1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
|
#include <torch/csrc/jit/codegen/cuda/iter_visitor.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/type.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
/* ITER VISITOR */
namespace {
// Remove any stmt in stmts that is in visited
void remove_visited(
std::vector<Statement*>& stmts,
const std::unordered_set<Statement*>& visited) {
std::deque<std::vector<Statement*>::iterator> to_erase;
for (auto it = stmts.begin(); it != stmts.end(); it++) {
if (visited.find(*it) != visited.end()) {
to_erase.push_back(it);
}
}
while (!to_erase.empty()) {
stmts.erase(to_erase.back());
to_erase.pop_back();
}
}
// Return all dependencies of a node including members of the node.
class RecursiveDependencies : public OptInDispatch {
public:
static std::vector<Statement*> next(Statement* stmt) {
RecursiveDependencies find_next(stmt);
return find_next.next_stmts_;
}
private:
RecursiveDependencies() = default;
RecursiveDependencies(Statement* stmt) {
handle(stmt);
}
using OptInDispatch::handle;
void handle(Expr* expr) final {
FusionGuard::getCurFusion()->assertInContainer(
expr,
"IterVisitor.cpp::RecursiveDependencies::handle(Expr*) Cannot traverse expr, ");
next_stmts_.insert(
next_stmts_.end(), expr->inputs().begin(), expr->inputs().end());
}
void handle(Val* val) final {
FusionGuard::getCurFusion()->assertInContainer(
val,
"IterVisitor.cpp::RecursiveDependencies::handle(Val*) Cannot traverse val, ");
OptInDispatch::handle(val);
}
void simpleVal(Val* val) {
if (val->definition() == nullptr) {
return;
}
next_stmts_.push_back(val->definition());
}
void handle(Bool* stmt) final {
simpleVal(stmt);
}
void handle(Double* stmt) final {
simpleVal(stmt);
}
void handle(Int* stmt) final {
simpleVal(stmt);
}
void handle(ComplexDouble* stmt) final {
simpleVal(stmt);
}
void handle(NamedScalar* stmt) final {
simpleVal(stmt);
}
void handle(IterDomain* stmt) final {
next_stmts_.push_back(stmt->start());
next_stmts_.push_back(stmt->extent());
next_stmts_.push_back(stmt->stopOffset());
simpleVal(stmt);
}
void handle(TensorDomain* stmt) final {
next_stmts_.insert(
next_stmts_.end(), stmt->domain().begin(), stmt->domain().end());
simpleVal(stmt);
}
void handle(TensorView* tv) final {
next_stmts_.push_back(tv->domain());
simpleVal(tv);
}
std::vector<Statement*> next_stmts_;
};
} // namespace
std::vector<Statement*> IterVisitor::next(Statement* stmt) {
if (stmt->isVal()) {
return next(stmt->as<Val>());
} else {
return next(stmt->as<Expr>());
}
}
std::vector<Statement*> IterVisitor::next(Val* v) {
FusionGuard::getCurFusion()->assertInContainer(v, "Cannot traverse val, ");
if (v->definition() != nullptr) {
return {v->definition()};
}
return {};
}
std::vector<Statement*> IterVisitor::next(Expr* expr) {
FusionGuard::getCurFusion()->assertInContainer(
expr, "Cannot traverse expr, ");
std::vector<Statement*> next_stmts{
expr->inputs().begin(), expr->inputs().end()};
return next_stmts;
}
// This handle functions is called on every Statement* in topological order,
// starting from outputs to inputs.
void IterVisitor::handle(Statement* s) {
OptOutDispatch::handle(s);
}
// This handle functions is called on every Expr* in topological order,
// starting from outputs to inputs.
void IterVisitor::handle(Expr* e) {
OptOutDispatch::handle(e);
}
// This handle functions is called on every Val* in topological order,
// starting from outputs to inputs.
void IterVisitor::handle(Val* v) {
OptOutDispatch::handle(v);
}
// Implementation details:
// We start with an entry in stmt_stack that is the outputs we want to
// process. We cannot process these outputs untill all Stmts in their history
// have been processed, as those Stmts contain all dependencies to produce
// these values. What we will do is traverse towards inputs until we hit a
// leaf node. Once we hit a leaf node that node will be visited, then we will
// take them off the stack. Once a stack entry is empty, know everything
// needed to be visited to visit stmt_stack.back().back(). We then visit that
// node, make it as visisted and remove it from the stack.
