File: ir_graphviz.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (502 lines) | stat: -rw-r--r-- 13,480 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
#include <torch/csrc/jit/codegen/cuda/ir_graphviz.h>

#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_builder.h>
#include <torch/csrc/jit/codegen/cuda/type.h>

#include <fstream>

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

namespace {

// Private helper, generating node labels for IrGraphGenerator
class IrNodeLabel : private OptInConstDispatch {
  using DetailLevel = IrGraphGenerator::DetailLevel;

 public:
  static std::string gen(
      const Statement* node,
      DetailLevel detail_level = DetailLevel::Basic) {
    IrNodeLabel generator(detail_level);
    generator.OptInConstDispatch::handle(node);
    return generator.label_.str();
  }

 private:
  explicit IrNodeLabel(DetailLevel detail_level)
      : detail_level_(detail_level) {}

  ~IrNodeLabel() override = default;

  void handle(const Bool* b) override {
    if (b->isSymbolic()) {
      label_ << "b" << b->name();
    } else {
      if (detail_level_ >= DetailLevel::Explicit) {
        label_ << "b" << b->name() << "=";
      }
      label_ << *b->value();
    }
  }

  void handle(const Double* d) override {
    if (d->isSymbolic()) {
      label_ << "d" << d->name();
    } else {
      if (detail_level_ >= DetailLevel::Explicit) {
        label_ << "d" << d->name() << "=";
      }
      label_ << *d->value();
    }
  }

  void handle(const Int* i) override {
    if (i->isSymbolic()) {
      label_ << "i" << i->name();
    } else {
      if (detail_level_ >= DetailLevel::Explicit) {
        label_ << "i" << i->name() << "=";
      }
      label_ << *i->value();
    }
  }

  void handle(const NamedScalar* ns) override {
    label_ << ns->name();
  }

  void handle(const IterDomain* id) override {
    label_ << id->getIterType();
    label_ << id->getParallelType();

    label_ << "(";
    if (!id->start()->isZeroInt()) {
      label_ << IrNodeLabel::gen(id->start()) << " : ";
    }
    label_ << IrNodeLabel::gen(id->extent());
    label_ << ")";
  }

  void handle(const Split* split) override {
    label_ << "Split(inner=" << (split->innerSplit() ? "true" : "false")
           << ", factor=" << IrNodeLabel::gen(split->factor()) << ")";
  }

  void handle(const Merge* merge) override {
    label_ << "Merge";
  }

 private:
  std::stringstream label_;
  const DetailLevel detail_level_;
};

// Small color palette from the X11 theme
static const char* getColorFromIndex(size_t index) {
  const size_t number_of_colors = 10;
  index = index % number_of_colors;
  switch (index) {
    case 0: // NOLINT(cppcoreguidelines-avoid-magic-numbers)
      return "azure";
    case 1: // NOLINT(cppcoreguidelines-avoid-magic-numbers)
      return "pink";
    case 2: // NOLINT(cppcoreguidelines-avoid-magic-numbers)
      return "green";
    case 3: // NOLINT(cppcoreguidelines-avoid-magic-numbers)
      return "grey";
    case 4: // NOLINT(cppcoreguidelines-avoid-magic-numbers)
      return "yellow";
    case 5: // NOLINT(cppcoreguidelines-avoid-magic-numbers)
      return "lavender";
    case 6: // NOLINT(cppcoreguidelines-avoid-magic-numbers)
      return "cyan";
    case 7: // NOLINT(cppcoreguidelines-avoid-magic-numbers)
      return "white";
    case 8: // NOLINT(cppcoreguidelines-avoid-magic-numbers)
      return "magenta";
    case 9: // NOLINT(cppcoreguidelines-avoid-magic-numbers)
      return "red";
    default:
      break;
  }
  return "";
}

} // anonymous namespace

void IrGraphGenerator::print(
    const Fusion* fusion,
    const char* filename,
    DetailLevel detail_level,
    ExprColorMap* expr_color_map) {
  std::ofstream dot_file(filename);
  TORCH_CHECK(dot_file.good(), "Failed to open the IR graph file");
  dot_file << toGraphviz(fusion, detail_level, expr_color_map);
}

std::string IrGraphGenerator::toGraphviz(
    const Fusion* fusion,
    DetailLevel detail_level,
    ExprColorMap* expr_color_map) {
  IrGraphGenerator ir_graph(fusion, detail_level, expr_color_map);
  return ir_graph.generate();
}

IrGraphGenerator::IrGraphGenerator(
    const Fusion* fusion,
    DetailLevel detail_level,
    ExprColorMap* expr_color_map)
    : detail_level_(detail_level),
      fusion_(fusion),
      expr_color_map_(expr_color_map) {
  // setup inputs & outputs
  // (indexes used to quickly check if a value is fusion input or output)
  for (const auto* input : fusion->inputs()) {
    TORCH_CHECK(inputs_.count(input) == 0);
    inputs_.insert(input);
  }
  for (const auto* output : fusion->outputs()) {
    TORCH_CHECK(outputs_.count(output) == 0);
    outputs_.insert(output);
  }
}

std::string IrGraphGenerator::getid(const Statement* stm) {
  const auto it = id_map_.find(stm);
  if (it == id_map_.end()) {
    // First reference, generate a new id
    std::stringstream new_id;
    new_id << "stm_" << next_id_++;
    id_map_.insert({stm, new_id.str()});
    return new_id.str();
  } else {
    return it->second;
  }
}

void IrGraphGenerator::addArc(
    const Statement* src,
    const Statement* dst,
    const std::string& style) {
  // We automatically visit (handle) the arc's source and destination
  handle(src);
  handle(dst);

  // generate and queue the arc definition
  std::stringstream arc_def;
  arc_def << getid(src) << " -> " << getid(dst) << " " << style;
  arcs_.push_back(arc_def.str());
}

void IrGraphGenerator::printExpr(const Expr* expr, const std::string& label) {
  graph_def_ << "    " << getid(expr) << " "
             << "[label=\"" << label << "\", shape=oval, color=blue, "
             << "style=filled, fillcolor=";
  if (expr_color_map_ != nullptr && expr_color_map_->count(expr)) {
    graph_def_ << getColorFromIndex(expr_color_map_->at(expr));
  } else {
    graph_def_ << "azure";
  }
  graph_def_ << "];\n";
}

void IrGraphGenerator::printValue(const Val* val, const std::string& label) {
  graph_def_ << "    " << getid(val) << " [label=\"" << label
             << "\", shape=rect, color=green, fontsize=10];\n";
}

std::string IrGraphGenerator::generate() {
  // IrGraphGenerator instances are not reusable
  TORCH_CHECK(graph_def_.str().empty());
  TORCH_CHECK(visited_.empty());

  // record detail level
  graph_def_ << "// detail level: ";
  switch (detail_level_) {
    case DetailLevel::ComputeOnly:
      graph_def_ << "compute only\n";
      break;
    case DetailLevel::Basic:
      graph_def_ << "minimal\n";
      break;
    case DetailLevel::Explicit:
      graph_def_ << "explicit\n";
      break;
    case DetailLevel::Verbose:
      graph_def_ << "verbose\n";
      break;
    default:
      TORCH_CHECK(!"Unexpected detail level");
  }

  graph_def_ << "digraph fusion_ir {\n"
             << "  node [shape=circle, color=gray];\n"
             << "  edge [color=black];\n";

  // Compute graph
  generateComputeGraph();

  // Schedule graph
  if (detail_level_ > DetailLevel::ComputeOnly) {
    generateScheduleGraph();
  }

  // All expressions & values
  // (These are otherwise unreacheable (dead) nodes)
  if (detail_level_ >= DetailLevel::Verbose) {
    for (const auto* expr : fusion_->unordered_exprs()) {
      handle(expr);
    }
    for (const auto* val : fusion_->vals()) {
      handle(val);
    }
  }

  // Finally, print all arc definitions
  for (const auto& arc : arcs_) {
    graph_def_ << "  " << arc << ";\n";
  }

  graph_def_ << "}\n";

  // Make sure that all referenced nodes have been visited
  for (const auto& kv : id_map_) {
    TORCH_CHECK(visited(kv.first));
  }

  return graph_def_.str();
}

void IrGraphGenerator::generateComputeGraph() {
  graph_def_ << "  subgraph cluster_compute {\n"
             << "    label=\"compute\";\n"
             << "    style=dashed;\n";

  // Inputs
  for (const auto* input : fusion_->inputs()) {
    handle(input);
  }

  // Outputs
  for (const auto* output : fusion_->outputs()) {
    handle(output);
  }

  graph_def_ << "  }\n";
}

void IrGraphGenerator::generateScheduleGraph() {
  graph_def_ << "  subgraph cluster_schedule {\n"
             << "    label=\"schedule\";\n"
             << "    style=dashed;\n";

  // Connect TensorView with their TensorDomain
  // (this will trigger the traversal of the schedule graph)

  for (auto tv : tensor_views_) {
    addArc(tv->domain(), tv, "[style=dashed, arrowhead=none]");
    if (detail_level_ >= DetailLevel::Explicit) {
      // Maybe not the best way to handle the root domain, but should be okay
      addArc(
          tv,
          IrBuilder::create<TensorDomain>(tv->getRootDomain()),
          "[style=dashed, color=green, arrowhead=none]");

      if (tv->domain()->hasRFactor())
        addArc(
            tv,
            IrBuilder::create<TensorDomain>(tv->domain()->getRFactorDomain()),
            "[style=dashed, color=green, arrowhead=none]");
    }
  }

  graph_def_ << "  }\n";
}

void IrGraphGenerator::handle(const Statement* s) {
  OptInConstDispatch::handle(s);
}

void IrGraphGenerator::handle(const Val* v) {
  if (!visited(v)) {
    visited_.insert(v);
    if (const auto* def = v->definition()) {
      handle(def);
    }
    OptInConstDispatch::handle(v);
  }
}

void IrGraphGenerator::handle(const Expr* e) {
  if (!visited(e)) {
    visited_.insert(e);
    OptInConstDispatch::handle(e);
  }
}

void IrGraphGenerator::handle(const TensorDomain* td) {
  graph_def_ << "    " << getid(td) << " [label=\"TensorDomain\", "
             << "shape=note, color=gray, "
             << "style=filled, fillcolor=gray90, fontsize=10];\n";
  for (auto iter_domain : td->domain()) {
    addArc(iter_domain, td, "[color=gray]");
  }
}

void IrGraphGenerator::handle(const IterDomain* id) {
  graph_def_ << "    " << getid(id) << " [label=\"" << IrNodeLabel::gen(id)
             << "\", shape=cds, color=gray, fontsize=10];\n";

  if (!id->start()->isZeroInt()) {
    addArc(id->start(), id, "[color=gray]");
  }

  addArc(id->extent(), id, "[color=gray]");
}

void IrGraphGenerator::handle(const Bool* b) {
  printValue(b, IrNodeLabel::gen(b, detail_level_));
}

void IrGraphGenerator::handle(const Double* d) {
  printValue(d, IrNodeLabel::gen(d, detail_level_));
}

void IrGraphGenerator::handle(const Int* i) {
  printValue(i, IrNodeLabel::gen(i, detail_level_));
}

void IrGraphGenerator::handle(const ComplexDouble* i) {
  printValue(i, IrNodeLabel::gen(i, detail_level_));
}

void IrGraphGenerator::handle(const NamedScalar* i) {
  printValue(i, IrNodeLabel::gen(i, detail_level_));
}

void IrGraphGenerator::handle(const TensorView* tv) {
  std::stringstream label;
  label << "{T" << tv->name() << "|";
  label << "{";
  bool first_axis = true;
  for (auto iter_domain : tv->domain()->domain()) {
    if (first_axis) {
      first_axis = false;
    } else {
      label << "|";
    }
    label << IrNodeLabel::gen(iter_domain);
  }
  label << "}}";

  const bool is_input = inputs_.find(tv) != inputs_.end();
  const bool is_output = outputs_.find(tv) != outputs_.end();

  const char* style = is_input ? "style=filled, fillcolor=palegreen"
      : is_output              ? "style=filled, fillcolor=lightblue"
                               : "style=filled, fillcolor=beige";

  graph_def_ << "    " << getid(tv) << " [label=\"" << label.str()
             << "\", shape=Mrecord, color=brown, " << style << "];\n";

  tensor_views_.push_back(tv);
}

void IrGraphGenerator::handle(const ARangeOp* uop) {
  // node
  printExpr(uop, "arange");

  // inputs & outputs
  addArc(uop->start(), uop);
  addArc(uop->end(), uop);
  addArc(uop->step(), uop);
  addArc(uop, uop->output(0));
}

void IrGraphGenerator::handle(const UnaryOp* uop) {
  // node
  std::stringstream label;
  label << uop->getUnaryOpType();
  printExpr(uop, label.str());

  // inputs & outputs
  addArc(uop->in(), uop);
  addArc(uop, uop->out());
}

void IrGraphGenerator::handle(const BinaryOp* bop) {
  // node
  std::stringstream label;
  label << bop->getBinaryOpType();
  printExpr(bop, label.str());

  // inputs & outputs
  addArc(bop->lhs(), bop);
  addArc(bop->rhs(), bop, "[color=blue]");
  addArc(bop, bop->out());
}

void IrGraphGenerator::handle(const TernaryOp* op) {
  // node
  std::stringstream label;
  label << op->getTernaryOpType();
  printExpr(op, label.str());

  // inputs & outputs
  addArc(op->in1(), op);
  addArc(op->in2(), op, "[color=blue]");
  addArc(op->in3(), op, "[color=brown]");
  addArc(op, op->out());
}

void IrGraphGenerator::handle(const RNGOp* op) {
  // node
  std::stringstream label;
  label << op->getRNGOpType();
  printExpr(op, label.str());

  // inputs & outputs
  addArc(op, op->output(0));
}

void IrGraphGenerator::handle(const BroadcastOp* op) {
  printExpr(op, "Broadcast");
  addArc(op->in(), op);
  addArc(op, op->out());
}

void IrGraphGenerator::handle(const ReductionOp* op) {
  // node
  std::stringstream label;
  label << "Reduction(" << op->getReductionOpType() << ")";
  printExpr(op, label.str());

  // inputs & outputs
  addArc(op->in(), op);
  addArc(op->init(), op, "[color=blue]");
  addArc(op, op->out());
}

void IrGraphGenerator::handle(const Split* split) {
  printExpr(split, IrNodeLabel::gen(split));
  addArc(split->in(), split);
  addArc(split, split->outer());
  addArc(split, split->inner());
}

void IrGraphGenerator::handle(const Merge* merge) {
  printExpr(merge, IrNodeLabel::gen(merge));
  addArc(merge->outer(), merge);
  addArc(merge->inner(), merge);
  addArc(merge, merge->out());
}

} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch