1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
#include <torch/csrc/jit/codegen/cuda/dispatch.h>
#include <torch/csrc/jit/codegen/cuda/expr_evaluator.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_builder.h>
#include <torch/csrc/jit/codegen/cuda/ir_cloner.h>
#include <torch/csrc/jit/codegen/cuda/ir_printer.h>
#include <torch/csrc/jit/codegen/cuda/kernel.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir_dispatch.h>
#include <torch/csrc/jit/codegen/cuda/mutator.h>
#include <torch/csrc/jit/ir/ir.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <iostream>
#include <stdexcept>
#include <string>
#include <unordered_map>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
Statement::Statement(IrBuilderPasskey passkey) {
ir_container_ = passkey.ir_container_;
}
Statement::Statement(const Statement* src, IrCloner* ir_cloner) {
ir_container_ = ir_cloner->container();
}
void Statement::setName(IrContainerPasskey, StmtNameType name) {
name_ = name;
}
void Statement::setName(IrBuilderPasskey, StmtNameType name) {
name_ = name;
}
Val* Statement::asVal() {
TORCH_INTERNAL_ASSERT(isVal(), "Cannot cast to Val as this is not a Val.");
return this->as<Val>();
}
Expr* Statement::asExpr() {
TORCH_INTERNAL_ASSERT(isExpr(), "Cannot cast to Expr as this is not a Expr.");
return this->as<Expr>();
}
std::string Statement::toString() const {
std::stringstream ss;
IrPrinter ir_printer(ss);
ir_printer.handle(this);
return ss.str();
}
std::string Statement::toInlineString() const {
std::stringstream ss;
IrPrinter ir_printer(ss);
ir_printer.print_inline(this);
return ss.str();
}
Fusion* Statement::fusion() const {
TORCH_INTERNAL_ASSERT(
ir_container_->isA<Fusion>(), "Statement does not belong to a fusion.");
return ir_container_->as<Fusion>();
}
kir::Kernel* Statement::kernel() const {
TORCH_INTERNAL_ASSERT(
ir_container_->isA<kir::Kernel>(),
"Statement does not belong to a kernel.");
return ir_container_->as<kir::Kernel>();
}
// When we create a Val we immediately register them with the active fusion.
Val::Val(IrBuilderPasskey passkey, ValType _vtype, DataType _dtype)
: Statement(passkey), vtype_(_vtype), dtype_(_dtype) {}
// NOTE: we don't clone the definition_ and uses_ here
// since they may introduce cloning cycles. Instead, we copy
// the original pointers and we'll fix them up later part of the
// Fusion copy. Neither definition_ nor uses_ are copied through
// this constructor now leaving them to be resolved by later stages
//
Val::Val(const Val* src, IrCloner* ir_cloner)
: Statement(src, ir_cloner), vtype_(src->vtype_), dtype_(src->dtype_) {}
const std::vector<Expr*>& Val::uses() const {
if (vtype_ == ValType::TensorView) {
if (!fusion()->isTVUseInfoValid() && !fusion()->isUpdatingTVUseInfo()) {
fusion()->resetTvUses();
}
}
return uses_;
}
// Converts the data type of TensorView or Scalar representing index
// values. The data type of the original input should be
// DataType::Index, but DataType::Int is also allowed as it is used
// for index expressions.
void Val::resolveIndexDtype() {
TORCH_INTERNAL_ASSERT(
vtype_ == ValType::TensorView || vtype_ == ValType::Scalar,
"Resolving index type is currently only supported on tensor view or scalar values. "
"Value type: ",
vtype_);
TORCH_INTERNAL_ASSERT(
dtype_ == DataType::Index || dtype_ == DataType::Int,
"Can only resolve index type if a Val has an Index or Int DataType. ",
"Data type: ",
dtype_);
TORCH_INTERNAL_ASSERT(
container()->isA<kir::Kernel>(),
"Index type can only be resolved at compile time.");
dtype_ = container()->as<kir::Kernel>()->indexType();
}
namespace {
// Traverse definition of all values involved in constructing the provided val.
// Check if all values involved are constant values, meaning the provided
// val is also a constant value.
class ConstCheck : private OptOutConstDispatch {
private:
bool is_const_ = true;
// Returns true if all Val's in the hisotry of provided Val is an Int. Since
// our expression evaluator doesn't support any type besides int, it's
// important to check it is one.
