File: ir_interface_nodes.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (591 lines) | stat: -rw-r--r-- 19,818 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
#pragma once

#include <c10/macros/Export.h>

#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_base_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_internal_nodes.h>
#include <torch/csrc/jit/codegen/cuda/mma_type.h>

#include <torch/csrc/jit/ir/ir.h>

//! Nodes in here are intended to be "user facing" users in this sense being
//! those that want to be able to generate CUDA code.

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

class WelfordResult;
class ViewTransform;

class IrCloner;
class IrBuilderPasskey;

//! A Bool value
//!
//! This value can be a symbolic value (defined after the kernel
//! is compiled) or a constant value (inlined into the kernel definition).
//!
class TORCH_CUDA_CU_API Bool : public Val {
 public:
  Bool(IrBuilderPasskey passkey);

  explicit Bool(IrBuilderPasskey passkey, bool value);

  explicit Bool(IrBuilderPasskey passkey, c10::optional<bool> value);

  Bool(const Bool* src, IrCloner* ir_cloner);

  bool isSymbolic() const {
    return !(maybe_value_.has_value());
  }
  bool isConst() const final {
    return maybe_value_.has_value();
  }
  c10::optional<bool> value() const {
    return maybe_value_;
  }

  bool sameAs(const Statement* other) const override;

 private:
  const c10::optional<bool> maybe_value_;
};

//! A Float64 value. This value can be a symbolic value (defined after the
//! kernel is compiled) or a constant value (inlined into the kernel
//! definition).
class TORCH_CUDA_CU_API Double : public Val {
 public:
  using ScalarType = double;

  Double(IrBuilderPasskey passkey);

  explicit Double(IrBuilderPasskey passkey, ScalarType value);

  explicit Double(IrBuilderPasskey passkey, c10::optional<ScalarType> value);

  Double(const Double* src, IrCloner* ir_cloner);

  bool isSymbolic() const {
    return !(maybe_value_.has_value());
  }
  bool isConst() const final {
    return maybe_value_.has_value();
  }
  c10::optional<ScalarType> value() const {
    return maybe_value_;
  }

  bool sameAs(const Statement* other) const override;

 private:
  const c10::optional<ScalarType> maybe_value_;
};

//! An Int64 value. If used for indexing it's set as size_t. Otherwise it's an
//! inlined literal in the kernel.
class TORCH_CUDA_CU_API Int : public Val {
 public:
  using ScalarType = int64_t;

  Int(IrBuilderPasskey passkey);

  explicit Int(IrBuilderPasskey passkey, ScalarType value);

  explicit Int(IrBuilderPasskey passkey, c10::optional<ScalarType> value);

  Int(const Int* src, IrCloner* ir_cloner);

  bool isSymbolic() const {
    return !(maybe_value_.has_value());
  }
  bool isConst() const final {
    return maybe_value_.has_value();
  }
  c10::optional<ScalarType> value() const {
    return maybe_value_;
  }

  bool sameAs(const Statement* other) const override;

 private:
  const c10::optional<ScalarType> maybe_value_;
};

//! An c10::complex<double> value. This value can be a symbolic value (defined
//! after the kernel is compiled) or a constant value (inlined into the kernel
//! definition).
class TORCH_CUDA_CU_API ComplexDouble : public Val {
 public:
  using ScalarType = c10::complex<double>;

  ComplexDouble(IrBuilderPasskey passkey);

  explicit ComplexDouble(IrBuilderPasskey passkey, ScalarType value);

  explicit ComplexDouble(
      IrBuilderPasskey passkey,
      c10::optional<ScalarType> value);

  ComplexDouble(const ComplexDouble* src, IrCloner* ir_cloner);

  bool isSymbolic() const {
    return !(maybe_value_.has_value());
  }
  bool isConst() const final {
    return maybe_value_.has_value();
  }
  c10::optional<ScalarType> value() const {
    return maybe_value_;
  }

  bool sameAs(const Statement* other) const override;

 private:
  const c10::optional<ScalarType> maybe_value_;
};

