1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/kernel.h>
#include <torch/csrc/jit/codegen/cuda/kernel_expr_evaluator.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir_dispatch.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <ATen/cuda/CUDAContext.h>
#include <iostream>
#include <unordered_set>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
IrBuilderPasskey::IrBuilderPasskey(IrContainer* ir_container)
: ir_container_(ir_container) {}
namespace kir {
namespace {
//! Scan all primary expressions in the Kernel IR and build
//! lists of specialized nodes and other interesting information
class KernelIrScanner : private IrVisitor {
public:
explicit KernelIrScanner(const Kernel* kernel) {
IrVisitor::handle(kernel->topLevelExprs());
const auto gpu_lower = GpuLower::current();
for (auto split : gpu_lower->nonDivisibleSplitInfo().splitsToValidate()) {
auto extent = split->in()->extent();
auto factor = split->factor();
summary_.splits_to_validate.emplace_back(extent, factor);
}
}
const auto& summary() const {
return summary_;
}
private:
using IrVisitor::handle;
void handle(Expr* expr) final {
IrVisitor::handle(expr);
for (auto inp : expr->inputs()) {
handle(inp);
}
for (auto out : expr->outputs()) {
handle(out);
}
}
void handle(BlockSync* sync) final {
// TODO: Move to a dedicated validation pass
// which is not on the common execution/compilation path
if (sync->isWarHazardSync()) {
++summary_.war_hazard_syncs_count;
}
}
void handle(GridSync* sync) final {
summary_.has_cooperative_grid_reduction = true;
}
void handle(Allocate* allocate) final {
switch (allocate->memoryType()) {
case MemoryType::Global:
summary_.global_allocations.push_back(allocate);
break;
case MemoryType::Shared:
summary_.dynamic_smem_allocations.push_back(allocate);
break;
case MemoryType::Local:
if (!ExpressionEvaluator::isConst(allocate->size())) {
summary_.has_dynamic_local_memory_allocations = true;
summary_.dynamic_lmem_allocations.emplace_back(allocate);
}
break;
}
}
void handle(RNGOp* rng_op) final {
summary_.max_rng_offsets =
std::max<int>(summary_.max_rng_offsets, rng_op->getRNGOffset());
}
void handle(TensorIndex* tensor_index) final {
const auto tv = tensor_index->view();
const auto domain = tv->domain();
// Do we have any reductions?
summary_.has_block_reductions =
summary_.has_block_reductions || domain->hasBlockReduction();
// Update the largest smem data type
if (domain->hasBlockReduction() || domain->hasGridReduction() ||
tv->getMemoryType() == MemoryType::Shared) {
const auto data_type = tv->dtype();
const size_t type_size = dataTypeSize(data_type);
if (type_size > max_smem_type_size_) {
max_smem_type_size_ = type_size;
summary_.largest_smem_data_type = data_type;
}
}
}
void handle(WelfordOp* welford_op) final {
summary_.has_welford = true;
TORCH_INTERNAL_ASSERT(welford_op->outAvg()->isA<TensorIndex>());
auto out_dom = welford_op->outAvg()->as<TensorIndex>()->view()->domain();
summary_.has_block_welford =
summary_.has_block_welford || out_dom->hasBlockReduction();
}
void handle(GridWelford* grid_welford) final {
summary_.has_welford = true;
summary_.has_grid_welford = true;
summary_.has_grid_reductions = true;
if (grid_welford->welford_op()->isAllreduce()) {
summary_.has_cooperative_grid_reduction = true;
}
}
void handle(GridReduction* grid_reduction) final {
summary_.has_grid_reductions = true;
if (grid_reduction->isAllreduce()) {
summary_.has_cooperative_grid_reduction = true;
}
}
void handle(GroupedGridReduction* grid_reduction) final {
summary_.has_grid_reductions = true;
if (grid_reduction->isAllreduce()) {
summary_.has_cooperative_grid_reduction = true;
}
}
void handle(GroupedGridWelford* grid_welford) final {
summary_.has_welford = true;
summary_.has_grid_welford = true;
summary_.has_grid_reductions = true;
if (grid_welford->isAllreduce()) {
summary_.has_cooperative_grid_reduction = true;
}
}
void handle(GridBroadcast* grid_broadcast) final {
summary_.has_cooperative_grid_reduction = true;
handle(grid_broadcast->broadcast_op());
}
void handle(BroadcastOp* bop) final {
const ParallelTypeBitmap parallel_types =
GpuLower::current()->threadPredMap().getParallelBroadcastDomains(
bop->out()->as<TensorIndex>()->view());
summary_.broadcast_parallel_types.emplace(bop, parallel_types);
// Do we have block broadcasts?
summary_.has_block_broadcasts =
summary_.has_block_broadcasts || parallel_types.hasTID();
// Do we have grid broadcasts?
summary_.has_grid_broadcasts =
summary_.has_grid_broadcasts || parallel_types.hasBID();
}
private:
size_t max_smem_type_size_ = 0;
KernelSummary summary_;
};
//! Make sure tensors have valid allocations even when parallelized
//! loops potentially have larger iteration counts than the number of
//! threads.
//!
//! When an IterDomain of a tensor is parallelized, the IterDomain
//! may not contribute to the allocation of the tensor. For example,
//! it is assumed that an allocation of a local-memory tensor does not
//! need to be accounted for an parallelied IterDomain. This is true
//! when it is guaranteed that each thread only needs to execute the
//! loop body once. However, if not, the allocation is invalid as it
//! only has a space for one value per thread.
//!
//! ValidateAllocation checks all tensor allocations and sees if any
//! tensor may have a parallelized loop whose iteration count may
//! be larger than the number of threads. If so, an error is thrown if
//! the tensor is not allocated on thread-shared memories. Note that
//! when allocated on a shared memory (i.e., MemoryType::Shared or
//! MemoryType::Global for tensors parallelized with threadIdx, or
//! MemoryType::Global for tensors parallelized with blockIdx), it is
//! assumed that allocation is properly extended for the iteration
//! count.
class ValidateAllocation : private OptOutConstDispatch {
public:
static void validate(const Kernel* kernel) {
ValidateAllocation validate_allocation(kernel);
}
private:
explicit ValidateAllocation(const Kernel* kernel) {
live_allocations_.emplace_back(std::vector<const Allocate*>());
for (const auto& expr : kernel->topLevelExprs()) {
OptOutConstDispatch::handle(expr);
}
live_allocations_.pop_back();
TORCH_INTERNAL_ASSERT(live_allocations_.empty());
}
void handle(const Allocate* allocate) final {
TORCH_INTERNAL_ASSERT(!live_allocations_.empty());
live_allocations_.back().push_back(allocate);
}
// for_loop is parallelized and its stop value is not guaranteed to
// be <= the number of threads, which breaks an assumption made
// during in the allocation lowering if it's thread-parallel and not
// allocated on shared or global memories, or if it's block-parallel
// ando not allocated on global memory.
void validate(const ForLoop* for_loop) {
const auto loop_id = for_loop->iter_domain();
for (const auto& allocations : live_allocations_) {
for (const auto& allocate : allocations) {
const auto tv = dynamic_cast<TensorView*>(allocate->buffer());
if (tv == nullptr) {
continue;
}
for (const auto& axis : tv->domain()->domain()) {
if (!GpuLower::current()->caMap()->areMapped(
loop_id, axis, IdMappingMode::LOOP)) {
continue;
}
if (isParallelTypeThreadDim(loop_id->getParallelType())) {
TORCH_INTERNAL_ASSERT(
tv->getMemoryType() == MemoryType::Shared ||
tv->getMemoryType() == MemoryType::Global,
"Tensor t",
tv->name(),
" must be allocated on SMEM or GMEM.");
} else if (isParallelTypeBlockDim(loop_id->getParallelType())) {
TORCH_INTERNAL_ASSERT(tv->getMemoryType() == MemoryType::Global);
}
}
}
}
}
void handle(const ForLoop* for_loop) final {
if (for_loop->stop() != for_loop->iter_domain()->extent() &&
isParallelTypeThread(for_loop->iter_domain()->getParallelType())) {
validate(for_loop);
}
live_allocations_.emplace_back(std::vector<const Allocate*>());
for (const auto& expr : for_loop->body().exprs()) {
OptOutConstDispatch::handle(expr);
}
live_allocations_.pop_back();
}
void handle(const IfThenElse* ite) final {
for (const auto& expr : ite->thenBody().exprs()) {
OptOutConstDispatch::handle(expr);
}
for (const auto& expr : ite->elseBody().exprs()) {
OptOutConstDispatch::handle(expr);
}
}
private:
std::vector<std::vector<const Allocate*>> live_allocations_;
};
} // namespace
// TODO(kir): Kernel IR validation
void Kernel::finalize(std::vector<Expr*> top_level_exprs) {
TORCH_INTERNAL_ASSERT(top_level_exprs_.empty());
top_level_exprs_ = std::move(top_level_exprs);
warp_padded_parallel_info_ = GpuLower::current()->getWarpPaddedParallelInfo();
profile_ = GpuLower::current()->profile();
ValidateAllocation::validate(this);
analyze();
// Make sure this is after analyze as it sets summary_
summary_.vectorized_accesses = GpuLower::current()->vectorizedAccesses();
summary_.vectorized_set_info = GpuLower::current()->vectorizedSetInfo();
summary_.sync_map = GpuLower::current()->syncMap();
summary_.parallel_dimension_map_ =
GpuLower::current()->parallelDimensionMap();
}
void Kernel::analyze() {
FUSER_PERF_SCOPE("Kernel::analyze");
const KernelIrScanner ir_scanner(this);
summary_ = ir_scanner.summary();
}
void Kernel::print() const {
IrPrinter ir_printer(std::cout);
ir_printer.handle(this);
}
//! Register the Val with this fusion
void Kernel::registerVal(Val* val) {
if (inContainer(val)) {
return;
}
if (val->kernel()) {
TORCH_CHECK(
val->kernel() == this,
val->toString(),
" was not found in the active kernel.");
}
Fusion::registerVal(val);
}
//! Register expr with this fusion.