//
// To prevent traversing all paths through a DAG (unless we want to) we have a
// function to remove visited nodes from being re-added to the stack
// (remove_visited).
void IterVisitor::traverseFrom(
Fusion* fusion,
const std::vector<Val*>& from,
bool traverseAllPaths,
bool traverseIntoMembers) {
FusionGuard fg(fusion);
std::unordered_set<Statement*> visited;
stmt_stack.clear();
stmt_stack.emplace_back(from.rbegin(), from.rend());
bool all_inputs_visited = false;
while (!stmt_stack.empty()) {
auto& current_inputs = stmt_stack.back();
// If current_inputs is empty, pop a level of the stmt_stack, mark the level
// we pop to as having all inputs processed, the layer we processed were all
// added inputs required for that Stmt.
if (current_inputs.empty()) {
stmt_stack.pop_back();
all_inputs_visited = true;
continue;
}
// Get the very last entry in the stack to process
const auto& stmt = current_inputs.back();
// If we just poped a stmt_stack level, we can finally visit it!
if (all_inputs_visited) {
// stmt may have be already visited.
if (traverseAllPaths || visited.find(stmt) == visited.end()) {
// Mark visited
visited.insert(stmt);
// Actually visit stmt
handle(stmt);
}
// Remove last value just visited
current_inputs.pop_back();
// Mark that we need to visit a new Stmt's.
all_inputs_visited = false;
} else {
// We're not ready to process this node, so add all its inputs to be
// checked Visit input nodes.
auto next_stmts =
traverseIntoMembers ? RecursiveDependencies::next(stmt) : next(stmt);
// We may want to retraverse nodes, in that case revisit everything!
if (!traverseAllPaths) {
// If we don't want to retraverse, remove nodes we already visisted.
remove_visited(next_stmts, visited);
}
if (next_stmts.empty()) {
// If there's nothing to visit because it was all already visited, mark
// to process
all_inputs_visited = true;
} else {
// Add all these new stmts to visit to the stack.
stmt_stack.emplace_back(next_stmts.rbegin(), next_stmts.rend());
// We have new things to visit,
all_inputs_visited = false;
}
}
}
}
void IterVisitor::traverseHelper(Fusion* fusion, bool traverse_all_paths) {
FusionGuard fg(fusion);
auto term_val_outs = fusion->getTerminatingOutputs();
if (!term_val_outs.empty()) {
traverseFrom(fusion, term_val_outs, traverse_all_paths);
}
}
void IterVisitor::traverse(Fusion* fusion) {
traverseHelper(fusion, false);
}
void IterVisitor::traverseAllPaths(Fusion* fusion) {
traverseHelper(fusion, true);
}
namespace {
// Expr sort will take a fusion and return a topologically sorted list of
// expressions.
class Inputs : public IterVisitor {
private:
//! Optional list of input vals. While traversing to inputs if a value in the
//! all_inputs list is found, that value will be added to the inputs_ and
//! traversal will not go into its definition. Otherwise traversal follows
//! definition paths until hitting a definition that is a nullptr (i.e. a
//! terminating input).
const std::vector<Val*>& all_inputs_;
std::vector<Val*> inputs_;
Inputs(const std::vector<Val*>& all_inputs) : all_inputs_(all_inputs) {}
std::vector<Statement*> next(Val* v) override {
if (std::find(inputs_.begin(), inputs_.end(), v) != inputs_.end()) {
return {};
}
return IterVisitor::next(v);
}
void handle(Val* val) override {
// If there's no definition to val, or val is created inside the fusion, or
// val is within the provided inputs
if (val->definition() == nullptr || val->definition()->inputs().empty() ||
std::find(all_inputs_.begin(), all_inputs_.end(), val) !=
all_inputs_.end()) {
// if not already placed in the inputs
if (std::find(inputs_.begin(), inputs_.end(), val) == inputs_.end()) {
inputs_.push_back(val);
}
}
}
public:
static std::vector<Val*> getInputs(
const std::vector<Val*>& of,
const std::vector<Val*>& all_inputs) {
if (of.empty()) {
return {};
}
Inputs inps(all_inputs);
inps.traverseFrom(of[0]->fusion(), of);
return inps.inputs_;
}
};
} // namespace
std::vector<Val*> IterVisitor::getInputsTo(
const std::vector<Val*>& vals,
const std::vector<Val*>& inputs) {
return Inputs::getInputs(vals, inputs);
}
namespace {
class AllVals : public IterVisitor {
private:
std::unordered_set<Val*> vals;
void handle(Val* val) final {
vals.emplace(val);
}
public:
// Return all values in history of all values in from
static std::unordered_set<Val*> get(
Fusion* fusion,
const std::vector<Val*>& from) {
AllVals av;
av.traverseFrom(fusion, from, false);
return av.vals;
}
};
} // namespace
/* BACKWARDS VISITOR */
std::vector<Statement*> BackwardVisitor::next(Statement* stmt) {
if (stmt->isVal()) {
return next(stmt->as<Val>());
} else if (stmt->isExpr()) {
return next(stmt->as<Expr>());
} else {
TORCH_INTERNAL_ASSERT(
false, "BackwardVisitor could not detect type in next_dispatch.");
}
}
std::vector<Statement*> BackwardVisitor::next(Expr* expr) {
return std::vector<Statement*>(
expr->outputs().begin(), expr->outputs().end());
}
std::vector<Statement*> BackwardVisitor::next(Val* val) {
// Going to sort based on relative topological position
std::map<size_t, Statement*> exprs;
for (auto expr : FusionGuard::getCurFusion()->unordered_uses(val)) {
// Make sure it's an expr we can traverse
if (traversal_exprs_.find(expr) != traversal_exprs_.end()) {
exprs[traversal_exprs_[expr]] = expr;
}
}
std::vector<Statement*> next_stmts(exprs.size());
std::transform(
exprs.begin(),
exprs.end(),
next_stmts.begin(),
[](std::pair<size_t, Statement*> pair) { return pair.second; });
return next_stmts;
}
void BackwardVisitor::handle(Statement* stmt) {
OptOutDispatch::handle(stmt);
}
void BackwardVisitor::handle(Expr* expr) {
OptOutDispatch::handle(expr);
}
void BackwardVisitor::handle(Val* val) {
OptOutDispatch::handle(val);
}
void BackwardVisitor::traverseFrom(
Fusion* fusion,
const std::vector<Val*>& from,
bool traverseAllPaths) {
FusionGuard fg(fusion);
// Reset members
stmt_stack_.clear();
traversal_exprs_.clear();
if (from.empty()) {
return;
}
auto vals = AllVals::get(fusion, from);
auto exprs = StmtSort::getExprs(fusion, from);
{
size_t pos = 0;
for (auto expr : exprs)
traversal_exprs_[expr] = pos++;
}
// All stmts we've called handle on
std::unordered_set<Statement*> visited_stmts_;
if (must_cover_all_expr_outputs_) {
for (auto traversal_pair : traversal_exprs_) {
for (auto out : traversal_pair.first->outputs()) {
TORCH_INTERNAL_ASSERT(
vals.find(out) != vals.end(),
"Invalid backward traversal found. Some output paths were not provided:",
out);
}
}
}
auto inputs = InputsOf::getInputsTo(from);
stmt_stack_.emplace_back(inputs.begin(), inputs.end());
// The rest is basically copy-pasted from IterVitor:
while (!stmt_stack_.empty()) {
auto next_stmts = next(stmt_stack_.back().back());
// Remove statements we already visited if we're not traversing all paths
if (!traverseAllPaths) {
remove_visited(next_stmts, visited_stmts_);
}
// Traverse down until we get to a leaf
while (!next_stmts.empty()) {
stmt_stack_.emplace_back(next_stmts.rbegin(), next_stmts.rend());
next_stmts = next(stmt_stack_.back().back());
// Remove statements we already visited if we're not traversing all paths
if (!traverseAllPaths) {
remove_visited(next_stmts, visited_stmts_);
}
}
// Traverse back up
// Mark visited
visited_stmts_.emplace(stmt_stack_.back().back());
// Handle
handle(stmt_stack_.back().back());
// Remove
stmt_stack_.back().pop_back();
while (!stmt_stack_.empty() && stmt_stack_.back().empty()) {
stmt_stack_.pop_back();
if (!stmt_stack_.empty()) {
// Mark visited
visited_stmts_.emplace(stmt_stack_.back().back());
// Handle
handle(stmt_stack_.back().back());
// Remove
stmt_stack_.back().pop_back();
}
}
}
}
/* DEPENDENCY CHECKING */
namespace {
// Looks for and returns all values in between dependencies and vals, including
// them.
struct Dependencies : public IterVisitor {
private:
//! A given set of dependency Vals
const std::unordered_set<Val*> dependencies_;
//! Vals that are found between dependencies_ and of. Topologically
//! ordered.
std::vector<Val*> vals_;
//! Exprs that are found between dependencies_ and of. Topologically
//! ordered.
std::vector<Expr*> exprs_;
//! A set version of vals_
std::unordered_set<Val*> dependent_vals_;
//! A set version of exprs_
std::unordered_set<Expr*> dependent_exprs_;
private:
std::vector<Statement*> next(Val* v) override {
if (dependencies_.find(v) != dependencies_.end()) {
return std::vector<Statement*>();
}
return IterVisitor::next(v);
}
void handle(Val* val) override {
// val is included if:
// 1. it is one of the dependencies, or
// 2. its defining expression is included in the dependent expr set
if (dependencies_.find(val) != dependencies_.end()) {
TORCH_INTERNAL_ASSERT(
dependent_vals_.find(val) == dependent_vals_.end(),
"Trying to add already added val: ",
val);
vals_.push_back(val);
dependent_vals_.insert(val);
} else {
auto def = val->definition();
if (def != nullptr &&
dependent_exprs_.find(def) != dependent_exprs_.end()) {
TORCH_INTERNAL_ASSERT(
dependent_vals_.find(val) == dependent_vals_.end(),
"Trying to add already added val: ",
val);
vals_.push_back(val);
dependent_vals_.insert(val);
}
}
}
void handle(Expr* expr) override {
// Track which expr is depedent on the dependencies_ exprs.
if (std::any_of(
expr->inputs().begin(), expr->inputs().end(), [&](Val* input_val) {
return dependent_vals_.find(input_val) != dependent_vals_.end();
})) {
if (!dependent_exprs_.count(expr)) {
exprs_.push_back(expr);
dependent_exprs_.insert(expr);
}
}
}
Dependencies(
std::unordered_set<Val*> _dependencies,
const std::vector<Val*>& of)
: dependencies_(std::move(_dependencies)) {
traverseFrom(of[0]->fusion(), of, false);
};
public:
static std::vector<Val*> getAllVals(
const std::unordered_set<Val*>& dependencies,
const std::vector<Val*>& of) {
if (of.empty()) {
return {};
}
Dependencies deps(dependencies, of);
return deps.vals_;
}
static std::vector<Expr*> getAllExprs(
const std::unordered_set<Val*>& dependencies,
const std::vector<Val*>& of) {
if (of.empty()) {
return {};
}
Dependencies deps(dependencies, of);
return deps.exprs_;
}
};
// Looks for and returns all output values with dependencies on `of`.
struct FindOutputs : public IterVisitor {
const std::unordered_set<Val*>& of_;
std::unordered_set<Val*> outs_;
void handle(Val* val) override {
if (of_.find(val) != of_.end()) {
Statement* out_stmt = stmt_stack.front().back();
TORCH_INTERNAL_ASSERT(out_stmt->isVal());
auto out_val = out_stmt->as<Val>();
if (of_.find(out_val) == of_.end()) {
outs_.emplace(out_val);
}
}
}
// TODO: Simply traverse through uses from of. Would be a lot faster than
// tracing all paths like this.