//! Mode during propagation of computeAt, standard will throw an error if
//! computeAt position provided can't be satisfied, best effort will lower the
//! computeAt position as needed during traversal, most inlined will increase
//! the compute at position to maximum possible through traversal.
enum class ComputeAtMode { Standard, BestEffort, MostInlined };

class InlinePropagator;
class MaxProducerPosUpdater;
class TransformPropagator;
struct MostInlinedTransformPropagator;
class TransformIter;
class TransformReplay;
class OptOutMutator;
class TensorDomain;

namespace ir_utils {
class TVDomainGuard;
}

//! TensorView is our primitive Tensor Type used in code generation. It can be
//! thought of as representing physical memory, however, its dimensionality is
//! modifed as split/merge/computeAt functions are called. The history of
//! these transformations are kept and used for generating actual code
//! referncing physical memory. Generally when users are thinking of code
//! generation in reference to a Tensor, this is the class they should be
//! interacting with.
//!
//! The reason we need both TensorView and TensorDomain is that we need to have
//! a record of both what is being computed and how it is being computed. For
//! example we may have the operation:
//!
//!   TV3[I, J, K] = TV2[I, J, K] + TV1[I, J, K]
//!
//! The mathematical operations here are on the tensor views TV1, TV2, and
//! TV3. This operation is a pointwise operation. To compute this pointwise
//! operation we iterate over the 3D TensorDomain [I, J, K], where K is the
//! fastest changing dimension.
//!
//! \todo Need to work on the const model for TensorView, making all functions
//! that should be const, const. Gave this a try but expanded really quickly.
//! getComputeAtAxis not being const because it can return a TV that some expect
//! to be non-const is the biggest headache.
//!
class TORCH_CUDA_CU_API TensorView : public Val {
 public:
  TensorView(
      IrBuilderPasskey passkey,
      TensorDomain* domain,
      DataType dtype,
      MemoryType mtype = MemoryType::Local);

  explicit TensorView(
      IrBuilderPasskey passkey,
      const std::shared_ptr<c10::TensorType>& tensor_type);

  explicit TensorView(
      IrBuilderPasskey passkey,
      const std::shared_ptr<Value>& jit_value);

  TensorView(const TensorView* src, IrCloner* ir_cloner);

  TensorDomain* domain() const {
    return domain_;
  }

  //! This is for a TensorView with an rFactor domain that is an input to a
  //! fusion segment. We convert the rfactor domain into a new root domain.
  //! Any dynamic-sized rfactor iterDomains are given a new symbolic extent.
  //! Concrete integer extents are kept. Output TensorViews of any subsequent
  //! expressions that use this TensorView are also updated.
  void convertRfactorToRootDomain();

  void setContiguity(const std::vector<bool>& contig) {
    domain()->setContiguity(contig);
  }

  void setContiguity(bool contig) {
    setContiguity(std::vector<bool>(domain()->contiguity().size(), contig));
  }

  bool hasReduction() const;
  bool hasBlockReduction() const;
  bool hasGridReduction() const;
  bool hasBroadcast() const;
  bool hasRFactor() const;

  //! This is the previous hasReduction logic,
  //! kept here exclusively for lower loop pass will
  //! deprecate when Fusion IR pass can convert
  //! trivial reductions
  bool hasAnyReduction() const;

  //! Returns true if this tensor is zero dimensional,
  //!  i.e. a wrapped scalar or an empty placeholder.
  bool isZeroDim() const {
    return nDims() == 0;
  }

  //! Returns true if this tensor does not contain
  //!  any value.
  bool isEmptyTensor() const;

  c10::optional<unsigned int> getReductionAxis() const;

  const std::vector<IterDomain*>& getRootDomain() const;

  const std::vector<IterDomain*>& getRFactorDomain() const;

  // If rfactor domain exists in domain() return it, otherwise return root
  // domain.
  const std::vector<IterDomain*>& getMaybeRFactorDomain() const;

  IterDomain* axis(int pos) const;

  // Does it share outer axes with other tensors?
  bool hasComputeAt() const {
    return compute_at_pos_ > 0;
  }

  bool hasMaxProducerPosition() const {
    return max_producer_pos_ > 0;
  }

  size_t nDims() const;

  // sets cpu_scalar_ value, which is special handling for CPU based zero-dim
  // tensors (i.e. CPU Tensors that only have one value). This is only used if
  // on an input value, otherwise ignored. This is important as special handling
  // because these "scalars" should be type promoted as a tensor, but we want to
  // avoid explicit copying of the data, so we want to pass the data value as a
  // standard kernel argument value.
  void setCpuScalar(bool is_cpu_scalar);

  // returns cpu_scalar_ value, which is special handling for CPU based zero-dim
  // tensors (i.e. CPU Tensors that only have one value). This is only used if
  // on an input value, otherwise ignored. This is important as special handling
  // because these "scalars" should be type promoted as a tensor, but we want to
  // avoid explicit copying of the data, so we want to pass the data value as a
  // standard kernel argument value.
  bool isCpuScalar() const {
    return cpu_scalar_;
  }

  // Returns the position that this tensor is produced at relative to its axes.
  unsigned int getComputeAtPosition() const {
    return compute_at_pos_;
  }

  // Returns the maximum position of producers are being computed at relative to
  // this tensor. This position dictates the clear expectations of producers.
  unsigned int getMaxProducerPosition() const {
    return max_producer_pos_;
  }

  //! This is used when we disconnect a tensorview from a reduction
  //!  operation and connect it to a non-reduction operator. We need
  //!  to remove the reduction ids on the tv in this case.
  //! Currently only used in translate welford, and this function may
  //!  be refactored or extended if any more use cases appear.
  void clearReductionIterDomains();

  //! Compute this TensorView relative to a consumer position, -1 will
  //! compute tensors inline with each other, 0 doesn't share
  //! any loop nests between the tensors. It's an error when the given
  //! position is not legally viable. Alternatively, when the mode
  //! parameter is ComputeAtMode::BestEffort, the position is lowered
  //! one by one until a valid position is found. When
  //! ComputeAtMode::MostInlined is given, the position parameter is
  //! ignored, and the deepest possible position is searched.
  TensorView* computeAt(
      TensorView* consumer,
      int position,
      ComputeAtMode mode = ComputeAtMode::Standard);

  //! Compute this tensor to consumer, at local position, -1 will compute
  //! tensors inline with eachother, 0 doesn't share any loop nests between the
  //! tensors. The mode parameter can be used in the same manner as computeAt.
  TensorView* computeWith(
      TensorView* consumer,
      int position,
      ComputeAtMode mode = ComputeAtMode::Standard);

  // Split "axis" into 2 axes
  //! inner_split dictates if the factor section of the split should be inside
  //! the
  //! remainer or outside.
  //! e.g. split(0, 4, inner_split = true) will result in:
  //! tv[id{extent}] -> tv[id{ceilDiv(extent, factor)}, id{factor}]
  //! e.g. split(0, 4, inner_split = false) will result in:
  //! tv[id{extent}] -> tv[id{factor}, id{ceilDiv(extent, factor)}]
  //!
  //! When trim_out_of_bounds is true, only the inner domain defined by the
  //! start and stop positions is split.
  TensorView* split(
      int axis,
      unsigned int factor,
      bool inner_split = true,
      bool trim_out_of_bounds = false);

  // Split "axis" into 2 axes where the inner axes is size of "factor"
  // and outer axis is size axis.size() / factor. Factor can be a symbolic
  // value instead of constant. This requires setting the symbolic value as an
  // input, or using a parallel dim from NamedScalar::getParallelDim
  TensorView* split(
      int axis,
      Val* factor,
      bool inner_split = true,
      bool trim_out_of_bounds = false);

  // Merge axis_o and axis_i into 1 IterDomain
  TensorView* merge(int axis_o, int axis_i);

  // Merge axis and axis+1 into 1 IterDomain
  TensorView* merge(int axis) {
    return merge(axis, axis + 1);
  }

  // Reorder axes according to old2new[old_pos] = new_pos
  TensorView* reorder(const std::unordered_map<int, int>& old2new);

  //! Swizzle indices to improve memory access efficiency.
  //!
  //! Swizzle::Transpose is a pattern commonly used to avoid bank
  //! conflicts in shared memory. It takes two axes and shifts the
  //! second axis by the first axis as ((axis1 + axis2) % extent). The
  //! memory type must be Shared.
  //!
  //! \input type Swizzle pattern such as transpose.
  //! \input axes Axes to swizzle
  TensorView* swizzle(SwizzleType type, const std::vector<int>& axes);

  //! Swizzle the rectangular tile defined by the iterdomains corresponding
  //!  to the 2 given indices.
  TensorView* swizzle(
      Swizzle2DType swizzle_type,
      int x,
      int y,
      SwizzleMode swizzle_mode = SwizzleMode::Data);

  // WARNING: rFactor does not return this TensorView, ir returns a new
  //  tensorview consumed by this!
  //
  // Take reduction axes out of this domain, and create a new
  // domain. New domain will be used to create this domain.
  //
  // For example:
  //  TV1[I0, R1, R2, I3] = TV0[I0, I1, I2, I3]
  //
  // After:
  //  TV1->rfactor({1}), TV1 is transformed to -> TV1[I0, R2, I3]
  //
  // The TensorView returned is: TV2[I0, R1, I2, I3]
  //
  // The reduction will now beset as:
  //  TV2[I0, R1, I2, I3] = TV0[I0, I1, I2, I3]
  //  TV1[I0, R2, I3] = TV2[I0, R1, I2, I3]
  //
  TensorView* rFactor(const std::vector<int>& axes);

  //! Multi-output version of rFactor, semantically similar with
  //! the reduction version except that the rfactor is done
  //! for all outputs in a consistent way
  std::vector<TensorView*> rFactor(
      const std::vector<int>& axes,
      const std::vector<TensorView*>& tvs);

  //! Create a TensorView before the original tensor. A common use case is to
  //! write results into shared memory or registers before moving to global
  //! memory. Analogous to TVM Cache_Write
  //!
  //! @param cache_op: memory operator to use for the inserted op between
  //!   the the data tensor and the cache tensor
  TensorView* cacheBefore(
      c10::optional<LoadStoreOpType> cache_op = c10::nullopt);

  //! Create a TensorView after the original tensor. A common use case is to
  //! read tensor into shared memory or registers. Analogous to TVM Cache_Read
  //!
  //! @param cache_op: memory operator to use for the inserted op between
  //!   the the data tensor and the cache tensor
  TensorView* cacheAfter(
      c10::optional<LoadStoreOpType> cache_op = c10::nullopt);

  // For a fusion output with other uses, we want to avoid writing to global
  // memory and then reading the output again. We write to global memory
  // separately after an operation. We replace this fusion output with the
  // direct write TensorView.
  TensorView* cacheFork();

  MemoryType getMemoryType() const {
    return memory_type_;
  }

  void setMemoryType(MemoryType mt);

  SwizzleType swizzleType() const {
    return swizzle_type_;
  }

  const std::vector<IterDomain*>& axesToSwizzle() const {
    return axes_to_swizzle_;
  }

  // Apply double buffering transformation
  void doubleBuffer();

  // Apply circular buffering transformation
  void circularBuffer(unsigned int number_of_stage);

  // Returns true if this tensor is double buffered.
  bool isDoubleBuffered() const {
    return is_double_buffered_;
  }

  // Returns true if this tensor is circular buffered.
  bool isCircularBuffered() const {
    return is_circular_buffered_;
  }

  // Returns the depth of circular buffering if applicable.
  unsigned int circularBufferDepth() const {
    TORCH_INTERNAL_ASSERT(
        is_circular_buffered_, toString(), "not circular buffered");
    return circular_buffer_stage_;
  }

