1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
|
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_builder.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <set>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace ir_utils {
std::vector<int64_t> normalizeNew2Old(
const std::vector<int64_t>& new2old_in,
size_t ndims) {
TORCH_CHECK(
new2old_in.size() == ndims,
"There must be a transpose mapping for each dimension in domain");
// Canonicalize dimensions by wrapping each dim for the given ndims
std::vector<int64_t> new2old;
std::transform(
new2old_in.begin(),
new2old_in.end(),
std::inserter(new2old, new2old.begin()),
[ndims](int64_t entry) { return entry < 0 ? entry + ndims : entry; });
// Check if any adjusted values are < 0, or >= nDims, which are invalid
TORCH_CHECK(
std::none_of(
new2old.begin(),
new2old.end(),
[ndims](int64_t entry) {
return entry < 0 || (unsigned int)entry >= ndims;
}),
"New2Old axes are not within the number of dimensions of the provided domain.\t",
new2old);
// Going to use sets, to see if any duplicate values are in the map.
std::set<int64_t> old_pos_set;
std::transform(
new2old.begin(),
new2old.end(),
std::inserter(old_pos_set, old_pos_set.begin()),
[](int64_t entry) { return entry; });
// Error out if duplicate values are found.
TORCH_CHECK(
new2old.size() == ndims && old_pos_set.size() == new2old.size(),
"Duplicate entries in transformation map.");
// END VALIDATION CHECKS
return new2old;
}
std::vector<int> normalizeOld2New(
const std::unordered_map<int, int>& old2new_in,
size_t ndims) {
// adjust based on negative values (any negative values gets nDims added to
// it)
std::unordered_map<int, int> old2new;
std::transform(
old2new_in.begin(),
old2new_in.end(),
std::inserter(old2new, old2new.begin()),
[ndims](std::unordered_map<int, int>::value_type entry) {
return std::unordered_map<int, int>::value_type({
entry.first < 0 ? entry.first + ndims : entry.first,
entry.second < 0 ? entry.second + ndims : entry.second,
});
});
// Check if any adjusted values are < 0, or >= nDims, which are invalid
TORCH_CHECK(
std::none_of(
old2new.begin(),
old2new.end(),
[ndims](std::unordered_map<int, int>::value_type entry) {
return entry.first < 0 || (unsigned int)entry.first >= ndims ||
entry.second < 0 || (unsigned int)entry.second >= ndims;
}),
"Reorder axes are not within the number of dimensions of the provided domain.");
// Going to use sets, to see if any duplicate values are in the map.
std::set<int> old_pos_set;
std::transform(
old2new.begin(),
old2new.end(),
std::inserter(old_pos_set, old_pos_set.begin()),
[](std::unordered_map<int, int>::value_type entry) {
return entry.first;
});
std::set<int> new_pos_set;
std::transform(
old2new.begin(),
old2new.end(),
std::inserter(new_pos_set, new_pos_set.begin()),
[](std::unordered_map<int, int>::value_type entry) {
return entry.second;
});
// Error out if duplicate values are found.
TORCH_CHECK(
old_pos_set.size() == old2new.size() &&
new_pos_set.size() == old2new.size(),
"Duplicate entries in transformation map sent to TensorView reorder.");
// END VALIDATION CHECKS
std::vector<int> new2old(ndims, -1);
// Go through each old and new position, make sure they're within [0, ndims)
for (std::pair<int, int> elem : old2new) {
int old_pos = elem.first;
int new_pos = elem.second;
new2old[new_pos] = old_pos;
}
// old_positions that already have a new position
std::set<int> old_positions(new2old.begin(), new2old.end());
old_positions.erase(-1);
// All available new positions
std::set<int> all_positions;
for (decltype(ndims) i{0}; i < ndims; i++)
all_positions.insert(i);
// Check what positions haven't been specified.
std::set<int> positions_left;
std::set_difference(
all_positions.begin(),
all_positions.end(),
old_positions.begin(),
old_positions.end(),
std::inserter(positions_left, positions_left.end()));
// Fill in positions that weren't specified, in relative order,
// in empty spots in the set of new positions.