FindOutputs(const std::unordered_set<Val*>& _of) : of_(_of) {
auto fusion = (*of_.begin())->fusion();
traverseFrom(fusion, fusion->outputs(), true);
};
static std::unordered_set<Val*> getAllOutputsOf(
const std::unordered_set<Val*>& of) {
if (of.empty()) {
return std::unordered_set<Val*>();
}
FindOutputs finder(of);
return finder.outs_;
}
};
// Looks for and returns all values that depends on `of`.
class DependentVals : public IterVisitor {
private:
// Which nodes to find dependencies of
const std::unordered_set<Val*>& of_;
// Dependencies we have so far
std::unordered_set<Val*> outs_;
// Boundary where we want to stop searching beyond
// TODO: Based on the todo below, shouldn't we stop just at the definition of?
// If we really wanted to make this traverse left, wouldn't we first check
// which outputs are outputs dependent on of?
std::unordered_set<Val*> boundary_;
std::vector<Statement*> next(Val* v) override {
if (boundary_.find(v) != boundary_.end())
return std::vector<Statement*>();
return IterVisitor::next(v);
}
void handle(Val* val) override {
if (val->isFusionInput() || val->definition() == nullptr ||
of_.count(val) || outs_.count(val)) {
return;
}
for (auto v : val->definition()->inputs()) {
if (of_.count(v) || outs_.count(v)) {
outs_.emplace(val);
return;
}
}
}
// optimization to limit search path
// TODO: Is this valid? Couldn't something like:
// out0 = of + val0
// out1 = out0 + val1
// out2 = TernaryOp(out1, val0, of)
// Hide the dep of out1 on of?
void createBoundary() {
for (auto v_of : of_) {
for (auto v_expr : v_of->uses()) {
for (auto v_in : v_expr->inputs()) {
boundary_.emplace(v_in);
}
}
}
}
DependentVals(const std::unordered_set<Val*>& _of) : of_(_of) {
createBoundary();
auto fusion = (*of_.begin())->fusion();
traverseFrom(fusion, fusion->outputs(), false);
};
public:
static std::unordered_set<Val*> getAllDependentVals(
const std::unordered_set<Val*>& of) {
if (of.empty()) {
return std::unordered_set<Val*>();
}
DependentVals dependencies(of);
return dependencies.outs_;
}
};
class DependencyChains : public IterVisitor {
public:
std::deque<std::deque<Val*>> dep_chains;
bool is_dependency = false;
std::unordered_set<Val*> dependencies_;
void handle(Val* val) override {
if (dependencies_.find(val) != dependencies_.end()) {
is_dependency = true;
std::deque<Val*> deps;
for (auto stack : stmt_stack) {
if (stack.back()->isVal()) {
deps.push_back(stack.back()->as<Val>());
}
}
// Order as dependency -> of
dep_chains.emplace_back(deps.rbegin(), deps.rend());
}
}
DependencyChains(Val* _dependency, Val* _of, bool all_chains_ = false)
: dependencies_({_dependency}) {
traverseFrom(_of->fusion(), {_of}, all_chains_);
}
DependencyChains(Val* _dependency, bool all_chains_ = false)
: dependencies_({_dependency}) {
if (all_chains_) {
traverseAllPaths(_dependency->fusion());
} else {
traverse(_dependency->fusion());
}
}
DependencyChains(
std::unordered_set<Val*> _dependencies,
bool all_chains_ = false)
: dependencies_(std::move(_dependencies)) {
if (dependencies_.empty()) {
return;
}
if (all_chains_) {
traverseAllPaths((*dependencies_.begin())->fusion());
} else {
traverse((*dependencies_.begin())->fusion());
}
}
static std::deque<Val*> getDependencyChain(Val* dependency, Val* of) {
DependencyChains dp(dependency, of, false);
if (dp.dep_chains.empty()) {
return std::deque<Val*>();
}
return dp.dep_chains[0];
}
// I don't think this is actually hooked up, but leaving for now.
static std::deque<std::deque<Val*>> getDependencyChains(
Val* dependency,
Val* of) {
DependencyChains dp(dependency, of, true);
if (dp.dep_chains.empty()) {
return std::deque<std::deque<Val*>>();
}
return dp.dep_chains;
}
static std::deque<std::deque<Val*>> getAllUseChains(Val* dependency) {
DependencyChains dp(dependency, true);
if (dp.dep_chains.empty()) {
return std::deque<std::deque<Val*>>();
}
return dp.dep_chains;
}
static std::deque<std::deque<Val*>> getAllUseChains(
const std::unordered_set<Val*>& dependencies) {
DependencyChains dp(dependencies, true);
if (dp.dep_chains.empty()) {
return std::deque<std::deque<Val*>>();
}
return dp.dep_chains;
}
};
} // namespace
bool DependencyCheck::isDependencyOf(Val* dependency, Val* of) {
return !DependencyChains::getDependencyChain(dependency, of).empty();
}
std::deque<Val*> DependencyCheck::getSingleDependencyChain(
Val* dependency,
Val* of) {
return DependencyChains::getDependencyChain(dependency, of);
}
std::deque<std::deque<Val*>> DependencyCheck::getAllDependencyChains(
Val* dependency,
Val* of) {
return DependencyChains::getDependencyChains(dependency, of);
}
std::deque<std::deque<Val*>> DependencyCheck::getAllUseChains(Val* producer) {
return DependencyChains::getAllUseChains(producer);
}
std::vector<Val*> DependencyCheck::getAllValsBetween(
const std::unordered_set<Val*>& dependencies,
const std::vector<Val*>& of) {
return Dependencies::getAllVals(dependencies, of);
}
std::vector<Expr*> DependencyCheck::getAllExprsBetween(
const std::unordered_set<Val*>& dependencies,
const std::vector<Val*>& of) {
return Dependencies::getAllExprs(dependencies, of);
}
std::unordered_set<Val*> DependencyCheck::getAllOutputsOf(
const std::unordered_set<Val*>& of) {
if (of.empty()) {
return std::unordered_set<Val*>();
}
FusionGuard fg((*of.begin())->fusion());
return FindOutputs::getAllOutputsOf(of);
}
std::unordered_set<Val*> DependencyCheck::getAllDependentVals(
const std::unordered_set<Val*>& of) {
if (of.empty()) {
return std::unordered_set<Val*>();
}
FusionGuard fg((*of.begin())->fusion());
return DependentVals::getAllDependentVals(of);
}
void StmtSort::handle(Statement* stmt) {
stmts.push_back(stmt);
}
std::vector<Expr*> StmtSort::getExprs(Fusion* fusion, bool traverse_members) {
auto terminating_outputs = fusion->getTerminatingOutputs();
return StmtSort::getExprs(fusion, terminating_outputs, traverse_members);
}
std::vector<Expr*> StmtSort::getExprs(
Fusion* fusion,
const std::vector<Val*>& from,
bool traverse_members) {
StmtSort es;
es.traverseFrom(fusion, from, false, traverse_members);
auto stmts = StmtSort::getStmts(fusion, from, traverse_members);
auto filter = ir_utils::filterByType<Expr>(stmts.begin(), stmts.end());
std::vector<Expr*> exprs(filter.begin(), filter.end());
return exprs;
}
std::vector<Statement*> StmtSort::getStmts(
Fusion* fusion,
bool traverse_members) {
auto terminating_outputs = fusion->getTerminatingOutputs();
return StmtSort::getStmts(fusion, terminating_outputs, traverse_members);
}
std::vector<Statement*> StmtSort::getStmts(
Fusion* fusion,
const std::vector<Val*>& from,
bool traverse_members) {
StmtSort es;
es.traverseFrom(fusion, from, false, traverse_members);
return es.stmts;
}
void InputsOf::handle(Val* v) {
if (v->definition() == nullptr || v->definition()->inputs().empty()) {
if (grabbed_inputs.emplace(v).second) {
ordered_inputs.push_back(v);
}
}
}
std::vector<Val*> InputsOf::output(Fusion* fusion, Val* output_) {
return outputs(fusion, {output_});
}
std::vector<Val*> InputsOf::outputs(
Fusion* fusion,
const std::vector<Val*>& outputs_) {
InputsOf io;
io.traverseFrom(fusion, outputs_, false);
return io.ordered_inputs;
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|