  //! Transforms the innermost iterdomains according to the given mma swizzle,
  //!  this should be used on the tvs that are either inputs/outputs of an
  //!  MmaOp, or any tv's that are involved in prolog/epilog fusions and need to
  //!  have a matching thread swizzle with the mma operand/result.
  //! More detail on usage see [WarpMmaSwizzler] in scheduler/mma_utils.h .
  void applyMmaSwizzle(MmaOptions options);

  //! Returns if this tensor view has swizzle operator on its tensor domain.
  //!  This is the temporary flag for indicating that the new swizzle
  //!  implementation is used and will be removed in follow ups.
  bool hasSwizzleOp() const {
    return has_swizzle_op_;
  }

  friend TORCH_CUDA_CU_API TransformPropagator;
  friend TORCH_CUDA_CU_API MostInlinedTransformPropagator;
  friend TORCH_CUDA_CU_API TransformReplay;
  friend TORCH_CUDA_CU_API OptOutMutator;
  friend TORCH_CUDA_CU_API InlinePropagator;
  friend TORCH_CUDA_CU_API MaxProducerPosUpdater;
  friend class ir_utils::TVDomainGuard;
  friend TORCH_CUDA_CU_API void groupReductions(
      const std::vector<TensorView*>&);

 protected:
  void setDomain(TensorDomain* td) {
    domain_ = td;
  }

  void setComputeAt(unsigned int this_pos, bool decrease = false);

  void setMaxProducer(unsigned int this_pos, bool decrease = false);

 private:
  int normalizeAxisPos(int pos) const {
    if (pos < 0) {
      pos += nDims();
    }
    return pos;
  }

  //! A helper function to maintain the consistency of schedules of
  //! multiple outputs wheen doing rfactor on multi-output reduction ops.
  TensorView* multiOutputRfactorHelper(
      TensorView* tv,
      const std::vector<int>& axes);

 private:
  TensorDomain* domain_ = nullptr;
  unsigned int compute_at_pos_ = 0;
  unsigned int max_producer_pos_ = 0;
  MemoryType memory_type_ = MemoryType::Local;
  SwizzleType swizzle_type_ = SwizzleType::NoSwizzle;
  std::vector<IterDomain*> axes_to_swizzle_;
  bool is_double_buffered_ = false;

  //! Indicates if the tensor is circular buffered.
  bool is_circular_buffered_ = false;

  //! Indicates the circular buffering stage depth if applicable.
  unsigned int circular_buffer_stage_ = 0;

  // special handling for CPU based zero-dim tensors (i.e. CPU Tensors that only
  // have one value). This is only used if on an input value, otherwise ignored.
  // This is important as special handling because these "scalars" should be
  // type promoted as a tensor, but we want to avoid explicit copying of the
  // data, so we want to pass the data value as a standard kernel argument
  // value.
  bool cpu_scalar_ = false;

  //! Indicates if this tensor view has swizzle operator on its tensor domain.
  //!  This is the temporary flag for indicating that the new swizzle
  //!  implementation is used and will be removed in follow ups.
  bool has_swizzle_op_ = false;
};

//! A simple TensorView builder
//!
//! Example usage:
//!
//!   auto tv = TensorViewBuilder()
//!       .ndims(ndims)
//!       .dtype(dtype)
//!       .contiguity(contiguity)
//!       .build();
//!
class TORCH_CUDA_CU_API TensorViewBuilder {
 public:
  //! Set the number of dimensions of the tensor (default 0, meaning scalar)
  TensorViewBuilder& ndims(size_t ndims);

  //! Set the data type of the tensor (default DataType::Float)
  TensorViewBuilder& dtype(DataType dtype);

  //! Set the contiguity information (default non-contiguous)
  TensorViewBuilder& contiguity(std::vector<bool> contiguity);

  //! Set the shape (default 0 dimensional, ie. scalar)
  TensorViewBuilder& shape(std::vector<Val*> shape);
  TensorViewBuilder& shape(const std::vector<int64_t>& shape);

  //! Creates a new TensorView with the specified options
  TensorView* build() const;

 private:
  size_t ndims_ = 0;
  DataType dtype_ = DataType::Float;
  std::vector<bool> contiguity_;
  std::vector<Val*> shape_;
};

} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch