1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
|
#pragma once
#include <c10/macros/Export.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_base_nodes.h>
#include <torch/csrc/jit/codegen/cuda/mma_type.h>
#include <torch/csrc/jit/codegen/cuda/parallel_type_bitmap.h>
//! Nodes in here should generally not be used by users. They should be behind
//! the scenes and users shouldn't have to be aware of what they do to use the
//! code generator
//!
//! \todo improve implementation bool IterDomain::sameAs(const IterDomain*)
//! \todo Add testing of sameAs functions for these nodes
//!
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
class ViewTransform;
class Scope;
class IrCloner;
struct AnalyzeViewResult;
//! Returns true if both v1 and v2 are scalars, are the same type of scalars,
//! and dispatches to the inherited Val type's `->sameAs` call. e.g. if both
//! vals are `Int` will dispatch to v1->as<Int>()->sameAs(v2.as<Int>())
bool areEqualScalars(Val* v1, Val* v2);
class TORCH_CUDA_CU_API ARangeOp : public Expr {
public:
ARangeOp(
IrBuilderPasskey,
Val* out,
Val* start,
Val* end,
Val* step,
Val* linear_index = nullptr);
ARangeOp(const ARangeOp* src, IrCloner* ir_cloner);
bool sameAs(const Statement* other) const override;
Val* start() const {
return start_;
}
Val* end() const {
return end_;
}
Val* step() const {
return step_;
}
Val* getLinearIndex() const {
return linear_index_;
}
void setLinearIndex(Val* index) {
linear_index_ = index;
}
private:
Val* start_;
Val* end_;
Val* step_;
Val* linear_index_ = nullptr;
};
//! A specialization for Unary operations. Unary operations take in a single
//! input and produce a single output. Examples include:
//! 1) Casting operation i.e. float(a_val)
//! 2) Negation i.e. val * -1
//! 3) Reduction across a dimension i.e. val.sum(axis=2)
//! 4) split/merge
class TORCH_CUDA_CU_API UnaryOp : public Expr {
public:
UnaryOp(
IrBuilderPasskey,
UnaryOpType type,
Val* out,
Val* in,
int rng_offset = -1);
UnaryOp(const UnaryOp* src, IrCloner* ir_cloner);
Val* out() const {
return out_;
}
Val* in() const {
return in_;
}
UnaryOpType getUnaryOpType() const {
return unary_op_type_;
}
bool sameAs(const Statement* other) const override;
private:
const UnaryOpType unary_op_type_;
Val* const out_ = nullptr;
Val* const in_ = nullptr;
};
//! A specialization for Binary operations. Binary operations take in two inputs
//! and produce a single output. Examples include:
//! 1) Add/mul/div/mod/sub (A * B)
//! 2) LT (A < B)
class TORCH_CUDA_CU_API BinaryOp : public Expr {
public:
BinaryOp(IrBuilderPasskey, BinaryOpType type, Val* out, Val* lhs, Val* rhs);
BinaryOp(const BinaryOp* src, IrCloner* ir_cloner);
Val* out() const {
return out_;
}
Val* lhs() const {
return lhs_;
}
Val* rhs() const {
return rhs_;
}
BinaryOpType getBinaryOpType() const {
return binary_op_type_;
}
bool sameAs(const Statement* other) const override;
private:
const BinaryOpType binary_op_type_;
Val* const out_ = nullptr;
Val* const lhs_ = nullptr;
Val* const rhs_ = nullptr;
};
//! A specialization for random number generator (RNG) operations. RNG
//! operations take in no tensor input and produce a single output.
class TORCH_CUDA_CU_API RNGOp : public Expr {
public:
RNGOp(
IrBuilderPasskey,
RNGOpType type,
Val* out,
int rng_offset = 0,
Val* philox_index = nullptr);
RNGOp(const RNGOp* src, IrCloner* ir_cloner);
RNGOpType getRNGOpType() const {
return rng_op_type_;
}
int getRNGOffset() const {
return rng_offset_;
}
void setRNGOffset(int val) {
rng_offset_ = val;
}
Val* getPhiloxIndex() const {
return philox_index_;
}
void setPhiloxIndex(Val* index) {
philox_index_ = index;
}
bool sameAs(const Statement* other) const override;
private:
const RNGOpType rng_op_type_;
int rng_offset_ = -1;
// The index used to feed philox's subsequence and component
Val* philox_index_ = nullptr;
};
//! Broadcast in to match out. is_broadcast_dims are relative to out. Where
//! is_broadcast_dims.size() == out->nDims().
class TORCH_CUDA_CU_API BroadcastOp : public Expr {
public:
//! \param out The output tensor
//! \param in The input tensor
//! \param is_broadcast_dims True when output dim is a new broadcast domain
BroadcastOp(
IrBuilderPasskey,
Val* out,
Val* in,
std::vector<bool> is_broadcast_dims);
BroadcastOp(const BroadcastOp* src, IrCloner* ir_cloner);
Val* out() const {
return out_;
}
Val* in() const {
return in_;
}
bool isBroadcastDim(size_t dim) const {
return is_broadcast_dims_.at(dim);
}
const std::vector<bool>& getBroadcastDimFlags() const {
return is_broadcast_dims_;
}
bool sameAs(const Statement* other) const override;
private:
Val* const out_ = nullptr;
Val* const in_ = nullptr;
//! The same list passed to the broadcast arithmetic op. Each
//! element corresponds to an IterDomain of the output tensor and is
//! true when the IterDomain is a new broadcast domain. Note
//! that the output tensor may have other broadcast domains whose
//! flags are false because the input tensor may already have
//! broadcast domains.
const std::vector<bool> is_broadcast_dims_;
};
//! Reduction operation. Out is first initialized to _init. Then
//! reduction_op_type is used to update out as out = reductionOp(out, in).
//! Output's axes marked as reduction will be reduced to produce an output
//! tensor. The output tensors size will be the size of all
//! non-reduction/non-broadcast dimensions.
class TORCH_CUDA_CU_API ReductionOp : public Expr {
public:
ReductionOp(
IrBuilderPasskey,
BinaryOpType reduction_op_type,
Val* init,
Val* out,
Val* in,
bool is_allreduce = false,
ExprType expr_type = ExprType::ReductionOp);
ReductionOp(const ReductionOp* src, IrCloner* ir_cloner);
Val* out() const {
return out_;
}
Val* in() const {
return in_;
}
Val* init() const {
return init_;
}
BinaryOpType getReductionOpType() const {
return reduction_op_type_;
}
bool isAllreduce() const {
return is_allreduce_;
}
bool sameAs(const Statement* other) const override;
private:
const BinaryOpType reduction_op_type_;
Val* const init_ = nullptr;
Val* const out_ = nullptr;
Val* const in_ = nullptr;
//! True if broadcast is fused
bool is_allreduce_ = false;
};
//! Grouped reduction operation for horizontal fusions. It works like
//! batched GEMMs in the sense that multiple independent reductions are
//! performed together. The main benefit is when reducing tensors across thread
//! blocks, a single grid sync can be done for all individual
//! reductions. As grid sync is very expensive, this can be a
//! significant performance impact.
class TORCH_CUDA_CU_API GroupedReductionOp : public Expr {
public:
GroupedReductionOp(
IrBuilderPasskey,
std::vector<BinaryOpType> reduction_op_type,
std::vector<Val*> init,
std::vector<Val*> out,
std::vector<Val*> in,
bool is_allreduce = false,
ExprType expr_type = ExprType::GroupedReductionOp);
GroupedReductionOp(const GroupedReductionOp* src, IrCloner* ir_cloner);
//! Number of expressions grouped horizontally. It does not reflect
//! iteration grouping.
size_t numExprs() const {
return reduction_op_types_.size();
}
const std::vector<Val*>& initVals() const {
return init_vals_;
}
Val* initVal(size_t index) const {
return init_vals_.at(index);
}
const std::vector<BinaryOpType>& getReductionOpTypes() const {
return reduction_op_types_;
}
BinaryOpType getReductionOpType(size_t index) const {
return reduction_op_types_.at(index);
}
bool isAllreduce() const {
return is_allreduce_;
}
//! Return the index of the corresponding reduction expression for
//! a given output val.
int getExprIndexOfOutput(Val* output_val) const;
bool sameAs(const Statement* other) const override;
private:
//! Reduction ops of grouped reductions
const std::vector<BinaryOpType> reduction_op_types_;
//! Initial values of grouped reductions
const std::vector<Val*> init_vals_;
//! True if using the fused reduction kernel
bool is_allreduce_ = false;
};
//! Average, variance and N (count) vals for Welford
class TORCH_CUDA_CU_API WelfordTriplet {
public:
//! Names of the Welford triplet vals
enum class ValName { Avg, Var, N };
WelfordTriplet() = default;
WelfordTriplet(Val* avg, Val* var, Val* N) : vals_({avg, var, N}) {}
Val* const& avg() const {
return get(ValName::Avg);
}
Val*& avg() {
return get(ValName::Avg);
}
TensorView* avgTv() const {
TORCH_INTERNAL_ASSERT(avg()->isA<TensorView>());
return avg()->as<TensorView>();
}
Val* const& var() const {
return get(ValName::Var);
}
Val*& var() {
return get(ValName::Var);
}
TensorView* varTv() const {
TORCH_INTERNAL_ASSERT(var()->isA<TensorView>());
return var()->as<TensorView>();
}
Val* const& N() const {
return get(ValName::N);
}
Val*& N() {
return get(ValName::N);
}
TensorView* NTv() const {
TORCH_INTERNAL_ASSERT(N()->isA<TensorView>());
return N()->as<TensorView>();
}
//! Get the i-th val. Ordering is defined by ValName.
Val* const& get(int i) const {
return vals_.at(i);
}
//! Get the i-th val. Ordering is defined by ValName.
Val*& get(int i) {
return vals_.at(i);
}
Val* const& get(ValName name) const {
return get(valNameToIndex(name));
}
Val*& get(ValName name) {
return get(valNameToIndex(name));
}
//! Get the name of a given val in this triplet. None is returned if
//! not found.
c10::optional<ValName> getNameOf(Val* val) const;
//! Return a new triplet with outputs produced by a function applied
//! to each of this triplet
template <typename Func>
WelfordTriplet transform(Func func) const {
return WelfordTriplet(func(avg()), func(var()), func(N()));
}
bool sameAs(const WelfordTriplet& other) const;
WelfordTriplet clone(IrCloner* ir_cloner) const;
//! Clone a vector of triplets
static std::vector<WelfordTriplet> clone(
const std::vector<WelfordTriplet>& src,
IrCloner* ir_cloner);
auto begin() {
return vals_.begin();
}
auto begin() const {
return vals_.begin();
}
auto end() {
return vals_.end();
}
auto end() const {
return vals_.end();
}
private:
//! Convert a given val name to an index
static int valNameToIndex(ValName name) {
return static_cast<int>(name);
}
//! Convert a given index to a name
static ValName indexToValName(int index) {
TORCH_INTERNAL_ASSERT(index >= 0 && index < 3, "Invalid index: ", index);
return static_cast<ValName>(index);
}
private:
//! Holds avg, var and N in this order
std::array<Val*, 3> vals_ = {{nullptr, nullptr, nullptr}};
};
//! Welford Scan operation.
class TORCH_CUDA_CU_API WelfordOp : public Expr {
public:
WelfordOp(
IrBuilderPasskey,
const WelfordTriplet& output,
const WelfordTriplet& input,
const WelfordTriplet& init,
bool is_fused = false);
WelfordOp(
IrBuilderPasskey,
Val* out_avg,
Val* out_var,
Val* out_N,
Val* in_avg,
Val* in_var,
Val* in_N,
Val* init_avg,
Val* init_var,
Val* init_N,
bool is_fused = false);
WelfordOp(const WelfordOp* src, IrCloner* ir_cloner);
Val* out() const {
return output().avg();
}
Val* in() const {
return input().avg();
}
bool sameAs(const Statement* const other) const override;
const WelfordTriplet& output() const {
return output_;
}
Val* outAvg() const {
return output().avg();
}
Val* outVar() const {
return output().var();
}
Val* outN() const {
return output().N();
}
const WelfordTriplet& input() const {
return input_;
}
Val* inAvg() const {
return input().avg();
}
Val* inVar() const {
return input().var();
}
Val* inN() const {
return input().N();
}
const WelfordTriplet& init() const {
return init_;
}
Val* initAvg() const {
return init().avg();
}
Val* initVar() const {
return init().var();
}
Val* initN() const {
return init().N();
}
bool singleValue() const {
return inN()->isOneInt();
}
bool hasInit() const {
return !initN()->isZeroInt();
}
bool isAllreduce() const {
return is_allreduce_;
}
std::vector<Val*> getInitVals() const;
//! Return the init val for an output val
Val* getInitValOfOutput(Val* output_val) const;
private:
const WelfordTriplet output_;
const WelfordTriplet input_;
const WelfordTriplet init_;
//! True if using the fused reduction kernel (not implemented yet)
bool is_allreduce_ = false;
};
class TORCH_CUDA_CU_API GroupedWelfordOp : public Expr {
public:
GroupedWelfordOp(
IrBuilderPasskey,
std::vector<WelfordTriplet> output_vals,
std::vector<WelfordTriplet> input_vals,
std::vector<WelfordTriplet> init_vals,
bool is_allreduce = false,
ExprType expr_type = ExprType::GroupedWelfordOp);
GroupedWelfordOp(const GroupedWelfordOp* src, IrCloner* ir_cloner);
//! Number of expressions grouped horizontally. It does not reflect
//! iteration grouping. As horizontal grouping is not supported,
//! this always returns 1.
size_t numExprs() const {
return 1;
}
Val* out(size_t index) const {
return outAvg(index);
}
Val* in(size_t index) const {
return inAvg(index);
}
bool sameAs(const Statement* const other) const override;
const std::vector<WelfordTriplet>& outputVals() const {
return output_vals_;
}
const std::vector<WelfordTriplet>& inputVals() const {
return input_vals_;
}
const std::vector<WelfordTriplet>& initVals() const {
return init_vals_;
}
Val* outAvg(size_t index) const {
return outputVals().at(index).avg();
}
Val* outVar(size_t index) const {
return outputVals().at(index).var();
}
Val* outN(size_t index) const {
return outputVals().at(index).N();
}
Val* inAvg(size_t index) const {
return inputVals().at(index).avg();
}
Val* inVar(size_t index) const {
return inputVals().at(index).var();
}
Val* inN(size_t index) const {
return inputVals().at(index).N();
}
Val* initAvg(size_t index) const {
return initVals().at(index).avg();
}
Val* initVar(size_t index) const {
return initVals().at(index).var();
}
Val* initN(size_t index) const {
return initVals().at(index).N();
}
//! Return the index of the corresponding welford expression for
//! a given output val
int getExprIndexOfOutput(Val* output_val) const;
//! Return the init val for an output val
Val* getInitValOfOutput(Val* output_val) const;
bool singleValue(size_t index) const {
return inN(index)->isOneInt();
}
bool hasInit(size_t index) const {
return !initN(index)->isZeroInt();
}
bool isAllreduce() const {
return is_allreduce_;
}
private:
const std::vector<WelfordTriplet> output_vals_;
const std::vector<WelfordTriplet> input_vals_;
const std::vector<WelfordTriplet> init_vals_;
//! True if using the fused reduction kernel
bool is_allreduce_ = false;
};
//! Fused Matmul operation
class TORCH_CUDA_CU_API MmaOp : public Expr {
public:
// This is a temporary data structure to for the
// scheduling specific parameters that we still need
// to store on an mma node. Eventually will only be
// the mma macro type that will stay on the IR node
// after additional cleaning ups.
struct OptionsInMma {
MmaOptions::MacroType macro = MmaOptions::MacroType::NoMMA;
MmaOptions::MmaInputLayout operand_layout = MmaOptions::MmaInputLayout::TT;
int accumulator_stride = 0;
bool operator==(const OptionsInMma& other) const {
return macro == other.macro && operand_layout == other.operand_layout &&
accumulator_stride == other.accumulator_stride;
}
};
MmaOp(IrBuilderPasskey, Val* out, Val* in_a, Val* in_b, Val* init);
MmaOp(
IrBuilderPasskey,
Val* out,
Val* in_a,
Val* in_b,
Val* init,
OptionsInMma options);
MmaOp(const MmaOp* src, IrCloner* ir_cloner);
Val* out() const {
return out_;
}
Val* inA() const {
return in_a_;
}
Val* inB() const {
return in_b_;
}
Val* init() const {
return init_;
}
const auto& options() const {
TORCH_INTERNAL_ASSERT(options_.has_value(), "MmaOp not configured:", this);
return options_.value();
}
bool sameAs(const Statement* const other) const override;
auto accStride() const {
TORCH_INTERNAL_ASSERT(options_.has_value(), "MmaOp not configured:", this);
return options_->accumulator_stride;
}
void configureOptions(MmaOptions options) {
options_ = OptionsInMma();
TORCH_INTERNAL_ASSERT(
options.macro != MmaOptions::MacroType::NoMMA,
"Un-configured mma type from options.");
TORCH_INTERNAL_ASSERT(
options.accumulator_stride > 0, "Un-configured accumulator stride.");
options_->accumulator_stride = options.accumulator_stride;
options_->macro = options.macro;
options_->operand_layout = options.operand_layout;
}
private:
Val* const out_ = nullptr;
Val* const in_a_ = nullptr;
Val* const in_b_ = nullptr;
Val* const init_ = nullptr;
c10::optional<OptionsInMma> options_ = c10::nullopt;
};
class TORCH_CUDA_CU_API TransposeOp : public Expr {
public:
TransposeOp(
IrBuilderPasskey,
TensorView* out,
TensorView* in,
std::vector<int64_t> new2old);
TransposeOp(const TransposeOp* src, IrCloner* ir_cloner);
TensorView* out() const {
return out_;
}
TensorView* in() const {
return in_;
}
const std::vector<int64_t>& new2old() const {
return new2old_;
}
std::vector<int64_t> old2new() const;
private:
TensorView* const out_ = nullptr;
TensorView* const in_ = nullptr;
const std::vector<int64_t> new2old_;
};
class TORCH_CUDA_CU_API ExpandOp : public Expr {
public:
ExpandOp(
IrBuilderPasskey,
TensorView* out,
TensorView* in,
std::vector<Val*> _expanded_extents);
ExpandOp(const ExpandOp* src, IrCloner* ir_cloner);
TensorView* out() const {
return out_;
}
TensorView* in() const {
return in_;
}
const std::vector<Val*>& expanded_extents() const {
return expanded_extents_;
}
private:
TensorView* const out_ = nullptr;
TensorView* const in_ = nullptr;
std::vector<Val*> expanded_extents_;
};
class TORCH_CUDA_CU_API TernaryOp : public Expr {
public:
TernaryOp(
IrBuilderPasskey,
TernaryOpType type,
Val* out,
Val* in1,
Val* in2,
Val* in3);
TernaryOp(const TernaryOp* src, IrCloner* ir_cloner);
Val* out() const {
return out_;
}
Val* in1() const {
return in1_;
}
Val* in2() const {
return in2_;
}
Val* in3() const {
return in3_;
}
TernaryOpType getTernaryOpType() const {
return ternary_op_type_;
}
bool sameAs(const Statement* other) const override;
private:
const TernaryOpType ternary_op_type_;
Val* const out_ = nullptr;
Val* const in1_ = nullptr;
Val* const in2_ = nullptr;
Val* const in3_ = nullptr;
};
//! Shift
class TORCH_CUDA_CU_API ShiftOp : public Expr {
public:
//! \param out
//! \param in
//! \param offsets
ShiftOp(
IrBuilderPasskey,
Val* out,
Val* in,
std::vector<int> offsets,
std::vector<int> pad_width);
ShiftOp(const ShiftOp* src, IrCloner* ir_cloner);
Val* out() const {
return out_;
}
Val* in() const {
return in_;
}
int offset(size_t dim) const {
return offsets_.at(dim);
}
const std::vector<int>& offsets() const {
return offsets_;
}
const std::vector<int>& padWidth() const {
return pad_width_;
}
bool hasPadding() const {
return std::any_of(pad_width_.begin(), pad_width_.end(), [](const auto p) {
return p > 0;
});
}
bool sameAs(const Statement* other) const override;
private:
Val* const out_ = nullptr;
Val* const in_ = nullptr;
//! Each of the root axes is shifted by the corresponding value of
//! offsets_. The sign of each value indicates the direction of
//! shifting.
const std::vector<int> offsets_;
const std::vector<int> pad_width_;
};
//! Gather a window around each element.
class TORCH_CUDA_CU_API GatherOp : public Expr {
public:
GatherOp(
IrBuilderPasskey,
Val* out,
Val* in,
std::vector<int> window_shape,
std::vector<std::vector<int>> pad_width);
GatherOp(const GatherOp* src, IrCloner* ir_cloner);
Val* out() const {
return out_;
}
Val* in() const {
return in_;
}
const auto& windowShape() const {
return window_shape_;
}
//! Returns the gather axis that corresponds to an input axis
int gatherAxis(int axis) const;
const auto& padWidth() const {
return pad_width_;
}
bool hasPadding() const {
return std::any_of(pad_width_.begin(), pad_width_.end(), [](const auto& p) {
return p[0] > 0 || p[1] > 0;
});
}
bool sameAs(const Statement* other) const override;
private:
Val* const out_ = nullptr;
Val* const in_ = nullptr;
//! Shape of a window gathered for each element.
std::vector<int> window_shape_;
//! The size of zero-padding of each axis.
std::vector<std::vector<int>> pad_width_;
};
class TORCH_CUDA_CU_API ViewAsScalar : public Expr {
public:
ViewAsScalar(
IrBuilderPasskey,
Val* out,
Val* in,
IterDomain* vector_id,
Val* index = nullptr);
ViewAsScalar(const ViewAsScalar* src, IrCloner* ir_cloner);
Val* out() const {
return out_;
}
Val* in() const {
return in_;
}
IterDomain* vector_id() const {
return vector_id_;
}
Val* index() const {
return index_;
}
private:
Val* const out_ = nullptr;
Val* const in_ = nullptr;
// The IterDomain of type VectorComponent newly appended to the output
IterDomain* vector_id_ = nullptr;
// The index that vector_id_ is lowered into
Val* index_ = nullptr;
};
class TORCH_CUDA_CU_API ViewOp : public Expr {
public:
ViewOp(IrBuilderPasskey, TensorView* out, TensorView* in);
ViewOp(const ViewOp* src, IrCloner* ir_cloner);
TensorView* out() const {
return out_;
}
TensorView* in() const {
return in_;
}
private:
TensorView* const out_ = nullptr;
TensorView* const in_ = nullptr;
};
//! This operator explicitly models data movement between
//! state spaces on GPU. Currently the modeled state spaces include
//! global memory, shared memory and register.
//!
//! The main usage of this op is to facilitate generation of hardware
//! accelerated memory ops, i.e. ldmatrix, cp.async and more to come.
class TORCH_CUDA_CU_API LoadStoreOp : public Expr {
public:
LoadStoreOp(IrBuilderPasskey, LoadStoreOpType op_type, Val* out, Val* in);
LoadStoreOp(const LoadStoreOp* src, IrCloner* ir_cloner);
Val* out() const {
return out_;
}
Val* in() const {
return in_;
}
LoadStoreOpType opType() const {
return load_store_type_;
}
private:
LoadStoreOpType load_store_type_ = LoadStoreOpType::LdMatrix;
Val* const out_ = nullptr;
Val* const in_ = nullptr;
};
// Convenience utility to initialize IterDomain's without having to sort through
// all the default values. Intended to be used with
// IterDomain::IterDomain(IrBuilderPasskey IterDomainBuildArgs)
class TORCH_CUDA_CU_API IterDomainBuilder {
public:
// Match legacy constructor
IterDomainBuilder(Val* _start, Val* _extent);
// Grab all the parameters from id to set the IterDomainBuilder
IterDomainBuilder(const IterDomain* id);
// Resets defaults for rfactor, is padded dim, padded to size, and is mma
// swizzle which should only be set during scheduling.
IterDomainBuilder& resetSchedulingParams();
// Resets is_rfactor_domain
IterDomainBuilder& resetRfactor();
IterDomainBuilder& start(Val* _start);
IterDomainBuilder& extent(Val* _extent);
IterDomainBuilder& expanded_extent(Val* _expanded_extent);
IterDomainBuilder& stop_offset(Val* _stop_offset);
IterDomainBuilder& parallel_type(ParallelType _parallel_type);
IterDomainBuilder& iter_type(IterType _iter_type);
IterDomainBuilder& is_rfactor_domain(bool _is_rfactor_domain);
IterDomainBuilder& is_padded_dimension(bool _is_padded_dimension);
IterDomainBuilder& padded_to_size(c10::optional<int64_t> _padded_to_size);
IterDomainBuilder& is_mma_swizzled(bool _is_mma_swizzled);
IterDomain* build() const;
// Must have start and extent at least
IterDomainBuilder() = delete;
Val* start_ = nullptr;
Val* extent_ = nullptr;
Val* expanded_extent_ = nullptr;
Val* stop_offset_ = nullptr;
ParallelType parallel_type_ = ParallelType::Serial;
IterType iter_type_ = IterType::Iteration;
// Only relevant at scheduling time or compile time.
bool is_rfactor_domain_ = false;
bool is_padded_dimension_ = false;
c10::optional<int64_t> padded_to_size_ = c10::nullopt;
bool is_mma_swizzled_ = false;
};
// Friends for direct access to split
class TensorDomain;
class ReplayTransformations;
class IndexReferenceReplay;
//! Simply a representation of an annotated 1D iterable from start to extent.
//! TensorDomains which represent how to iterate over a tensor is made up of
//! IterDomains to form an ND iterable. We directly set parallization strategies
//! on IterDomains.
class TORCH_CUDA_CU_API IterDomain : public Val {
public:
IterDomain(IrBuilderPasskey, const IterDomainBuilder& args);
// Legacy constructor, TODO: should start moving to use IterDomainBuildArgs
// constructor Same as the above but can set the offset of the stop point
IterDomain(
IrBuilderPasskey,
Val* start,
Val* extent,
Val* expanded_extent,
Val* stop_offset,
ParallelType parallel_type,
IterType iter_type,
bool is_rfactor_domain,
bool is_padded_dimension,
c10::optional<int64_t> padded_to_size_,
bool is_mma_swizzled);
IterDomain(const IterDomain* src, IrCloner* ir_cloner);
bool sameAs(const Statement* other) const override;
//! Returns a new IterDomain matching properties of this
//!
//! This does NOT copy the is_rfactor_domain flag.
IterDomain* cloneWithoutRFactor() const;
//! Clone a vector domains
static std::vector<IterDomain*> clone(
const std::vector<IterDomain*>& domains);
static IterDomain* merge(IterDomain* outer, IterDomain* inner);
//! start_offset and stop_offset defines partial split. Only root
//! domains are allowed to have non-zero start and stop offsets.
static std::pair<IterDomain*, IterDomain*> split(
IterDomain* in,
Val* factor,
bool inner_split,
Val* start_offset = nullptr,
Val* stop_offset = nullptr);
//! trim_out_of_bounds controls how the values outside start and stop
//! positions are treated. The option is only valid with root
//! domains as non-root domains do not have valid start and stop
//! positions.
//!
//! \param trim_out_of_bounds Trims [0, start_] and [-stop_offset_, extent_]
static std::pair<IterDomain*, IterDomain*> split(
IterDomain* in,
Val* factor,
bool inner_split,
bool trim_out_of_bounds);
bool isReduction() const {
return getIterType() == IterType::Reduction;
}
bool isRFactorProduct() const {
return is_rfactor_domain_;
}
bool isBroadcast() const {
return getIterType() == IterType::Broadcast;
}
bool isGather() const {
return getIterType() == IterType::Gather;
}
bool isStride() const {
return getIterType() == IterType::Stride;
}
bool isVectorComponent() const {
return getIterType() == IterType::VectorComponent;
}
bool isParallelized() const {
return getParallelType() != ParallelType::Serial;
}
//! Return if this iter domain is mapped to a grid dimension
bool isBlockDim() const {
return isParallelTypeBlockDim(getParallelType());
}
//! Return if this iter domain is mapped to a block dimension
bool isThreadDim() const {
return isParallelTypeThreadDim(getParallelType());
}
//! Return if this iter domain is either mapped to a block or grid dimension
bool isThread() const {
return (isBlockDim() || isThreadDim());
}
void parallelize(ParallelType t);
ParallelType getParallelType() const {
return parallel_type_;
}
IterType getIterType() const {
return iter_type_;
}
Val* start() const {
return start_;
}
Val* stop() const;
Val* stopOffset() const;
Val* extent() const {
TORCH_INTERNAL_ASSERT(extent_ != nullptr);
return extent_;
}
bool hasExpandedExtent() const {
return expanded_extent_ != nullptr;
}
// Returns the expanded extent of a strided broadcast entry.
Val* expandedExtent() const {
TORCH_INTERNAL_ASSERT(
hasExpandedExtent(),
"Requested expanded extent, but none found on this dimension.");
return expanded_extent_;
}
Val* getMaybeExpandedExtent() const {
if (hasExpandedExtent()) {
return expandedExtent();
}
return extent();
}
//! Dimension padding interface:
//! 2 modes are currently supported:
//!
//! - mode 1: if to_size is given as a positive number,
//! the dimension will be padded to the size so that
//! this iterdomain will be compile-time constant
//! size and it is the scheduler's responsibility
//! to ensure no input larger than the padded size
//! will be observed
//!
//! - mode 2: if no to_size is given, this dimension
//! is "dynamically" padded to next smallest multiple
//! of a warp size, i.e. 17 padded to 32, 33 padded to 64
//! based on the given input.
void padToMultipleOfWarp(c10::optional<int64_t> maybe_to_size = {}) {
// Currently only restricted to TIDx to generate warp reduce
TORCH_CHECK(
parallel_type_ == ParallelType::TIDx,
"padToMultipleOfWarp : warp padding only supported on TIDx parallel dimension");
is_padded_dimension_ = true;
if (maybe_to_size.has_value()) {
if (maybe_to_size.value() > 0) {
padded_to_size_ = maybe_to_size.value();
}
}
}
//! Indicates if this iterdomain had padding
//! dynamical or statical
bool hasPaddingToMultipleOfWarp() const {
return is_padded_dimension_;
}
//! Returns a concrete value if this iterdomain
//! has been padded to a statical size.
c10::optional<int64_t> getMaybeSizeAfterPadding() const {
return padded_to_size_;
}
//! True if range of iteration domain isn't across the full extent
bool maybePartial() const;
//! Check if IterDomain is a broadcast axis with compile-time
//! known extent. This is the case with all size-1 IterDomains on
//! a TensorView's root domain when the TensorView is created.
bool isImplicitBroadcast() const {
return isBroadcast() && extent()->isOneInt();
}
//! Check if IterDomain is a reduction axis with size of 1, i.e.
//! a "squeeze" operator.
//!
//! NOTE: Detection of trivial reduction here is not
//! comprehensive. See detectTrivialReductionDerivedDomains for more
//! comprehensive analysis. We typically use this for root domain trivial
//! reduction checks. So we ship to the correct scheduler. It may
//! not be incredibly robust, but it makes sense to keep it for now.
bool isTrivialReduction() const {
return isReduction() && extent()->isOneInt();
}
//! Split for stride by a given factor. It effectively does an inner
//! split by the factor and sets the inner domain as a Stride
//! domain.
std::pair<IterDomain*, IterDomain*> stridedSplit(int factor);
// TODO: Remove
bool isSimple() const {
return definition() == nullptr;
}
//! Marks that this id represents a
//! instruction loop, mma use only.
//!
//! An instruction loop can be considered a generalization of
//! vectorization. It also represents a loop that's implemented
//! by an instruction and should not be realized by codegen and
//! cannot be inlined with.
//! As an example, if a mma macro, call it mma_eg implements:
//! for m in M
//! for n in N
//! for k in K
//! C[m,n] += A[m,k]*B[k,n],
//! But the generated code should simply be:
//! mma_eg(C,A,B)
//! without the 3 level loopnest, i.e. they're instruction loops.
//!
//! In the actual mma macros, the loopnests it implements is a
//! transformed version of above to match the mma swizzle.
//! So it's different implicit loopnest for different macros.
//! WarpMmaSwizzler will label the instruction loops case-by-case.
bool isMma() const {
return parallel_type_ == ParallelType::Mma;
}
//! Applies 2D swizzle on a rectangular tile defined by
//! a pair of iterdomains.
static std::pair<IterDomain*, IterDomain*> swizzle(
Swizzle2DType swizzle_type,
IterDomain* in_x,
IterDomain* in_y,
SwizzleMode swizzle_mode = SwizzleMode::Data);
bool isMmaSwizzled() const {
return is_mma_swizzled_;
}
//! Used by WarpMmaSwizzler, this is an utility for WarpMmaSwizzler
//! to lock the thread swizzled iterdomains.
//! Only true for the iterdomains produced by WarpMmaSwizzler.
//! Mma ops require specific swizzle patterns
//! and this label utility is to prevent any further transform on the
//! iterdomains involved in the swizzle so that the pattern remain correct in
//! generated code.
//!
//! Note:
//! Used only through WarpMmaSwizzler only and mma validation relies on
//! this
//! flag being set on the correct iterdomains.
void toMmaSwizzled() {
is_mma_swizzled_ = true;
}
protected:
friend TensorDomain;
friend ReplayTransformations;
friend IndexReferenceReplay;
private:
//! Valid range is defined as [start:-stop_offset]
Val* const start_ = nullptr;
Val* const extent_ = nullptr;
// Broadcast dimensions are assumed to be size 1 for the sake of code
// generation. If a user though calls `expand` on a tensor that dimension is
// still considered a broadcast dimension. However if we ever output that
// dimension it should be a size dictated by the `expand` operation, and have
// a stride of zero. Since this extent is important to track, but not
// necessarily generate code for (still want loops on broadcast to be of size
// 0), we simply store it separately from extent_. Having an expanded_extent_
// is only allowed with broadcasted dimsneions. Only in this instance does it
// make sense to have an expanded_extent_, because it's used when users are
// expecting return tensors to have a physical domain. If a user simply
// "broadcasts" an operation
Val* const expanded_extent_ = nullptr;
//! Distance of stop from the end
Val* const stop_offset_ = nullptr;
ParallelType parallel_type_ = ParallelType::Serial;
IterType iter_type_ = IterType::Iteration;
bool is_rfactor_domain_ = false;
bool is_padded_dimension_ = false;
c10::optional<int64_t> padded_to_size_ = c10::nullopt;
// TODO: Remove only used in kernel IR because IterDomains don't maintain
// definitions of split/merge.
bool is_simple_ = true;
//! Tracks if this id represents a thread swizzled loop or
//! models an implicit loop within instructions. Should not make
//! any changes once an id is warp mapped.
bool is_mma_swizzled_ = false;
};
//! TensorDomain holds a vector of IterDomains. It holds an IterDomain for every
//! logical axis in its associated tensor. TensorDomain does not directly hold
//! the Tensor it is associated with, and in theory could be associated with
//! multiple tensors. TensorDomain's primary responsibility is to provide a
//! mechanism to access history of transformations that were used to generate
//! it. This is done through the normal interaction of Expr/Val in Fusion. i.e.
//! if we want to know the previous operation generating a particular
//! TensorDomain we can simply call:
//!
//! FusionGuard::getCurFusion()->definition(a_tensor_domain)
//!
//! which should give us an operation in the list [split, merge] or similar
//! operations that take in a TensorDomain, applies a transformation and outputs
//! a tensor domain.
class TORCH_CUDA_CU_API TensorDomain : public Val {
public:
explicit TensorDomain(
IrBuilderPasskey,
std::vector<IterDomain*> root_domain,
std::vector<bool> contiguity = std::vector<bool>());
TensorDomain(
IrBuilderPasskey,
std::vector<IterDomain*> root_domain,
std::vector<IterDomain*> domain,
std::vector<bool> contiguity = std::vector<bool>());
TensorDomain(
IrBuilderPasskey,
std::vector<IterDomain*> root_domain,
std::vector<IterDomain*> rfactor_domain,
std::vector<IterDomain*> domain,
std::vector<bool> contiguity = std::vector<bool>());
TensorDomain(const TensorDomain* src, IrCloner* ir_cloner);
bool operator==(const TensorDomain& other) const;
bool operator!=(const TensorDomain& other) const {
return !(*this == other);
}
std::vector<IterDomain*>::size_type nDims() const {
return domain_.size();
}
bool sameAs(const Statement* other) const override;
static bool sameAs(
const std::vector<IterDomain*>& lhs,
const std::vector<IterDomain*>& rhs);
const std::vector<IterDomain*>& domain() const {
return domain_;
}
const std::vector<bool>& contiguity() const {
return contiguity_;
}
void setContiguity(const std::vector<bool>& contig);
std::string getContiguityString() const {
std::stringstream ss;
for (auto b : contiguity()) {
ss << (b ? "t" : "f");
}
return ss.str();
}
bool hasReduction() const;
bool hasBlockReduction() const;
bool hasGridReduction() const;
bool hasBlockBroadcast() const;
bool hasGridBroadcast() const;
bool hasBroadcast() const;
bool hasRFactor() const;
// Returns if rfactor domain only consists of id's of iter type.
bool hasViewLikeRFactor() const;
bool hasVectorize() const;
c10::optional<unsigned int> getReductionAxis() const;
const std::vector<IterDomain*>& noReductions() const {
return no_reduction_domain_;
}
const std::vector<IterDomain*>& noBroadcasts() const {
return no_bcast_domain_;
}
const std::vector<IterDomain*>& getRootDomain() const {
return root_domain_;
};
const std::vector<IterDomain*>& getRFactorDomain() const {
return rfactor_domain_;
};
// If rfactor domain exists in domain() return it, otherwise return root
// domain.
const std::vector<IterDomain*>& getMaybeRFactorDomain() const {
return hasRFactor() ? getRFactorDomain() : getRootDomain();
}
void resetDomains() {
no_reduction_domain_ = noReductions(domain_);
no_bcast_domain_ = noBroadcasts(domain_);
has_nontrivial_reduction_ = hasNontrivialReduction(domain_);
}
// i here is int, as we want to accept negative value and ::size_type can be a
// uint.
IterDomain* axis(int i) const;
size_t posOf(IterDomain* id) const;
//! Returns a position of a root domain
size_t rootPosOf(IterDomain* id) const;
// Split "axis" into 2 axes
//! inner_split dictates if the factor section of the split should be inside
//! the
//! remainer or outside.
//! e.g. split(0, 4, inner_split = true) will result in:
//! tv[id{extent}] -> tv[id{ceilDiv(extent, factor)}, id{factor}]
//! e.g. split(0, 4, inner_split = false) will result in:
//! tv[id{extent}] -> tv[id{factor}, id{ceilDiv(extent, factor)}]
void split(
int axis_,
Val* factor,
bool inner_split,
bool trim_out_of_bounds = false);
// Merge axis_o and axis_i. axis_i is the fast changing dimension. Resulting
// axis is by default placed at original position axis_o
void merge(int axis_o, int axis_i);
// Reorder axes according to map[old_pos] = new_pos
void reorder(const std::unordered_map<int, int>& old2new);
//! Applies 2D swizzle on a rectangular tile defined by
//! a pair of iterdomains contained in this domain.
void swizzle(
Swizzle2DType swizzle_type,
int x,
int y,
SwizzleMode swizzle_mode = SwizzleMode::Data);
// Transform TensorView according to merge and split transformations
TensorDomain* view(const AnalyzeViewResult& view_analysis);
TensorDomain* flatten(int64_t start_dim, int64_t end_dim);
static std::vector<IterDomain*> orderedAs(
const std::vector<IterDomain*>& td,
const std::unordered_map<int, int>& old2new);
static std::vector<IterDomain*> noReductions(const std::vector<IterDomain*>&);
static std::vector<IterDomain*> noBroadcasts(const std::vector<IterDomain*>&);
static bool hasBroadcast(const std::vector<IterDomain*>&);
static bool hasReduction(const std::vector<IterDomain*>&);
static bool hasNontrivialReduction(const std::vector<IterDomain*>&);
// pair is in order where second is the consumer of first
std::pair<TensorDomain*, TensorDomain*> rFactor(const std::vector<int>& axes);
private:
const std::vector<IterDomain*> root_domain_;
std::vector<IterDomain*> domain_;
std::vector<IterDomain*> no_bcast_domain_;
std::vector<IterDomain*> no_reduction_domain_;
const std::vector<IterDomain*> rfactor_domain_;
std::vector<bool> contiguity_;
bool has_nontrivial_reduction_;
};
//! Representation a split on an IterDomain by "factor"
//! inner_split dictates if the factor section of the split should be inside the
//! remainer or outside.
class TORCH_CUDA_CU_API Split : public Expr {
public:
// start_offset and stop_offset are used to express partial
// split. Only the partial domain from start_offset to stop_offset
// is split and the outer sub-regions are ignored. Note that both
// start_offset and stop_offset are distance from the left end and
// right ends, respectively.