bool is_int_ = true;
void handle(const Bool* b) final {
is_const_ = is_const_ && b->isConst();
}
void handle(const Double* d) final {
is_const_ = is_const_ && d->isConst();
}
void handle(const Int* i) final {
is_const_ = is_const_ && i->isConst();
}
void handle(const NamedScalar* ns) final {
is_const_ = is_const_ && false;
}
void handle(const Expr* expr) final {
for (auto inp : expr->inputs()) {
handle(inp);
}
}
void handle(const Val* val) final {
if (!val->isAnInt()) {
is_int_ = false;
}
if (val->definition() != nullptr) {
handle(val->definition());
} else {
OptOutConstDispatch::handle(val);
}
}
public:
static bool isConst(const Val* val) {
ConstCheck cc;
cc.handle(val);
return cc.is_const_;
}
static bool isConstInt(const Val* val) {
ConstCheck cc;
cc.handle(val);
return cc.is_const_ && cc.is_int_;
}
};
} // namespace
bool Val::isConstScalar() const {
if (!isScalar()) {
return false;
}
return ConstCheck::isConst(this);
}
bool Val::isConstInt() const {
return ConstCheck::isConst(this) && isAnInt();
}
int64_t Val::evaluateInt() {
TORCH_INTERNAL_ASSERT(
ConstCheck::isConst(this),
"Cannot get Int of not const values through IR nodes, must use runtime ExpressionEvaluator.");
if (this->as<Int>()->value().has_value()) {
return this->as<Int>()->value().value();
}
ExpressionEvaluator ee(fusion());
auto evaluated_val = ee.evaluate(this);
TORCH_INTERNAL_ASSERT(
evaluated_val.has_value(),
"Detected a const integer but failed to infer its value.");
return evaluated_val->as<int64_t>();
}
double Val::evaluateDouble() {
TORCH_INTERNAL_ASSERT(
ConstCheck::isConst(this),
"Cannot get Double of not const doubles through IR nodes, must use runtime ExpressionEvaluator.");
if (this->as<Double>()->value().has_value()) {
return this->as<Double>()->value().value();
}
ExpressionEvaluator ee(fusion());
auto evaluated_val = ee.evaluate(this);
TORCH_INTERNAL_ASSERT(
evaluated_val.has_value(),
"Detected a const integer but failed to infer its value.");
return evaluated_val->as<double>();
}
c10::optional<int64_t> Val::getInt() const {
if (isConstScalar() && isAnInt()) {
if (this->getValType() == ValType::Scalar) {
if (this->isA<Int>()) {
return this->as<Int>()->value();
}
}
}
return c10::nullopt;
}
c10::optional<double> Val::getDouble() const {
if (isConstScalar() && isAnInt()) {
if (this->getValType() == ValType::Scalar) {
if (this->isA<Double>()) {
return this->as<Double>()->value();
}
}
}
return c10::nullopt;
}
bool Val::isZeroInt() const {
auto int_val = getInt();
return int_val.has_value() && int_val.value() == 0;
}
bool Val::isOneInt() const {
auto int_val = getInt();
return int_val.has_value() && int_val.value() == 1;
}
bool Val::isDefinitionType(ExprType expression_type) const {
if (definition() != nullptr) {
auto def_expr_type = definition()->getExprType();
if (def_expr_type.has_value() && def_expr_type.value() == expression_type) {
return true;
}
}
return false;
}
c10::optional<DataType> Val::getDataType() const {
TORCH_INTERNAL_ASSERT(
dtype_ != DataType::Null, "Value does not have a data type.");
return dtype_;
}
bool Val::isProducerOf(const Val* other) const {
TORCH_INTERNAL_ASSERT(other != nullptr);
TORCH_INTERNAL_ASSERT(container() == other->container());
if (definition() == nullptr) {
return false;
}
return std::any_of(
definition()->inputs().begin(),
definition()->inputs().end(),
[other](const Val* input) { return input == other; });
}
bool Val::isConsumerOf(const Val* other) const {
return other->isProducerOf(this);
}
// We don't register with the active fusion in Expr as this needs to be done
// after inputs and outputs are registered with the Expr
Expr::Expr(IrBuilderPasskey passkey, ExprType etype)
: Statement(passkey), etype_{etype} {}
Expr::Expr(const Expr* src, IrCloner* ir_cloner)
: Statement(src, ir_cloner),
etype_(src->etype_),
inputs_(ir_cloner->clone(src->inputs_)),
outputs_(ir_cloner->clone(src->outputs_)) {}
bool Expr::sameAs(const Statement* other) const {
if (this == other) {
return true;
}
if (!other->isA<Expr>()) {
return false;
}
const Expr* other_expr = other->as<Expr>();
if (getExprType() != other_expr->getExprType()) {
return false;
}
if (inputs().size() != other_expr->inputs().size() ||
outputs().size() != other_expr->outputs().size()) {
return false;
}
for (const auto i : c10::irange(inputs().size())) {
if (!input(i)->sameAs(other_expr->input(i))) {
return false;
}
}
return true;
}
kir::Predicate* Expr::predicate() const {
TORCH_INTERNAL_ASSERT(
container()->isA<kir::Kernel>(), "Function invalid for fusion.");
return predicate_;
}
void Expr::setPredicate(kir::Predicate* predicate) {
TORCH_INTERNAL_ASSERT(
container()->isA<kir::Kernel>(), "Function invalid for fusion.");
predicate_ = predicate;
}
kir::Predicate* Expr::writePredicate() const {
TORCH_INTERNAL_ASSERT(
container()->isA<kir::Kernel>(), "Function invalid for fusion.");
return write_predicate_;
}
void Expr::setWritePredicate(kir::Predicate* write_predicate) {
TORCH_INTERNAL_ASSERT(
container()->isA<kir::Kernel>(), "Function invalid for fusion.");
write_predicate_ = write_predicate;
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|