1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
#pragma once
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/type.h>
#include <iterator>
#include <unordered_map>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace ir_utils {
// Replace values in fusion using ValReplacementMutator
void replaceValue(
Fusion*,
const std::unordered_map<Val*, Val*>& replacement_map);
template <typename FilterType, typename Iterator>
class FilterIterator {
public:
using iterator_category = std::forward_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = FilterType*;
using pointer = value_type*;
using reference = value_type&;
FilterIterator(Iterator begin, Iterator end) : current_(begin), end_(end) {
advance();
}
FilterType* operator*() const {
return (*current_)->template as<FilterType>();
}
FilterType* operator->() const {
return (*this);
}
FilterIterator& operator++() {
++current_;
advance();
return *this;
}
FilterIterator operator++(int) {
const auto before_increment = *this;
++current_;
advance();
return before_increment;
}
bool operator==(const FilterIterator& other) const {
TORCH_INTERNAL_ASSERT(
end_ == other.end_,
"Comparing two FilteredViews that originate from different containers");
return current_ == other.current_;
}
bool operator!=(const FilterIterator& other) const {
return !(*this == other);
}
private:
void advance() {
current_ = std::find_if(current_, end_, [](const auto& val) {
return dynamic_cast<const FilterType*>(val) != nullptr;
});
}
private:
Iterator current_;
Iterator end_;
};
// An iterable view to a given container of Val pointers. Only returns
// Vals of a given Val type.
// NOTE: Add a non-const iterator if needed.
template <typename FilterType, typename InputIt>
class FilteredView {
public:
using value_type = FilterType*;
using const_iterator = FilterIterator<FilterType, InputIt>;
FilteredView(InputIt first, InputIt last) : input_it_(first), last_(last) {}
const_iterator cbegin() const {
return const_iterator(input_it_, last_);
}
const_iterator begin() const {
return cbegin();
}
const_iterator cend() const {
return const_iterator(last_, last_);
}
const_iterator end() const {
return cend();
}
bool empty() const {
return begin() == end();
}
std::vector<value_type> vector() const {
return std::vector<value_type>(begin(), end());
}
private:
const InputIt input_it_;
const InputIt last_;
};
template <typename FilterType, typename InputIt>
auto filterByType(InputIt first, InputIt last) {
return FilteredView<FilterType, InputIt>(first, last);
}
template <typename FilterType, typename ContainerType>
auto filterByType(const ContainerType&& inputs) = delete;
template <typename FilterType, typename ContainerType>
auto filterByType(const ContainerType& inputs) {
return filterByType<FilterType>(inputs.cbegin(), inputs.cend());
}
//! Returns a list of new-to-old mappings.
//!
//! This funcion canonicalizes the dimensions and validates that multiple old
//! dimension are mapped to the same new dimension.
std::vector<int64_t> normalizeNew2Old(
const std::vector<int64_t>& new2old_in,
size_t ndims);
//! Returns a list of new-to-old mappings.
//!
//! The input map does not need to be complete. Missing axes are
//! assumed not to be affected.
//!
//! This is used to preprocess broadcast and transpose arguments.
//!
//! Example: (N := ndims)
//! {{0, 1}} -> [1, 0, ...., N-1]
//! Transposes the first two axes with no other change.
//!
//! {{0, -1}} -> [N-1, ...., 0]
//! Swaps the first and last axes.
std::vector<int> normalizeOld2New(
const std::unordered_map<int, int>& old2new_in,
size_t ndims);
// Replace all uses of reference with substitute in expr. Return the Expr.
// Warning: Invalidates provided Expr.
// Warning: Removes connection of reference through provided Expr.
// Warning: Creates new Expr connecting substitue.
// Reference is found through direct pointer comparison.
Expr* replaceValInExpr(Expr* expr, Val* reference, Val* substitute);
//! Replace Vals in an index Val as specified by replacement_map while
//! cloning the given index Val. The index val is assumed to represent
//! a tensor index consisting of Ints and arithmetic expressions.
//!
//! This is similar to replaceValInExpr but is different as Vals are
//! cloned such that no other exprs using the same leaf Vals are not
//! modified. TODO: Consider cleaning up the multiple replacement
//! routines.
Val* replaceValInIndexVal(
Val* index,
const std::unordered_map<Val*, Val*>& replacement_map);
// Makes rfactor generic with reduction ops and Welford
TORCH_CUDA_CU_API TensorView* rfactorHelper(
TensorView* red_tv,
const std::vector<int>& axes);
// Return immediate producers of val, this function can be used on any Val and
// will return producers through Exprs.
//
// Warning: returned val's are not guaranteed to be between fusion inputs and
// outputs. This function simply uses val->definition() or val->uses() which is
// limited to not go through fusion inputs/outputs, but if on a path that isn't
// strictly between fusion inputs/outputs, it could effectively return dead
// code.
TORCH_CUDA_CU_API std::vector<Val*> producerValsOf(Val* val);
// Return immediate consumers of val, this function can be used on any Val and
// will return consumers through Exprs.
//
// Warning: returned val's are not guaranteed to be between fusion inputs and
// outputs. This function simply uses val->definition() or val->uses() which is
// limited to not go through fusion inputs/outputs, but if on a path that isn't
// strictly between fusion inputs/outputs, it could effectively return dead
// code.
TORCH_CUDA_CU_API std::vector<Val*> consumerValsOf(Val* val);
// Return immediate siblings of val, this function can be used on any Val and
// will return siblings through Exprs.
//
// Warning: returned val's are not guaranteed to be between fusion inputs and
// outputs. This function simply uses val->definition() or val->uses() which is
// limited to not go through fusion inputs/outputs, but if on a path that isn't
// strictly between fusion inputs/outputs, it could effectively return dead
// code.
TORCH_CUDA_CU_API std::vector<Val*> siblingValsOf(Val* val);
// Return immediate producers of vals, this function can be used on any vals and
// will return producers through Exprs.
//
// Warning: returned val's are not guaranteed to be between fusion inputs and
// outputs. This function simply uses val->definition() or val->uses() which is
// limited to not go through fusion inputs/outputs, but if on a path that isn't
// strictly between fusion inputs/outputs, it could effectively return dead
// code.
TORCH_CUDA_CU_API std::vector<Val*> producerValsOf(
const std::vector<Val*>& vals);
// Return immediate consumers of vals, this function can be used on any vals and
// will return consumers through Exprs.
//
// Warning: returned val's are not guaranteed to be between fusion inputs and
// outputs. This function simply uses val->definition() or val->uses() which is
// limited to not go through fusion inputs/outputs, but if on a path that isn't
// strictly between fusion inputs/outputs, it could effectively return dead
// code.
TORCH_CUDA_CU_API std::vector<Val*> consumerValsOf(
const std::vector<Val*>& vals);
// Return immediate producers of tv, this function will return all immediate
// producers of tv through Exprs.
//
// Warning: returned tv's are not guaranteed to be between fusion inputs and
// outputs. This function simply uses tv->definition() or tv->uses() which is
// limited to not go through fusion inputs/outputs, but if on a path that isn't
// strictly between fusion inputs/outputs, it could effectively return dead
// code.
TORCH_CUDA_CU_API std::vector<TensorView*> producerTvsOf(TensorView* tv);
// Return immediate consumers of tv, this function will return all immediate
// consumers of tv through Exprs.
//
// Warning: returned tv's are not guaranteed to be between fusion inputs and
// outputs. This function simply uses tv->definition() or tv->uses() which is
// limited to not go through fusion inputs/outputs, but if on a path that isn't
// strictly between fusion inputs/outputs, it could effectively return dead
// code.
TORCH_CUDA_CU_API std::vector<TensorView*> consumerTvsOf(TensorView* tv);
// Return immediate siblings of tv, this function will return all immediate
// siblings of tv through Exprs.
//
// Warning: returned tv's are not guaranteed to be between fusion inputs and
// outputs. This function simply uses tv->definition() or tv->uses() which is
// limited to not go through fusion inputs/outputs, but if on a path that isn't
// strictly between fusion inputs/outputs, it could effectively return dead
// code.
TORCH_CUDA_CU_API std::vector<TensorView*> siblingTvsOf(TensorView* tv);
// Return immediate producers of tvs, this function will return all immediate
// producers of tvs through Exprs.
//
// Warning: returned tv's are not guaranteed to be between fusion inputs and
// outputs. This function simply uses tv->definition() or tv->uses() which is
// limited to not go through fusion inputs/outputs, but if on a path that isn't
// strictly between fusion inputs/outputs, it could effectively return dead
// code.
TORCH_CUDA_CU_API std::vector<TensorView*> producerTvsOf(
const std::vector<TensorView*>& tvs);
// Return immediate consumers of tvs, this function will return all immediate
// consumers of tvs through Exprs.
//
// Warning: returned tv's are not guaranteed to be between fusion inputs and
// outputs. This function simply uses tv->definition() or tv->uses() which is
// limited to not go through fusion inputs/outputs, but if on a path that isn't
// strictly between fusion inputs/outputs, it could effectively return dead
// code.
TORCH_CUDA_CU_API std::vector<TensorView*> consumerTvsOf(
const std::vector<TensorView*>& tvs);
// Returns producers of tv that are inputs of fusion
TORCH_CUDA_CU_API std::vector<TensorView*> inputTvsOf(TensorView* tv);
// Returns consumers of tv that are outputs of fusion
TORCH_CUDA_CU_API std::vector<TensorView*> outputTvsOf(TensorView* tv);
// Returns producers of tvs that are inputs of fusion
TORCH_CUDA_CU_API std::vector<TensorView*> inputTvsOf(
std::vector<TensorView*> tvs);
// Returns consumers of tvs that are outputs of fusion
TORCH_CUDA_CU_API std::vector<TensorView*> outputTvsOf(
std::vector<TensorView*> tvs);
// returns all tensor views in fusion that are used between outputs and inputs.
TORCH_CUDA_CU_API std::vector<TensorView*> allTvs(Fusion* fusion);
// returns all tensor views in fusion that are used between outputs and inputs
// except the specified set.
TORCH_CUDA_CU_API std::vector<TensorView*> allTvsExcept(
Fusion* fusion,
const std::unordered_set<TensorView*>& except);
TORCH_CUDA_CU_API std::vector<Expr*> getReductionOps(
Fusion* fusion,
bool ignore_trivial = true);
// Returns the initialization value of tv or nullptr if not initialized.
TORCH_CUDA_CU_API Val* getReductionInitValOf(TensorView* tv);
// Returns if Expr is a reduction op
TORCH_CUDA_CU_API bool isReductionOp(const Expr*);
// Returns if Expr is a reduction op with TensorView or TensorIndex
TORCH_CUDA_CU_API bool isReductionTvOp(const Expr*);
template <typename T>
std::string toString(const T& nodes) {
std::stringstream ss;
for (Statement* stmt : nodes) {
if (ss.tellp() != 0) {
ss << ", ";
}
ss << stmt->toString();
}
return ss.str();
}
} // namespace ir_utils
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|