Split(
IrBuilderPasskey,
IterDomain* outer,
IterDomain* inner,
IterDomain* in,
Val* factor,
bool inner_split = true,
Val* start_offset = nullptr,
Val* stop_offset = nullptr);
Split(const Split* src, IrCloner* ir_cloner);
IterDomain* outer() const {
return outer_;
}
IterDomain* inner() const {
return inner_;
}
IterDomain* in() const {
return in_;
}
Val* factor() const {
return factor_;
}
bool innerSplit() const {
return inner_split_;
}
Val* startOffset() const {
TORCH_INTERNAL_ASSERT(start_offset_ != nullptr);
return start_offset_;
}
Val* stopOffset() const {
TORCH_INTERNAL_ASSERT(stop_offset_ != nullptr);
return stop_offset_;
}
//! Utility function to compute the split extent.
static Val* extent(Val* in_extent, Val* start_offset, Val* stop_offset);
bool sameAs(const Statement* other) const override;
private:
IterDomain* const outer_ = nullptr;
IterDomain* const inner_ = nullptr;
IterDomain* const in_ = nullptr;
Val* const factor_ = nullptr;
bool inner_split_ = true;
//! Start position of the input domain. Non-zero means partial
//! split. Elements until this offset are ignored.
Val* const start_offset_ = nullptr;
//! Offset from extent of the input domain. Non-zero means partial
//! split. Elements after this offset are ignored.
Val* const stop_offset_ = nullptr;
};
//! Merge the IterDomains outer and inner into one domain, outer and inner
//! dictate which will be traversed first (inner). Both IterDomains must be of
//! the same iter or reduction type, as well as the same parallelization
//! strategy if there is one
class TORCH_CUDA_CU_API Merge : public Expr {
public:
Merge(
IrBuilderPasskey,
IterDomain* out,
IterDomain* outer,
IterDomain* inner);
Merge(const Merge* src, IrCloner* ir_cloner);
IterDomain* out() const {
return out_;
}
IterDomain* outer() const {
return outer_;
}
IterDomain* inner() const {
return inner_;
}
bool sameAs(const Statement* other) const override;
private:
IterDomain* const out_ = nullptr;
IterDomain* const outer_ = nullptr;
IterDomain* const inner_ = nullptr;
};
//! Applies 2D swizzles on a rectangular tile defined by 2 iterdomains.
class TORCH_CUDA_CU_API Swizzle2D : public Expr {
public:
Swizzle2D(
IrBuilderPasskey,
IterDomain* out_x,
IterDomain* out_y,
IterDomain* in_x,
IterDomain* in_y,
Swizzle2DType swizzle_type = Swizzle2DType::NoSwizzle,
SwizzleMode swizzle_mode = SwizzleMode::Data);
Swizzle2D(const Swizzle2D* src, IrCloner* ir_cloner);
IterDomain* outX() const {
return out_x_;
}
IterDomain* outY() const {
return out_y_;
}
IterDomain* inX() const {
return in_x_;
}
IterDomain* inY() const {
return in_y_;
}
auto swizzleType() const {
return swizzle_type_;
}
auto swizzleMode() const {
return swizzle_mode_;
}
bool sameAs(const Statement* other) const override;
private:
// Output iterdomain pair corresponding
// to the original input iterdomain pair.
IterDomain* const out_x_ = nullptr;
IterDomain* const out_y_ = nullptr;
// Input iterdomain pair.
IterDomain* const in_x_ = nullptr;
IterDomain* const in_y_ = nullptr;
// The type of predefined 1-to-1 functions
// used for swizzling math.
Swizzle2DType swizzle_type_ = Swizzle2DType::NoSwizzle;
// Swizzle mode of this swizzle instance.
// [Note on swizzle mode]
// On the current implementations we support two modes of
// swizzle math, namely, data mode and loop mode.
// `Data` mode swizzling is a swizzle that will change the
// data layout in shared memory, likely in global memory buffers
// as well in the future. see also IndexSwizzle in index_compute.cpp.
//
// Most important use cases are transpose bank conflict removal, and mma
// swizzled shared memory layout. Example illustrated in 1D case:
//
// for (int i = 0; i<I; i++){
// # This is a `Data` mode swizzle.
// Tshared [swizzled(i)] = Tin[i];
// }
// # Now Tshared holds swizzled data, i.e. the data layout of
// Tshared does not map to Tin with affine relationships.
//
// for(int i=0;i<I;i++){
// Tout = Tshared[swizzled(i)];
// }
//
// `Loop` mode swizzling does not affect the data layout of any buffer
// but only permutes the iteration order of serial or parallel loop.
// This is useful when we want to designate non-affine mapping of thread
// to data or we want to generate non-affine loops.
// Exampe illustrated in 1D case:
// for (int i = 0; i<I; i++){
// # This is a `Loop` mode swizzle
// Tshared [swizzled(i)] = Tin[swizzled(i)];
// }
// # Now Tshared holds normal data, i.e. it still has
// the same data layout as if the swizzle wasn't there.
//
// # Consumers of Tshared does not need to know about the
// loop swizzle at previous op if not inlined.
// for(int i=0;i<I;i++){
// Tout = Tshared[i];
// }
// TODO: Loop swizzles eventually will be piped through in all mappings
// and replay of the fusion IR infrastructure.
SwizzleMode swizzle_mode_ = SwizzleMode::Data;
};
//! Integer value which has a special name
//!
//! These could be:
//! - threadIdx.x
//! - blockIdx.y
//! - blockDim.z
//! - T3.stride[2]
//!
class TORCH_CUDA_CU_API NamedScalar : public Val {
public:
NamedScalar(IrBuilderPasskey passkey, std::string name, DataType dtype);
NamedScalar(const NamedScalar* src, IrCloner* ir_cloner);
const std::string& name() const {
return name_;
}
bool sameAs(const Statement* other) const override;
//! Return the named scalar extent of a parallel dimension (e.g. blockDim.x)
//! WARNING: Only works with Fusion container at the moment
static NamedScalar* getParallelDim(ParallelType p_type);
//! Return the named scalar index of a parallel dimension (e.g. threadIdx.x)
//! WARNING: Only works with Fusion container at the moment
static NamedScalar* getParallelIndex(ParallelType p_type);
//! Return the parallel type of this NamedScalar if it is an extent of a
//! parallel dimension
c10::optional<ParallelType> getParallelDim() const;
//! Return the parallel type of this NamedScalar if it is an index of a
//! parallel dimension
c10::optional<ParallelType> getParallelIndex() const;
private:
std::string name_;
};
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|