include <torch/csrc/jit/runtime/custom_operator.h>
#include <torch/csrc/jit/runtime/register_ops_utils.h>

// NOLINTNEXTLINE
C10_DEFINE_bool(
    torch_jit_nvfuser_singleton_fusion,
    false,
    "enable single node fusion for nvfuser");

// NOLINTNEXTLINE
C10_DEFINE_bool(
    torch_jit_nvfuser_horizontal_fusion,
    true,
    "enable horizontal fusion for nvfuser");

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

static std::atomic<bool> cuda_fusion_guard_mode{true};

// There are 3 sources of information on whether to enable nvfuser:
// 1. assigned value from setEnabled() - takes precendence if it has been set
// 2. value from environment variable - only used if setEnabled() is unset
// 3. default value - used if both 1 and 2 are unset.
//
// If 1 or 2 tries to enable nvfuser when it cannot be enabled (e.g. cuda not
// available), then an error will be thrown. The default will not error.
class NVFuserEnabler {
 private:
  c10::optional<bool> runtime_assigned_fuser_enabled_ = c10::nullopt;
  c10::once_flag enabled_check_flag_;
  std::mutex mutex_;

 public:
  static bool nvfuserCanBeEnabled() {
    return at::globalContext().hasCUDA() &&
        NVFuserPassManager::isRegistered() && getExecutorMode();
  }

 private:
  static void assertFuserCanBeEnabled(bool is_enabled) {
    if (!is_enabled) {
      return;
    }
    TORCH_CHECK(
        nvfuserCanBeEnabled(),
        "Running CUDA fuser is only supported on CUDA builds.");
  }

  static c10::optional<bool> getFuserEnabledEnvVar() {
    static const char* enable_c_str = std::getenv("PYTORCH_JIT_ENABLE_NVFUSER");
    if (!enable_c_str) {
      return c10::nullopt;
    }
    std::string enable(enable_c_str);
    if (enable == "0" || enable == "OFF") {
      return false;
    }
    return true;
  }

  static c10::optional<bool> getCachedFuserEnabledEnvVar() {
    static c10::optional<bool> default_enabled = getFuserEnabledEnvVar();
    return default_enabled;
  }

  static bool getNNCNotNVFuser() {
    static const char* env_c_str =
        std::getenv("PYTORCH_JIT_USE_NNC_NOT_NVFUSER");
    if (!env_c_str) {
      return false;
    }
    std::string env(env_c_str);
    if (env == "1" || env == "ON") {
      return true;
    }
    return false;
  }

  static bool getCachedNNCNotNVFuser() {
    static bool force_disable = getNNCNotNVFuser();
    return force_disable;
  }

  bool isEnabledImpl() {
    // 0. opportunity to force disable NVFuser
    if (getCachedNNCNotNVFuser()) {
      return false;
    }
    c10::call_once(enabled_check_flag_, [&]() {
      // if environment variable is setting the value, we must
      if (!runtime_assigned_fuser_enabled_.has_value() &&
          getCachedFuserEnabledEnvVar().has_value()) {
        assertFuserCanBeEnabled(*getCachedFuserEnabledEnvVar());
      }
    });
    // 1. if user has explicitly assigned fuser value, that value takes
    // precedence.
    if (runtime_assigned_fuser_enabled_.has_value()) {
      return *runtime_assigned_fuser_enabled_;
    }
    // 2. next precedence is any value assigned by
    if (getCachedFuserEnabledEnvVar().has_value()) {
      return *getCachedFuserEnabledEnvVar();
    }
    // 3. default value
#if defined(USE_ROCM) || defined(FBCODE_CAFFE2)
    return false;
#else
    return nvfuserCanBeEnabled();
#endif
  }

 public:
  bool setEnabled(bool is_enabled) {
    std::lock_guard<std::mutex> lock(mutex_);
    assertFuserCanBeEnabled(is_enabled);
    bool old_value = isEnabledImpl();
    runtime_assigned_fuser_enabled_ = is_enabled;
    return old_value;
  }

  bool isEnabled() {
    std::lock_guard<std::mutex> lock(mutex_);
    return isEnabledImpl();
  }
};

static NVFuserEnabler nvfuser_enabler;

bool isEnabled() {
  return nvfuser_enabler.isEnabled();
}

bool setEnabled(bool is_enabled) {
  return nvfuser_enabler.setEnabled(is_enabled);
}

bool canBeEnabled() {
  return nvfuser_enabler.nvfuserCanBeEnabled();
}

bool getSingletonFusion() {
  return FLAGS_torch_jit_nvfuser_singleton_fusion;
}

bool setSingletonFusion(bool value) {
  bool old_value = FLAGS_torch_jit_nvfuser_singleton_fusion;
  FLAGS_torch_jit_nvfuser_singleton_fusion = value;
  return old_value;
}

bool getHorizontalFusion() {
  return FLAGS_torch_jit_nvfuser_horizontal_fusion;
}

bool setHorizontalFusion(bool value) {
  bool old_value = FLAGS_torch_jit_nvfuser_horizontal_fusion;
  FLAGS_torch_jit_nvfuser_horizontal_fusion = value;
  return old_value;
}

std::atomic<bool>& getCudaFusionGuardMode() {
  return cuda_fusion_guard_mode;
}

CudaFuserInterface* getFuserInterface() {
  static CudaFuserInterface fuser_interface_;
  return &fuser_interface_;
}

void compileFusionGroup(Node* fusion_node) {
  TORCH_CHECK(
      getFuserInterface()->fn_compile_n != nullptr,
      "Running the CUDA fuser requires a CUDA build.");
  getFuserInterface()->fn_compile_n(fusion_node);
}

void runFusionGroup(const Node* fusion_node, Stack& stack) {
  TORCH_CHECK(
      getFuserInterface()->fn_run_n_s != nullptr,
      "Running the CUDA fuser requires a CUDA build.");
  getFuserInterface()->fn_run_n_s(fusion_node, stack);
}

void fuseGraph(std::shared_ptr<Graph>& graph) {
  if (!isEnabled()) {
    return;
  }

  TORCH_CHECK(
      getFuserInterface()->fn_fuse_graph != nullptr,
      "Running the CUDA fuser requires a CUDA build.");
  getFuserInterface()->fn_fuse_graph(graph);
}

bool canFuseNode(const Node* node) {
  return getFuserInterface()->fn_can_fuse_n != nullptr &&
      getFuserInterface()->fn_can_fuse_n(node);
}

void InsertProfileNodesForCUDAFuser(ProfilingRecord* pr) {
  if (getFuserInterface()->fn_insert_profile_inodes) {
    getFuserInterface()->fn_insert_profile_inodes(pr);
  }
}

bool profileNode(const Node* node) {
  return getFuserInterface()->fn_profile_n != nullptr &&
      getFuserInterface()->fn_profile_n(node);
}

bool skipNode(const std::string& symbol_str, bool flip) {
  return getFuserInterface()->fn_skip_n != nullptr &&
      getFuserInterface()->fn_skip_n(symbol_str, flip);
}

AnalyzeViewConstraint getViewConstraint(
    const std::vector<int64_t>& original_sizes,
    const std::vector<int64_t>& new_sizes) {
  if (getFuserInterface()->fn_analyze_view != nullptr) {
    return getFuserInterface()->fn_analyze_view(original_sizes, new_sizes);
  }
  TORCH_INTERNAL_ASSERT(false, "Requires nvFuser which requires CUDA build.");
}

//! [ Note -- type guard logic in CudaFusionGuard ]
//!
//! CudaFusionGuard is used to Guard input tensor to `CudaFusionGroup` so that
//! we would not feed inputs that violates the graph defined in `GraphCache`.
//!
//! see [ Note -- 2 level cache implementation ] for definition of unique
//! computational graph.
//! see [ Note -- CudaFusionGuard implementation] for details on how guard works
//! in profiling executor
//!
//! Type guard logic is used to query whether a runtime input `tensor` compiles
//! with profiled `guard_tensor_type`. `guard_tensor_type` is the observed
//! tensor type during profiling runs.
//!
//! At this moment, we only do single profiling run, so `guard_tensor_type` has
//! static shape / stride / scalarType. *This might be a little confusing as our
//! implementation is actually more relaxed.
//!
//! Things that we check:
//!   a. identical rank & scalar type
//!   b. stride check:
//!        b.1. identical stride order
//!        b.2. identical contiguity
//!             note that contiguity here is used for tensor collapsing. So
//!             extra attention should be paid to contiguity across size-1
//!             dimensions.
//!   c. size check:
//!        c.1 broadcast check:
//!        making sure that broadcast semantics are identical. So we want to
//!        make sure a given dimension either are both size-1 for `tensor` &
//!        `guard_tensor_type`, or are both non-size-1.
//!        This is due to the fact that we specialize size-1 dimension as
//!        broadcasted dimension while translating PyTorch tensor to Fusion IR.
//!        c.1 size-0 check:
//!        we don't specialize this on codegen, but we do specialize fusion
//!        logic for size-0 on reductoins, hence the check
//!
bool complyWith(
    const at::Tensor& tensor,
    const c10::TensorTypePtr& guard_tensor_type) {
  // guard broadcast semantics, contiguity & stride order;
  TORCH_INTERNAL_ASSERT(
      guard_tensor_type && guard_tensor_type->dim().has_value());

  // check a. if num_dimension check fails or scalar type check fails
  if (*guard_tensor_type->dim() != static_cast<size_t>(tensor.ndimension()) ||
      (guard_tensor_type->scalarType().has_value() &&
       (guard_tensor_type->scalarType().value() != tensor.scalar_type())) ||
      (guard_tensor_type->device().has_value() &&
       (guard_tensor_type->device().value() != tensor.device())) ||
      (guard_tensor_type->requiresGrad().has_value() &&
       guard_tensor_type->requiresGrad().value() !=
           (tensor.requires_grad() && at::GradMode::is_enabled()))) {
    return false;
  }

  // TODO: should we get symbolic_size instead and check for size
  // consistency across tensors as well?
  const auto& sizes = guard_tensor_type->sizes();
  // see [ Note -- stirde_properties in tensor type ]
  const auto& stride_properties = guard_tensor_type->stride_properties();

  const auto& t_sizes = tensor.sizes();
  const auto& t_strides = tensor.strides();
  int inner_dim = -1;
  for (const auto j : c10::irange(*guard_tensor_type->dim())) {
    // check b. for stride check, we go along dimensions from fastest stride to
    // slowest stride
    int sorted_index = stride_properties[j]->stride_index_
        ? static_cast<int>(*stride_properties[j]->stride_index_)
        : -1;

    // only apply stride check when we have stride_properties
    if (sorted_index != -1) {
      // check b.1. stride order [current dimension has stride larger
      // than its inner dimension(s)], check only applies when both:
      //     i. already encountered an inner dimension
      //    ii. not at the fastest dimension
      if (j != 0 && inner_dim != -1) {
        // we are not looking at dim-j, but dim-sorted_index, which
        // is the j-th fastest dim;
        // Note: we ignore 0-stride dimension, since eager logic on stride
        // indices is ambiguous
        if (t_strides[sorted_index] != 0 && t_strides[inner_dim] != 0 &&
            t_strides[sorted_index] < t_strides[inner_dim]) {
          return false;
        }
      }

      // check b.2. contiguity, we only check when it's marked as
      // contiguous.
      if (stride_properties[j]->contiguous_ &&
          *stride_properties[j]->contiguous_) {
        if (j != 0) {
          // we use contiguity to collapse dimension, if size == 1, it is
          // always collapsible
          // computeStrideProps also default to contiguous when stride == 1
          if (t_sizes[sorted_index] != 1 && t_strides[sorted_index] != 1) {
            TORCH_INTERNAL_ASSERT(
                stride_properties[j - 1]->stride_index_.has_value(),
                "Counknown index is meaningless");
            // TODO: merge this check up
            if (t_strides[sorted_index] !=
                t_strides[inner_dim] * t_sizes[inner_dim]) {
              return false;
            }
          }
        } else {
          // TODO: merge this check up
          if (t_strides[sorted_index] != 1) {
            return false;
          }
        }
      }

      // update inner_dim to be current dim. Note that we try to skip update
      // when current `t_size[sorted_index] == 1`, because:
      //   1. stride comparison on a size-1 dimension is meaningless
      //      [check b.1]
      //   2. contiguity on a size-1 dimension is misleading. For collapsing,
      //      we should actually look at the next non-size-1 dimension
      //      [check b.2]
      if (inner_dim == -1 || t_sizes[sorted_index] != 1) {
        inner_dim = sorted_index;
      }
    }

    // check c.1, we go along semantic ordered dimensions
    // check broadcast / size-1:
    bool guard_bcast = sizes[j].has_value() && sizes[j].value() == 1;
    if (guard_bcast != (t_sizes[j] == 1)) {
      return false;
    }

    // check c.2, check for size-0
    bool guard_size_0 = sizes[j].has_value() && sizes[j].value() == 0;
    if (guard_size_0 != (t_sizes[j] == 0)) {
      return false;
    }
  }

  return true;
}

} // namespace cuda
} // namespace fuser

namespace {

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators size_eq_guard({
    Operator(
        //"prim::CudaFusionSizeEq(int[] size, int[] ref) -> bool",
        "prim::CudaFusionSizeEq(...) -> bool",
        // prim::CudaFusionGuard returns a fresh Boolean type without aliasing.
        // if we would ever return refined tensor, which would change aliasing
        // analysis, we should update aliasdb pass.
        [](const Node* node) -> Operation {
          return [](Stack& stack) {
            at::ArrayRef<IValue> inputs = last(stack, 2);
            drop(stack, 2);

            if (!fuser::cuda::getCudaFusionGuardMode()) {
              push(stack, IValue(true));
              return;
            }

            // auto inp = inputs[0].toIntList();
            TORCH_INTERNAL_ASSERT(
                inputs[1].isIntList(), "reference needs to be of int list");
            auto ref = inputs[1].toIntList();

            auto ret = true;
            if (ref.empty()) {
              ret = inputs[0].isNone();
            } else {
              if (inputs[0].isIntList()) {
                auto inp = inputs[0].toIntList();
                if (inp.size() != ref.size()) {
                  push(stack, IValue(false));
                  return;
                }

                for (const auto i : c10::irange(inp.size())) {
                  if (((inp[i] == 1) != (ref[i] == 1))) {
                    ret = false;
                    break;
                  }
                }
              } else {
                ret = false;
              }
            }

            push(stack, IValue(ret));
            return;
          };
        },
        aliasAnalysisFromSchema()),
});

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_fusion({
    Operator(
        prim::CudaFusionGroup,
        [](const Node* node) -> Operation {
          return [node](Stack& stack) {
            fuser::cuda::runFusionGroup(node, stack);
          };
        },
        aliasAnalysisSpecialCase()),
});

RegisterOperators reg_guard({
    Operator(
        "prim::CudaFusionGuard(...) -> bool",
        // prim::CudaFusionGuard returns a fresh Boolean type without aliasing.
        // if we would ever return refined tensor, which would change aliasing
        // analysis, we should update aliasdb pass.
        [](const Node* node) -> Operation {
          return [node](Stack& stack) {
            // TODO: check latency here!!!!
            std::vector<TypePtr> types = node->tys(attr::types);
            const auto num_inputs = types.size();
            at::ArrayRef<IValue> inputs = last(stack, num_inputs);
            drop(stack, num_inputs);

            if (!fuser::cuda::getCudaFusionGuardMode()) {
              push(stack, IValue(true));
              return;
            }

            for (const auto i : c10::irange(num_inputs)) {
              const c10::TensorTypePtr& guard_tensor_type =
                  types[i]->cast<TensorType>();

              // TODO: maybe we should just push false and fallback
              TORCH_INTERNAL_ASSERT(inputs[i].isTensor());
              const at::Tensor& tensor = inputs[i].toTensor();

              if (!fuser::cuda::complyWith(tensor, guard_tensor_type)) {
                push(stack, IValue(false));
                return;
              }
            }

            // TODO: check type and return the right flag
            // naively return true;
            push(stack, IValue(true));
            return;
          };
        },
        aliasAnalysisFromSchema()),
});

// Infer dynamic axis (-1) in view_sizes given tensor_sizes
bool inferViewShape(
    c10::List<int64_t> tensor_sizes,
    c10::List<int64_t> view_sizes) {
  int64_t dynamic_index = -1;
  size_t view_size_num_elements = 1;
  for (size_t idx = 0; idx < view_sizes.size(); ++idx) {
    if (view_sizes[idx] == -1) {
      TORCH_INTERNAL_ASSERT(
          dynamic_index == -1, "Only one dimension can by inferred.")
      dynamic_index = idx;
    } else {
      TORCH_INTERNAL_ASSERT(view_sizes[idx] > 0);
      view_size_num_elements *= view_sizes[idx];
    }
  }
  const size_t kNumElements = std::accumulate(
      tensor_sizes.begin(), tensor_sizes.end(), 1, std::multiplies<>());

  if (kNumElements % view_size_num_elements != 0) {
    return false;
  }

  if (dynamic_index != -1) {
    view_sizes[dynamic_index] = kNumElements / view_size_num_elements;
  }

  return true;
}

//!
//! CudaFusionViewGuard Example Graph:
//!
//! graph(%self : __torch__.BiasViewRelu,
//!       %inputs.1 : Tensor):
//!   %2 : int = prim::Constant[value=-1]() # dynamic_bvg.py:50:40
//!   %3 : int = prim::Constant[value=1]() # dynamic_bvg.py:50:25
//!   %4 : NoneType = prim::Constant()
//!   %5 : int[] = prim::Constant[value=[2, 3]]()
//!   %6 : int[] = aten::size(%inputs.1) # dynamic_bvg.py:50:25
//!   %7 : int[] = aten::slice(%6, %4, %2, %3) # dynamic_bvg.py:50:25
//!   %view_shape.1 : int[] = aten::add(%7, %5) # dynamic_bvg.py:50:25
//!   %bias : Tensor = prim::GetAttr[name="bias"](%self)
//!   %10 : int[] = aten::size(%bias)
//!   %11 : int[] = prim::BroadcastSizes(%6, %10)
//!   %12 : bool = prim::CudaFusionGuard[types=[...]](%inputs.1, %bias)
//!   %13 : int[] = prim::Constant[value=[-1, -1, -1, 6]]()
//!   %14 : int[] = prim::Constant[value=[-1, -1, -1, 2, 3]]()
//!   %15 : bool = prim::CudaFusionViewGuard(%11, %view_shape.1, %13, %14)
//!   %16 : bool[] = prim::ListConstruct(%15, %12)
//!   %17 : bool = aten::all(%16)
//!   %18 : Tensor = prim::If(%17)
//!     block0():
//!       %19 : Tensor = prim::CudaFusionGroup_0[cache_id=0](%inputs.1, %bias)
//!       -> (%19)
//!     block1():
//!       %20 : Function = prim::Constant[name="fallback_fn", fallback=1]()
//!       %21 : (...) = prim::CallFunction(%20, %inputs.1, %bias, %view_shape.1)
//!       %22 : Float(...) = prim::TupleUnpack(%21)
//!       -> (%22)
//!   return (%18)
//! with prim::CudaFusionGroup_0 = graph(%0 : Float(...),
//!       %1 : Float(...)):
//!   %2 : int[] = prim::Constant[value=[2, 3, 4, 2, 3]]()
//!   %3 : int = prim::Constant[value=1]() # dynamic_bvg.py:50:25
//!   %o.1 : Float(...) = aten::add(%0, %1, %3) # dynamic_bvg.py:51:16
//!   %5 : Float(...) = prim::view_copy(%o.1, %2)
//!   %6 : Float(...) = aten::relu(%5) # dynamic_bvg.py:53:19
//!   return (%6)
//!
RegisterOperators view_guard({
    Operator(
        "prim::CudaFusionViewGuard(...) -> bool",
        // prim::CudaFusionViewGuard returns a fresh Boolean type without
        // aliasing. if we would ever return refined tensor, which would change
        // aliasing analysis, we should update aliasdb pass.
        [](const Node* node) -> Operation {
          return [](Stack& stack) {
            // view_sizes_constraint - Constant List[Int]
            at::ArrayRef<IValue> inputs = last(stack, 3);

            // tensor_sizes is the runtime size for the self tensor
            // tensor_sizes - dynamic size List[Int]
            TORCH_INTERNAL_ASSERT(
                inputs[0].isIntList(), "tensor_sizes needs to be Int List");
            auto tensor_sizes = inputs[0].toIntList();

            // profiled_view_sizes is the runtime view size
            // profiled_view_sizes - profile_ivalue List[Int]
            TORCH_INTERNAL_ASSERT(
                inputs[1].isIntList(),
                "profiled_view_sizes needs to be Int list");
            auto profiled_view_sizes = inputs[1].toIntList();

            // tensor_constraints is a constant List[Int]
            // used to guard tensor_sizes
            TORCH_INTERNAL_ASSERT(
                inputs[2].isIntList(),
                "tensor constraint needs to be Int List");
            auto tensor_constraints = inputs[2].toIntList();

