File: kernel.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (428 lines) | stat: -rw-r--r-- 13,671 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/kernel.h>
#include <torch/csrc/jit/codegen/cuda/kernel_expr_evaluator.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir_dispatch.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>

#include <ATen/cuda/CUDAContext.h>

#include <iostream>
#include <unordered_set>

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

IrBuilderPasskey::IrBuilderPasskey(IrContainer* ir_container)
    : ir_container_(ir_container) {}

namespace kir {

namespace {

//! Scan all primary expressions in the Kernel IR and build
//! lists of specialized nodes and other interesting information
class KernelIrScanner : private IrVisitor {
 public:
  explicit KernelIrScanner(const Kernel* kernel) {
    IrVisitor::handle(kernel->topLevelExprs());
    const auto gpu_lower = GpuLower::current();
    for (auto split : gpu_lower->nonDivisibleSplitInfo().splitsToValidate()) {
      auto extent = split->in()->extent();
      auto factor = split->factor();
      summary_.splits_to_validate.emplace_back(extent, factor);
    }
  }

  const auto& summary() const {
    return summary_;
  }

 private:
  using IrVisitor::handle;
  void handle(Expr* expr) final {
    IrVisitor::handle(expr);
    for (auto inp : expr->inputs()) {
      handle(inp);
    }
    for (auto out : expr->outputs()) {
      handle(out);
    }
  }
  void handle(BlockSync* sync) final {
    // TODO: Move to a dedicated validation pass
    // which is not on the common execution/compilation path
    if (sync->isWarHazardSync()) {
      ++summary_.war_hazard_syncs_count;
    }
  }

  void handle(GridSync* sync) final {
    summary_.has_cooperative_grid_reduction = true;
  }

  void handle(Allocate* allocate) final {
    switch (allocate->memoryType()) {
      case MemoryType::Global:
        summary_.global_allocations.push_back(allocate);
        break;
      case MemoryType::Shared:
        summary_.dynamic_smem_allocations.push_back(allocate);
        break;
      case MemoryType::Local:
        if (!ExpressionEvaluator::isConst(allocate->size())) {
          summary_.has_dynamic_local_memory_allocations = true;
          summary_.dynamic_lmem_allocations.emplace_back(allocate);
        }
        break;
    }
  }

  void handle(RNGOp* rng_op) final {
    summary_.max_rng_offsets =
        std::max<int>(summary_.max_rng_offsets, rng_op->getRNGOffset());
  }

  void handle(TensorIndex* tensor_index) final {
    const auto tv = tensor_index->view();
    const auto domain = tv->domain();
    // Do we have any reductions?
    summary_.has_block_reductions =
        summary_.has_block_reductions || domain->hasBlockReduction();

    // Update the largest smem data type
    if (domain->hasBlockReduction() || domain->hasGridReduction() ||
        tv->getMemoryType() == MemoryType::Shared) {
      const auto data_type = tv->dtype();
      const size_t type_size = dataTypeSize(data_type);
      if (type_size > max_smem_type_size_) {
        max_smem_type_size_ = type_size;
        summary_.largest_smem_data_type = data_type;
      }
    }
  }

  void handle(WelfordOp* welford_op) final {
    summary_.has_welford = true;
    TORCH_INTERNAL_ASSERT(welford_op->outAvg()->isA<TensorIndex>());
    auto out_dom = welford_op->outAvg()->as<TensorIndex>()->view()->domain();
    summary_.has_block_welford =
        summary_.has_block_welford || out_dom->hasBlockReduction();
  }

  void handle(GridWelford* grid_welford) final {
    summary_.has_welford = true;
    summary_.has_grid_welford = true;
    summary_.has_grid_reductions = true;
    if (grid_welford->welford_op()->isAllreduce()) {
      summary_.has_cooperative_grid_reduction = true;
    }
  }

  void handle(GridReduction* grid_reduction) final {
    summary_.has_grid_reductions = true;
    if (grid_reduction->isAllreduce()) {
      summary_.has_cooperative_grid_reduction = true;
    }
  }

  void handle(GroupedGridReduction* grid_reduction) final {
    summary_.has_grid_reductions = true;
    if (grid_reduction->isAllreduce()) {
      summary_.has_cooperative_grid_reduction = true;
    }
  }

  void handle(GroupedGridWelford* grid_welford) final {
    summary_.has_welford = true;
    summary_.has_grid_welford = true;
    summary_.has_grid_reductions = true;
    if (grid_welford->isAllreduce()) {
      summary_.has_cooperative_grid_reduction = true;
    }
  }

  void handle(GridBroadcast* grid_broadcast) final {
    summary_.has_cooperative_grid_reduction = true;
    handle(grid_broadcast->broadcast_op());
  }

  void handle(BroadcastOp* bop) final {
    const ParallelTypeBitmap parallel_types =
        GpuLower::current()->threadPredMap().getParallelBroadcastDomains(
            bop->out()->as<TensorIndex>()->view());
    summary_.broadcast_parallel_types.emplace(bop, parallel_types);
    // Do we have block broadcasts?
    summary_.has_block_broadcasts =
        summary_.has_block_broadcasts || parallel_types.hasTID();
    // Do we have grid broadcasts?
    summary_.has_grid_broadcasts =
        summary_.has_grid_broadcasts || parallel_types.hasBID();
  }

 private:
  size_t max_smem_type_size_ = 0;
  KernelSummary summary_;
};