//! When we register an expression, we want to update the dependency tracking
//! of Vals. We add expr to our general expr_set_,
void Kernel::registerExpr(Expr* expr) {
if (inContainer(expr)) {
return;
}
if (expr->kernel()) {
TORCH_CHECK(
expr->kernel() == this,
expr->toString(),
" was not found in the active kernel.");
}
for (Val* input : expr->inputs()) {
TORCH_INTERNAL_ASSERT(
inContainer(input),
"Input\n",
input->toString(),
" to expr,\n",
expr->toString(),
",\n is invalid because it is not in the same kernel.");
}
for (Val* output : expr->outputs()) {
TORCH_INTERNAL_ASSERT(
inContainer(output),
"Output\n",
output->toString(),
" to expr,\n",
expr->toString(),
",\n is invalid because it is not in the same kernel.");
}
// Register expr is explicitly non-SSA when coming from a kernel. This is
// detected inside Fusion::registerExpr
Fusion::registerExpr(expr);
}
std::vector<Expr*>& KernelInternalProxy::topLevelExprs() {
return kernel_->top_level_exprs_;
}
void KernelPerformanceProfile::registerExpr(const Expr* expr) {
if (expr_entry_map_.find(expr) != expr_entry_map_.end()) {
return;
}
auto slot = getNewIndex();
expr_entry_map_.emplace(expr, slot);
}
int KernelPerformanceProfile::getNewIndex() {
return num_profile_entries_++;
}
bool KernelPerformanceProfile::isProfiled(const Expr* expr) const {
return expr_entry_map_.find(expr) != expr_entry_map_.end();
}
c10::optional<int> KernelPerformanceProfile::getIndex(const Expr* expr) const {
auto it = expr_entry_map_.find(expr);
if (it == expr_entry_map_.end()) {
return c10::optional<int>();
} else {
return it->second;
}
}
std::array<int, 2> KernelPerformanceProfile::getIndicesInProfileBuffer(
const Expr* expr) const {
TORCH_INTERNAL_ASSERT(
isProfiled(expr), "Not a profiled expression: ", expr->toString());
int cycle_index = getIndex(expr).value() * 2;
int count_index = cycle_index + 1;
return {cycle_index, count_index};
}
std::string KernelPerformanceProfile::toString(const at::Tensor& buffer) const {
std::stringstream ss;
ss << "Kernel performance profile:\n";
if (!buffer.defined()) {
ss << "No profile found\n";
return ss.str();
}
double kilo_freq = at::cuda::getCurrentDeviceProperties()->clockRate;
ss << std::setprecision(3) << std::fixed;
for (const auto& kv : expr_entry_map_) {
auto expr = kv.first;
auto index = kv.second;
auto out_tv = ir_utils::getTvOutput(expr);
double cycles = static_cast<double>(buffer[index][0].item<int64_t>());
auto count = buffer[index][1].item<int64_t>();
auto cycles_per_call = count == 0 ? 0.0 : cycles / count;
auto us_per_call = cycles_per_call / kilo_freq * 1000.0;
ss << expr->getExprType().value() << ", T" << out_tv->name() << ", "
<< us_per_call << " us, " << count << "\n";
}
return ss.str();
}
} // namespace kir
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|