            // Drop after gather all input arguments
            // If an argument is moved, it is destroyed when dropped from stack
            drop(stack, 3);

            auto status = inferViewShape(tensor_sizes, profiled_view_sizes);
            if (!status) {
              push(stack, IValue(false));
              return;
            }

            if (!fuser::cuda::getCudaFusionGuardMode()) {
              push(stack, IValue(true));
              return;
            }
            std::vector<int64_t> tensor_sizes_int_vec = tensor_sizes.vec();
            std::vector<int64_t> view_sizes_int_vec = tensor_sizes.vec();
            std::vector<int64_t> previous_constraints =
                tensor_constraints.vec();
            auto new_constraints = fuser::cuda::getViewConstraint(
                tensor_sizes_int_vec, view_sizes_int_vec);
            bool guard_status =
                (new_constraints.conglomerateString() == previous_constraints);
            push(stack, IValue(guard_status));
            return;
          };
        },
        aliasAnalysisFromSchema()),
});

RegisterOperators ivalue_guard({
    Operator(
        "prim::CudaFusionIvalGuard(...) -> bool",
        [](const Node* node) -> Operation {
          return [](Stack& stack) {
            at::ArrayRef<IValue> inputs = last(stack, 2);
            drop(stack, 2);
            if (!fuser::cuda::getCudaFusionGuardMode()) {
              push(stack, IValue(true));
              return;
            }
            push(stack, inputs[0].equals(inputs[1]));
            return;
          };
        },
        aliasAnalysisFromSchema()),
});

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_add_optional({
    Operator(
        "prim::add_optional(Tensor(a) input, Tensor? bias) -> Tensor(a)",
        [](const Node* node) -> Operation {
          return [](Stack& stack) {
            IValue input, bias;
            pop(stack, input, bias);
            if (bias.isNone()) {
              push(stack, std::move(input));
            } else {
              push(stack, at::add(input.toTensor(), bias.toTensor(), 1.0));
            }
          };
        },
        aliasAnalysisFromSchema()),
});

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_view_copy({
    Operator(
        "prim::view_copy(Tensor self, int[] size) -> Tensor",
        [](const Node* node) -> Operation {
          return [node](Stack& stack) {
            TORCH_CHECK(
                node->s(attr::name) == "CudaFusionGroup",
                "view_copy is only used by nvfuser to identify non-mutating ",
                "alias ops, should be restored after fusion pass!");
            IValue self, size;
            pop(stack, self, size);
            push(stack, at::native::view(self.toTensor(), size.toIntVector()));
          };
        },
        aliasAnalysisFromSchema()),
});

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_flatten_copy({
    Operator(
        "prim::flatten_copy(Tensor self, int start_dim, int end_dim) -> Tensor",
        [](const Node* node) -> Operation {
          return [node](Stack& stack) {
            TORCH_CHECK(
                node->s(attr::name) == "CudaFusionGroup",
                "flatten_copy is only used by nvfuser to identify non-mutating ",
                "alias ops, should be restored after fusion pass!");
            IValue self, start_dim, end_dim;
            pop(stack, self, start_dim, end_dim);
            push(
                stack,
                at::native::flatten(
                    self.toTensor(), start_dim.toInt(), end_dim.toInt()));
          };
        },
        aliasAnalysisFromSchema()),
});

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_reshape_copy({
    Operator(
        "prim::reshape_copy(Tensor self, int[] shape) -> Tensor",
        [](const Node* node) -> Operation {
          return [node](Stack& stack) {
            TORCH_CHECK(
                node->s(attr::name) == "CudaFusionGroup",
                "reshape_copy is only used by nvfuser to identify non-mutating ",
                "alias ops, should be restored after fusion pass!");
            IValue self, shape;
            pop(stack, self, shape);
            push(
                stack,
                at::native::reshape(self.toTensor(), shape.toIntVector()));
          };
        },
        aliasAnalysisFromSchema()),
});

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_squeeze_copy({
    Operator(
        "prim::squeeze_copy(Tensor self) -> Tensor",
        [](const Node* node) -> Operation {
          return [node](Stack& stack) {
            TORCH_CHECK(
                node->s(attr::name) == "CudaFusionGroup",
                "squeeze_copy is only used by nvfuser to identify non-mutating ",
                "alias ops, should be restored after fusion pass!");
            IValue self;
            pop(stack, self);
            push(stack, at::squeeze(self.toTensor()));
          };
        },
        aliasAnalysisFromSchema()),
});

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_squeeze_dim_copy({
    Operator(
        "prim::squeeze_copy.dim(Tensor self, int dim) -> Tensor",
        [](const Node* node) -> Operation {
          return [node](Stack& stack) {
            TORCH_CHECK(
                node->s(attr::name) == "CudaFusionGroup",
                "squeeze_dim_copy is only used by nvfuser to identify non-mutating ",
                "alias ops, should be restored after fusion pass!");
            IValue self, dim;
            pop(stack, self, dim);
            push(stack, at::squeeze(self.toTensor(), dim.toInt()));
          };
        },
        aliasAnalysisFromSchema()),
});

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_unsqueeze_copy({
    Operator(
        "prim::unsqueeze_copy(Tensor self, int dim) -> Tensor",
        [](const Node* node) -> Operation {
          return [node](Stack& stack) {
            TORCH_CHECK(
                node->s(attr::name) == "CudaFusionGroup",
                "unsqueeze_copy is only used by nvfuser to identify non-mutating ",
                "alias ops, should be restored after fusion pass!");
            IValue self, dim;
            pop(stack, self, dim);
            push(stack, at::unsqueeze(self.toTensor(), dim.toInt()));
          };
        },
        aliasAnalysisFromSchema()),
});

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_infer_unsqueeze_size({
    Operator(
        "prim::infer_unsqueeze_size(int[] a, int dim) -> int[]",
        [](const Node* node) -> Operation {
          return [](Stack& stack) {
            auto dim = pop(stack).toInt();
            auto size = pop(stack).toIntVector();
            if (dim < 0) {
              dim = dim + 1 + size.size();
            }
            auto it = size.begin() + dim;
            size.insert(it, 1);
            push(stack, IValue(size));
          };
        },
        aliasAnalysisFromSchema()),
});

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_infer_squeeze_dim_size({
    Operator(
        "prim::infer_squeeze_size.dim(int[] a, int dim) -> int[]",
        [](const Node* node) -> Operation {
          return [](Stack& stack) {
            auto dim = pop(stack).toInt();
            auto size = pop(stack).toIntVector();
            if (dim < 0) {
              dim = dim + size.size();
            }
            auto it = size.begin() + dim;
            if (*it == 1) {
              size.erase(it);
            }
            push(stack, IValue(size));
          };
        },
        aliasAnalysisFromSchema()),
});

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_infer_squeeze_size({
    Operator(
        "prim::infer_squeeze_size(int[] a) -> int[]",
        [](const Node* node) -> Operation {
          return [](Stack& stack) {
            auto size = pop(stack).toIntVector();

            for (auto it = size.begin(); it != size.end(); it++) {
              if (*it == 1) {
                auto pre = it - 1;
                size.erase(it);
                it = pre;
              }
            }
            push(stack, IValue(size));
          };
        },
        aliasAnalysisFromSchema()),
});

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_expand_copy({
    Operator(
        "prim::expand_copy(Tensor self, int[] size, *, bool implicit=False) -> Tensor",
        [](const Node* node) -> Operation {
          return [node](Stack& stack) {
            TORCH_CHECK(
                node->s(attr::name) == "CudaFusionGroup",
                "expand_copy is only used by nvfuser to identify non-mutating ",
                "alias ops, should be restored after fusion pass!");
            IValue self, size, implicit;
            pop(stack, self, size, implicit);
            push(stack, self.toTensor().expand(size.toIntVector()));
          };
        },
        aliasAnalysisFromSchema()),
});

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg_expand_as_copy({
    Operator(
        "prim::expand_as_copy(Tensor self, Tensor other) -> Tensor",
        [](const Node* node) -> Operation {
          return [node](Stack& stack) {
            TORCH_CHECK(
                node->s(attr::name) == "CudaFusionGroup",
                "expand_as_copy is only used by nvfuser to identify non-mutating ",
                "alias ops, should be restored after fusion pass!");
            IValue self, other;
            pop(stack, self, other);
            push(
                stack,
                at::native::expand_as(self.toTensor(), other.toTensor()));
          };
        },
        aliasAnalysisFromSchema()),
});

} // namespace

} // namespace jit
} // namespace torch