// new2old[new_position] = old_position
auto it = positions_left.begin(); // old positions left
std::transform(
new2old.begin(), new2old.end(), new2old.begin(), [&it](int i) -> int {
return i == -1 ? *it++ : i;
});
return new2old;
}
namespace ValReplacement {
// Create New Expr given producer - [an input for the expression]
// Creates a new Expr substituting current with producer
struct SubstituteInExpr : public OptInDispatch {
public:
static Expr* subsitute(Expr* expr, Val* reference, Val* substitute) {
TORCH_INTERNAL_ASSERT(
expr != nullptr && reference != nullptr && substitute != nullptr,
"Nullptr arg found.");
SubstituteInExpr sie(reference, substitute);
sie.handle(expr);
TORCH_INTERNAL_ASSERT(
sie.expr_ != nullptr,
"Substitution failed of ",
reference,
" with ",
substitute);
return sie.expr_;
}
private:
explicit SubstituteInExpr(Val* reference, Val* substitute)
: reference_(reference), substitute_(substitute) {}
void handle(Expr* expr) final {
OptInDispatch::handle(expr);
}
void handle(ARangeOp* arange_expr) final {
auto start = reference_->sameAs(arange_expr->start())
? substitute_
: arange_expr->start();
auto end = reference_->sameAs(arange_expr->end()) ? substitute_
: arange_expr->end();
auto step = reference_->sameAs(arange_expr->step()) ? substitute_
: arange_expr->step();
auto out = reference_->sameAs(arange_expr->output(0))
? substitute_
: arange_expr->output(0);
expr_ = IrBuilder::create<ARangeOp>(
arange_expr->container(),
out,
start,
end,
step,
arange_expr->getLinearIndex());
}
void handle(UnaryOp* unary_expr) final {
auto in =
reference_->sameAs(unary_expr->in()) ? substitute_ : unary_expr->in();
auto out =
reference_->sameAs(unary_expr->out()) ? substitute_ : unary_expr->out();
expr_ = IrBuilder::create<UnaryOp>(
unary_expr->container(), unary_expr->getUnaryOpType(), out, in);
}
void handle(BinaryOp* binary_expr) final {
auto lhs = reference_->sameAs(binary_expr->lhs()) ? substitute_
: binary_expr->lhs();
auto rhs = reference_->sameAs(binary_expr->rhs()) ? substitute_
: binary_expr->rhs();
auto out = reference_->sameAs(binary_expr->out()) ? substitute_
: binary_expr->out();
expr_ = IrBuilder::create<BinaryOp>(
binary_expr->container(),
binary_expr->getBinaryOpType(),
out,
lhs,
rhs);
}
void handle(TernaryOp* ternary_expr) final {
auto in1 = reference_->sameAs(ternary_expr->in1()) ? substitute_
: ternary_expr->in1();
auto in2 = reference_->sameAs(ternary_expr->in2()) ? substitute_
: ternary_expr->in2();
auto in3 = reference_->sameAs(ternary_expr->in3()) ? substitute_
: ternary_expr->in3();
auto out = reference_->sameAs(ternary_expr->out()) ? substitute_
: ternary_expr->out();
expr_ = IrBuilder::create<TernaryOp>(
ternary_expr->container(),
ternary_expr->getTernaryOpType(),
out,
in1,
in2,
in3);
}
void handle(RNGOp* rng_expr) final {
auto out = reference_->sameAs(rng_expr->output(0)) ? substitute_
: rng_expr->output(0);
expr_ = IrBuilder::create<RNGOp>(
rng_expr->container(),
rng_expr->getRNGOpType(),
out,
rng_expr->getRNGOffset(),
rng_expr->getPhiloxIndex());
}
void handle(ReductionOp* reduction_expr) final {
auto init = reference_->sameAs(reduction_expr->init())
? substitute_
: reduction_expr->init();
auto out = reference_->sameAs(reduction_expr->out())
? substitute_
: reduction_expr->out();
auto in = reference_->sameAs(reduction_expr->in()) ? substitute_
: reduction_expr->in();
expr_ = IrBuilder::create<ReductionOp>(
reduction_expr->container(),
reduction_expr->getReductionOpType(),
init,
out,
in);
}
void handle(GroupedReductionOp* grouped_reduction_expr) final {
std::vector<Val*> outputs;
std::transform(
grouped_reduction_expr->outputs().begin(),
grouped_reduction_expr->outputs().end(),
std::back_inserter(outputs),
[&](Val* val) { return reference_->sameAs(val) ? substitute_ : val; });
std::vector<Val*> inputs;
std::transform(
grouped_reduction_expr->inputs().begin(),
grouped_reduction_expr->inputs().end(),
std::back_inserter(inputs),
[&](Val* val) { return reference_->sameAs(val) ? substitute_ : val; });
std::vector<Val*> init_vals;
std::transform(
grouped_reduction_expr->initVals().begin(),
grouped_reduction_expr->initVals().end(),
std::back_inserter(init_vals),
[&](Val* val) { return reference_->sameAs(val) ? substitute_ : val; });
expr_ = IrBuilder::create<GroupedReductionOp>(
grouped_reduction_expr->container(),
grouped_reduction_expr->getReductionOpTypes(),
init_vals,
outputs,
inputs);
}
void handle(BroadcastOp* broadcast_expr) final {
auto out = reference_->sameAs(broadcast_expr->out())
? substitute_
: broadcast_expr->out();
auto in = reference_->sameAs(broadcast_expr->in()) ? substitute_
: broadcast_expr->in();
expr_ = IrBuilder::create<BroadcastOp>(
broadcast_expr->container(),
out,
in,
broadcast_expr->getBroadcastDimFlags());
}
void handle(TransposeOp* transpose_expr) final {
TORCH_INTERNAL_ASSERT(
substitute_->isA<TensorView>(),
"All args to transpose must be tensor view, but received a non-TensorView for replacement: ",
substitute_);
auto out = reference_->sameAs(transpose_expr->out())
? substitute_->as<TensorView>()
: transpose_expr->out();
auto in = reference_->sameAs(transpose_expr->in())
? substitute_->as<TensorView>()
: transpose_expr->in();
expr_ = IrBuilder::create<TransposeOp>(
transpose_expr->container(), out, in, transpose_expr->new2old());
}
void handle(ExpandOp* expand_expr) final {
auto out = reference_->sameAs(expand_expr->out())
? substitute_->as<TensorView>()
: expand_expr->out();
auto in = reference_->sameAs(expand_expr->in())
? substitute_->as<TensorView>()
: expand_expr->in();
auto expanded_extents = expand_expr->expanded_extents();
if (substitute_->isA<Int>()) {
for (auto i : c10::irange(expanded_extents.size())) {
if (!expanded_extents[i]->sameAs(substitute_)) {
expanded_extents[i] = substitute_;
}
}
}
expr_ = IrBuilder::create<ExpandOp>(
expand_expr->container(), out, in, expanded_extents);
}
void handle(ShiftOp* shift_expr) final {
auto out =
reference_->sameAs(shift_expr->out()) ? substitute_ : shift_expr->out();
auto in =
reference_->sameAs(shift_expr->in()) ? substitute_ : shift_expr->in();
expr_ = IrBuilder::create<ShiftOp>(
shift_expr->container(),
out,
in,
shift_expr->offsets(),
shift_expr->padWidth());
}
void handle(GatherOp* gather_expr) final {
auto out = reference_->sameAs(gather_expr->out()) ? substitute_
: gather_expr->out();
auto in =
reference_->sameAs(gather_expr->in()) ? substitute_ : gather_expr->in();
expr_ = IrBuilder::create<GatherOp>(
gather_expr->container(),
out,
in,
gather_expr->windowShape(),
gather_expr->padWidth());
}
void handle(ViewAsScalar* expr) final {
TORCH_INTERNAL_ASSERT(
substitute_->isA<TensorView>(),
"All args to view must be TensorView, but received a non-TensorView for replacement: ",
substitute_);
auto in = reference_->sameAs(expr->in()) ? substitute_->as<TensorView>()
: expr->in();
auto out = reference_->sameAs(expr->out()) ? substitute_->as<TensorView>()
: expr->out();
expr_ = IrBuilder::create<ViewAsScalar>(
expr->container(), out, in, expr->vector_id(), expr->index());
}
void handle(ViewOp* view_expr) final {
TORCH_INTERNAL_ASSERT(
substitute_->isA<TensorView>(),
"All args to view must be TensorView, but received a non-TensorView for replacement: ",
substitute_);
auto in = reference_->sameAs(view_expr->in())
? substitute_->as<TensorView>()
: view_expr->in();
auto out = reference_->sameAs(view_expr->out())
? substitute_->as<TensorView>()
: view_expr->out();
expr_ = IrBuilder::create<ViewOp>(view_expr->container(), out, in);
}
void handle(WelfordOp* welford_expr) final {
auto out_avg = reference_->sameAs(welford_expr->outAvg())
? substitute_->as<TensorView>()
: welford_expr->outAvg();
auto out_var = reference_->sameAs(welford_expr->outVar())
? substitute_->as<TensorView>()
: welford_expr->outVar();
auto out_N = reference_->sameAs(welford_expr->outN())
? substitute_->as<TensorView>()
: welford_expr->outN();
auto in_avg = reference_->sameAs(welford_expr->inAvg())
? substitute_->as<TensorView>()
: welford_expr->inAvg();
auto in_var =
welford_expr->inVar() && reference_->sameAs(welford_expr->inVar())
? substitute_->as<TensorView>()
: welford_expr->inVar();
auto in_N = reference_->sameAs(welford_expr->inN()) ? substitute_
: welford_expr->inN();
auto init_avg =
welford_expr->initAvg() && reference_->sameAs(welford_expr->initAvg())
? substitute_->as<TensorView>()
: welford_expr->initAvg();
auto init_var =
welford_expr->initVar() && reference_->sameAs(welford_expr->initVar())
? substitute_->as<TensorView>()
: welford_expr->initVar();
auto init_N =
welford_expr->initN() && reference_->sameAs(welford_expr->initN())
? substitute_
: welford_expr->initN();
expr_ = IrBuilder::create<WelfordOp>(
welford_expr->container(),
out_avg,
out_var,
out_N,
in_avg,
in_var,
in_N,
init_avg,
init_var,
init_N,
welford_expr->isAllreduce());
}
void handle(LoadStoreOp* ldst_expr) final {
TORCH_INTERNAL_ASSERT(
substitute_->isA<TensorView>(),
"All args to view must be TensorView, but received a non-TensorView for replacement: ",
substitute_);
auto in = reference_->sameAs(ldst_expr->in())
? substitute_->as<TensorView>()
: ldst_expr->in();
auto out = reference_->sameAs(ldst_expr->out())
? substitute_->as<TensorView>()
: ldst_expr->out();
expr_ = IrBuilder::create<LoadStoreOp>(
ldst_expr->container(), ldst_expr->opType(), out, in);
}
void handle(MmaOp* mma_expr) final {
TORCH_INTERNAL_ASSERT(
substitute_->isA<TensorView>(),
"All args to MmaOp must be TensorView, but received a non-TensorView for replacement: ",
substitute_);
auto in_a = reference_->sameAs(mma_expr->inA())
? substitute_->as<TensorView>()
: mma_expr->inA();
auto in_b = reference_->sameAs(mma_expr->inB())
? substitute_->as<TensorView>()
: mma_expr->inB();
auto out = reference_->sameAs(mma_expr->out())
? substitute_->as<TensorView>()
: mma_expr->out();
auto init = reference_->sameAs(mma_expr->init())
? substitute_->as<TensorView>()
: mma_expr->init();
expr_ = IrBuilder::create<MmaOp>(
mma_expr->container(), out, in_a, in_b, init, mma_expr->options());
}
private:
Val* reference_ = nullptr;
Val* substitute_ = nullptr;
Expr* expr_ = nullptr;
};
} // namespace ValReplacement
Expr* replaceValInExpr(Expr* expr, Val* reference, Val* substitute) {
FusionGuard fg(expr->fusion());
return ValReplacement::SubstituteInExpr::subsitute(
expr, reference, substitute);
}
TensorView* rfactorHelper(
TensorView* reduction_tv,
const std::vector<int>& axes) {
TORCH_INTERNAL_ASSERT(reduction_tv->definition() != nullptr);
const bool has_multiple_tvs = reduction_tv->definition()->inputs().size() > 1;
if (!has_multiple_tvs) {
return reduction_tv->rFactor(axes);
}
std::vector<TensorView*> out_tvs;
std::transform(
reduction_tv->definition()->outputs().begin(),
reduction_tv->definition()->outputs().end(),
std::back_inserter(out_tvs),
[](Val* val) { return val->as<TensorView>(); });
auto rf_tvs = reduction_tv->rFactor(axes, out_tvs);
return rf_tvs.at(std::distance(
out_tvs.begin(),
std::find(out_tvs.begin(), out_tvs.end(), reduction_tv)));
}
namespace {
template <typename T>
std::vector<T*> uniqueEntries(const std::vector<T*>& tv_deuqe) {
std::vector<T*> unique_entries;
std::unordered_set<T*> inserted;
for (auto tv_entry : tv_deuqe) {
if (inserted.emplace(tv_entry).second) {
unique_entries.emplace_back(tv_entry);
}
}
return unique_entries;
}
} // namespace
// Return immediate producers of val
TORCH_CUDA_CU_API std::vector<Val*> producerValsOf(Val* val) {
if (val->definition() == nullptr) {
return {};
}
auto producer_vals = val->definition()->inputs();
return uniqueEntries<Val>({producer_vals.begin(), producer_vals.end()});
}
// Return immediate consumers of val
TORCH_CUDA_CU_API std::vector<Val*> consumerValsOf(Val* val) {
std::vector<Val*> consumer_vals;
for (auto use_expr : val->uses()) {
auto outputs = use_expr->outputs();
consumer_vals.insert(consumer_vals.end(), outputs.begin(), outputs.end());
}
return uniqueEntries<Val>(consumer_vals);
}
// Return immediate siblings of val
TORCH_CUDA_CU_API std::vector<Val*> siblingValsOf(Val* val) {
std::vector<Val*> sibling_vals;
auto def = val->definition();
if (def != nullptr) {
auto outs = def->outputs();
for (auto sibling_val : outs) {
if (sibling_val == val) {
continue;
}
sibling_vals.emplace_back(sibling_val);
}
}
return sibling_vals;
}
// Return immediate producers of val
TORCH_CUDA_CU_API std::vector<Val*> producerValsOf(
const std::vector<Val*>& vals) {
std::vector<Val*> all_producer_vals;
for (auto val : vals) {
auto producer_vals = producerValsOf(val);
all_producer_vals.insert(
all_producer_vals.end(), producer_vals.begin(), producer_vals.end());
}
return uniqueEntries<Val>(all_producer_vals);
}
// Return immediate consumers of val
TORCH_CUDA_CU_API std::vector<Val*> consumerValsOf(
const std::vector<Val*>& vals) {
std::vector<Val*> all_consumer_vals;
for (auto val : vals) {
auto consumer_vals = consumerValsOf(val);
all_consumer_vals.insert(
all_consumer_vals.end(), consumer_vals.begin(), consumer_vals.end());
}
return uniqueEntries<Val>(all_consumer_vals);
}
std::vector<TensorView*> producerTvsOf(TensorView* tv) {
auto producer_vals = producerValsOf(tv);
auto producer_tvs = ir_utils::filterByType<TensorView>(producer_vals);
return {producer_tvs.begin(), producer_tvs.end()};
}
std::vector<TensorView*> consumerTvsOf(TensorView* tv) {
auto consumer_vals = consumerValsOf(tv);
auto consumer_tvs = ir_utils::filterByType<TensorView>(consumer_vals);
return {consumer_tvs.begin(), consumer_tvs.end()};
}
TORCH_CUDA_CU_API std::vector<TensorView*> siblingTvsOf(TensorView* tv) {
auto sibling_vals = siblingValsOf(tv);
auto sibling_tvs = ir_utils::filterByType<TensorView>(sibling_vals);
return {sibling_tvs.begin(), sibling_tvs.end()};
}
std::vector<TensorView*> producerTvsOf(const std::vector<TensorView*>& tvs) {
std::vector<TensorView*> all_producer_tvs;
for (auto tv : tvs) {
auto producer_tvs = producerTvsOf(tv);
all_producer_tvs.insert(
all_producer_tvs.end(), producer_tvs.begin(), producer_tvs.end());
}
return uniqueEntries<TensorView>(all_producer_tvs);
}
std::vector<TensorView*> consumerTvsOf(const std::vector<TensorView*>& tvs) {
std::vector<TensorView*> all_consumer_tvs;
for (auto tv : tvs) {
auto consumer_tvs = consumerTvsOf(tv);
all_consumer_tvs.insert(
all_consumer_tvs.end(), consumer_tvs.begin(), consumer_tvs.end());
}
return uniqueEntries<TensorView>(all_consumer_tvs);
}
std::vector<TensorView*> inputTvsOf(TensorView* tv) {
return inputTvsOf(std::vector<TensorView*>{tv});
}
std::vector<TensorView*> outputTvsOf(TensorView* tv) {
return outputTvsOf(std::vector<TensorView*>{tv});
}
std::vector<TensorView*> inputTvsOf(std::vector<TensorView*> tvs) {
auto inp_vals = IterVisitor::getInputsTo({tvs.begin(), tvs.end()});
auto filtered = ir_utils::filterByType<TensorView>(inp_vals);
std::vector<TensorView*> inp_tvs(filtered.begin(), filtered.end());
return uniqueEntries<TensorView>(inp_tvs);
}
std::vector<TensorView*> outputTvsOf(std::vector<TensorView*> tvs) {
auto out_vals = DependencyCheck::getAllOutputsOf({tvs.begin(), tvs.end()});
auto filtered = ir_utils::filterByType<TensorView>(out_vals);
std::vector<TensorView*> out_tvs(filtered.begin(), filtered.end());
return uniqueEntries<TensorView>(out_tvs);
}
std::vector<TensorView*> allTvs(Fusion* fusion) {
auto used_vals = fusion->usedMathVals();
auto used_tvs = ir_utils::filterByType<TensorView>(used_vals);
// This shouldn't be necessary but FusionSegmentIoAlias_CUDA due to aliasing
// is having an input disconnected from outputs, and these iter domains are
// being checked in compute at maps in scheduling logic. This shouldn't hurt
// AFAICT.
auto tv_inputs = ir_utils::filterByType<TensorView>(fusion->inputs());
std::vector<TensorView*> all_tvs({used_tvs.begin(), used_tvs.end()});
// Sometimes inputs are not connected to outputs, however, we still include
// them when returning allTvs because they are registered as an input.
all_tvs.insert(all_tvs.end(), tv_inputs.begin(), tv_inputs.end());
// all_tvs has duplicates, to deduplicate it and return
return uniqueEntries<TensorView>(all_tvs);
}
std::vector<TensorView*> allTvsExcept(
Fusion* fusion,
const std::unordered_set<TensorView*>& except) {
auto all_tvs = allTvs(fusion);
std::vector<TensorView*> result;
for (auto tv : all_tvs) {
if (except.count(tv) == 0) {
result.emplace_back(tv);
}
}
return result;
}
std::vector<Expr*> getReductionOps(Fusion* fusion, bool ignore_trivial) {
std::vector<Expr*> red_ops;
auto isReduction = [&ignore_trivial](Val* out_val) {
if (out_val == nullptr || !out_val->isA<TensorView>()) {
return false;
}
auto out_tv = out_val->as<TensorView>();
return std::any_of(
out_tv->getRootDomain().begin(),
out_tv->getRootDomain().end(),
[&ignore_trivial](IterDomain* id) {
return id->isReduction() &&
!(ignore_trivial && id->isTrivialReduction());
});
};
for (auto expr : fusion->exprs()) {
bool is_reduction = false;
if (expr->isA<ReductionOp>()) {
is_reduction = isReduction(expr->as<ReductionOp>()->out());
} else if (expr->isA<GroupedReductionOp>()) {
is_reduction = std::any_of(
expr->as<GroupedReductionOp>()->outputs().begin(),
expr->as<GroupedReductionOp>()->outputs().end(),
isReduction);
} else if (expr->isA<WelfordOp>()) {
is_reduction = isReduction(expr->as<WelfordOp>()->outAvg());
}
if (is_reduction) {
red_ops.push_back(expr);
}
}
return red_ops;
}
namespace {
class ValReplacementMutator : private OptOutMutator {
public:
ValReplacementMutator(
Fusion* fusion,
const std::unordered_map<Val*, Val*>& replacement_map)
: replacement_map_(replacement_map) {
FusionGuard fg(fusion);
// Welford makes this a little annoying since it holds a count which is
// typically not used by anything else. If we don't grab that count, then it
// would be a tensorview that doesn't get updated extents. Therefore, first
// grab all leaves towards outputs and grab stmts from there.
auto stmts = StmtSort::getStmts(fusion, allLeafOuts(fusion), true);
// Some fusions, such as standalone randlike, can have disconnected DAG, so
// we need some mechanism to make sure our replacement set is as complete as
// possible
// TODO: I think we need a more general mechanism to support disconnected
// DAG
std::vector<Val*> more;
for (auto v : fusion->inputs()) {
if (std::find(stmts.begin(), stmts.end(), v) == stmts.end()) {
more.emplace_back(v);
}
}
auto more_stmts = StmtSort::getStmts(fusion, more, true);
more_stmts.insert(more_stmts.end(), stmts.begin(), stmts.end());
for (auto stmt : more_stmts) {
mutate(stmt);
}
}
private:
using OptOutMutator::mutate;
void mutate(Val* val) final {
if (replacement_map_.find(val) == replacement_map_.end()) {
return OptOutMutator::mutate(val);
}
auto replaced_val = replacement_map_.at(val);
registerMutation(val, replaced_val);
}
std::vector<Val*> allLeafOuts(Fusion* fusion) {
auto exprs = StmtSort::getExprs(fusion, true);
std::unordered_set<Val*> inputs;
std::unordered_set<Val*> outputs;
std::vector<Val*> ordered_outputs;
for (auto expr : exprs) {
inputs.insert(expr->inputs().begin(), expr->inputs().end());
outputs.insert(expr->outputs().begin(), expr->outputs().end());
ordered_outputs.insert(
ordered_outputs.end(),
expr->outputs().begin(),
expr->outputs().end());
}
for (auto input : inputs) {
outputs.erase(input);
}
std::vector<Val*> ordered_leaf_outs;
for (auto out : ordered_outputs) {
if (outputs.find(out) != outputs.end()) {
ordered_leaf_outs.push_back(out);
}
}
return ordered_leaf_outs;
}
const std::unordered_map<Val*, Val*>& replacement_map_;
};
} // namespace
void replaceValue(
Fusion* fusion,
const std::unordered_map<Val*, Val*>& replacement_map) {
ValReplacementMutator(fusion, replacement_map);
}
Val* getReductionInitValOf(TensorView* tv) {
auto def = tv->definition();
if (def == nullptr) {
return nullptr;
}
Val* init = nullptr;
if (auto rop = dynamic_cast<ReductionOp*>(def)) {
init = rop->init();
} else if (auto grop = dynamic_cast<GroupedReductionOp*>(def)) {
int output_idx = grop->getExprIndexOfOutput(tv);
init = grop->initVal(output_idx);
} else if (auto wop = dynamic_cast<WelfordOp*>(def)) {
return wop->getInitValOfOutput(tv);
} else if (auto gwop = dynamic_cast<GroupedWelfordOp*>(def)) {
init = gwop->getInitValOfOutput(tv);
} else if (auto mma = dynamic_cast<MmaOp*>(def)) {
init = mma->init();
}
return init;
}
// TODO: Should mma be in here? Should we return true if it's a trivial
// reduction?
bool isReductionOp(const Expr* expr) {
// Note that GridReduction inherits ReductionOp
return expr->isA<ReductionOp>() || expr->isA<GroupedReductionOp>() ||
expr->isA<WelfordOp>() || expr->isA<GroupedWelfordOp>() ||
expr->isA<kir::GridWelford>() || expr->isA<kir::GroupedGridWelford>();
}
bool isReductionTvOp(const Expr* expr) {
return ir_utils::isTvOp(expr) && isReductionOp(expr);
}
namespace {
struct ReplaceValInIndexVal : public OptInDispatch {
public:
//! Apply replacements to index as specified in
//! replacement_map. index is assumed to consist only from Int and
//! NamedScalar
static Val* replace(
Val* index,
const std::unordered_map<Val*, Val*>& replacement_map) {
ReplaceValInIndexVal replace_index_val(replacement_map);
replace_index_val.handle(index);
// Return the original index if not replaced
if (replace_index_val.is_replaced_) {
return replace_index_val.last_visited_val_;
} else {
return index;
}
}
private:
ReplaceValInIndexVal(const std::unordered_map<Val*, Val*>& replacement_map)
: replacement_map_(replacement_map) {}
using OptOutDispatch::handle;
void handle(Val* val) override {
TORCH_INTERNAL_ASSERT(
val->isA<Int>() || val->isA<NamedScalar>() || val->isA<kir::IntPair>(),
"Invalid Val type: ",
val->toString());
// if val appears in the replacement map, stop traversing and set
// the current val with the replacement
auto it = replacement_map_.find(val);
if (it != replacement_map_.end()) {
last_visited_val_ = it->second;
is_replaced_ = true;
return;
}
// Recursively traverse its defining expr
auto def = val->definition();
if (def != nullptr) {
switch (def->etype()) {
case ExprType::UnaryOp:
case ExprType::BinaryOp:
case ExprType::Swizzle2DInt:
case ExprType::PairSelect:
handle(val->definition());
break;
default:
TORCH_INTERNAL_ASSERT(
false, "Unexpected definition: ", def->toString())
}
// last_visited_val_ is set in the expr handlers
} else {
last_visited_val_ = val;
}
}
// Clone expression after recurisvely replacing inputs
void handle(UnaryOp* uop) override {
handle(uop->in());
auto inp = last_visited_val_;
TORCH_INTERNAL_ASSERT(uop->out()->isA<Int>());
auto out = IrBuilder::create<Int>(c10::nullopt);
IrBuilder::create<UnaryOp>(uop->getUnaryOpType(), out, inp);
last_visited_val_ = out;
}
// Clone expression after recurisvely replacing inputs
void handle(BinaryOp* bop) override {
handle(bop->lhs());
auto lhs = last_visited_val_;
handle(bop->rhs());
auto rhs = last_visited_val_;
TORCH_INTERNAL_ASSERT(bop->out()->isA<Int>());
auto out = IrBuilder::create<Int>(c10::nullopt);
IrBuilder::create<BinaryOp>(bop->getBinaryOpType(), out, lhs, rhs);
last_visited_val_ = out;
}
// Clone expression after recurisvely replacing inputs
void handle(kir::Swizzle2DInt* swizzle_2d) override {
handle(swizzle_2d->inX());
auto in_x = last_visited_val_;
handle(swizzle_2d->inY());
auto in_y = last_visited_val_;
auto out = IrBuilder::create<kir::IntPair>();
// Extents are assumed constant in swizzle so no need to
// duplicate their graphs.
IrBuilder::create<kir::Swizzle2DInt>(
out,
in_x,
in_y,
swizzle_2d->extentX(),
swizzle_2d->extentY(),
swizzle_2d->swizzleType());
last_visited_val_ = out;
}
void handle(kir::PairSelect* pair_select) override {
handle(pair_select->in()->asVal());
auto in = last_visited_val_;
TORCH_INTERNAL_ASSERT(pair_select->out()->isA<Int>());
auto out = IrBuilder::create<Int>(c10::nullopt);
IrBuilder::create<kir::PairSelect>(
out, in->as<kir::IntPair>(), pair_select->selection());
last_visited_val_ = out;
}
private:
const std::unordered_map<Val*, Val*>& replacement_map_;
Val* last_visited_val_ = nullptr;
bool is_replaced_ = false;
};
} // namespace
Val* replaceValInIndexVal(
Val* index,
const std::unordered_map<Val*, Val*>& replacement_map) {
return ReplaceValInIndexVal::replace(index, replacement_map);
}
} // namespace ir_utils
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|