//! Make sure tensors have valid allocations even when parallelized
//! loops potentially have larger iteration counts than the number of
//! threads.
//!
//! When an IterDomain of a tensor is parallelized, the IterDomain
//! may not contribute to the allocation of the tensor. For example,
//! it is assumed that an allocation of a local-memory tensor does not
//! need to be accounted for an parallelied IterDomain. This is true
//! when it is guaranteed that each thread only needs to execute the
//! loop body once. However, if not, the allocation is invalid as it
//! only has a space for one value per thread.
//!
//! ValidateAllocation checks all tensor allocations and sees if any
//! tensor may have a parallelized loop whose iteration count may
//! be larger than the number of threads. If so, an error is thrown if
//! the tensor is not allocated on thread-shared memories. Note that
//! when allocated on a shared memory (i.e., MemoryType::Shared or
//! MemoryType::Global for tensors parallelized with threadIdx, or
//! MemoryType::Global for tensors parallelized with blockIdx), it is
//! assumed that allocation is properly extended for the iteration
//! count.
class ValidateAllocation : private OptOutConstDispatch {
 public:
  static void validate(const Kernel* kernel) {
    ValidateAllocation validate_allocation(kernel);
  }

 private:
  explicit ValidateAllocation(const Kernel* kernel) {
    live_allocations_.emplace_back(std::vector<const Allocate*>());
    for (const auto& expr : kernel->topLevelExprs()) {
      OptOutConstDispatch::handle(expr);
    }
    live_allocations_.pop_back();
    TORCH_INTERNAL_ASSERT(live_allocations_.empty());
  }

  void handle(const Allocate* allocate) final {
    TORCH_INTERNAL_ASSERT(!live_allocations_.empty());
    live_allocations_.back().push_back(allocate);
  }

  // for_loop is parallelized and its stop value is not guaranteed to
  // be <= the number of threads, which breaks an assumption made
  // during in the allocation lowering if it's thread-parallel and not
  // allocated on shared or global memories, or if it's block-parallel
  // ando not allocated on global memory.
  void validate(const ForLoop* for_loop) {
    const auto loop_id = for_loop->iter_domain();
    for (const auto& allocations : live_allocations_) {
      for (const auto& allocate : allocations) {
        const auto tv = dynamic_cast<TensorView*>(allocate->buffer());
        if (tv == nullptr) {
          continue;
        }
        for (const auto& axis : tv->domain()->domain()) {
          if (!GpuLower::current()->caMap()->areMapped(
                  loop_id, axis, IdMappingMode::LOOP)) {
            continue;
          }
          if (isParallelTypeThreadDim(loop_id->getParallelType())) {
            TORCH_INTERNAL_ASSERT(
                tv->getMemoryType() == MemoryType::Shared ||
                    tv->getMemoryType() == MemoryType::Global,
                "Tensor t",
                tv->name(),
                " must be allocated on SMEM or GMEM.");
          } else if (isParallelTypeBlockDim(loop_id->getParallelType())) {
            TORCH_INTERNAL_ASSERT(tv->getMemoryType() == MemoryType::Global);
          }
        }
      }
    }
  }

  void handle(const ForLoop* for_loop) final {
    if (for_loop->stop() != for_loop->iter_domain()->extent() &&
        isParallelTypeThread(for_loop->iter_domain()->getParallelType())) {
      validate(for_loop);
    }

    live_allocations_.emplace_back(std::vector<const Allocate*>());
    for (const auto& expr : for_loop->body().exprs()) {
      OptOutConstDispatch::handle(expr);
    }
    live_allocations_.pop_back();
  }

  void handle(const IfThenElse* ite) final {
    for (const auto& expr : ite->thenBody().exprs()) {
      OptOutConstDispatch::handle(expr);
    }
    for (const auto& expr : ite->elseBody().exprs()) {
      OptOutConstDispatch::handle(expr);
    }
  }

 private:
  std::vector<std::vector<const Allocate*>> live_allocations_;
};

} // namespace

// TODO(kir): Kernel IR validation
void Kernel::finalize(std::vector<Expr*> top_level_exprs) {
  TORCH_INTERNAL_ASSERT(top_level_exprs_.empty());
  top_level_exprs_ = std::move(top_level_exprs);
  warp_padded_parallel_info_ = GpuLower::current()->getWarpPaddedParallelInfo();
  profile_ = GpuLower::current()->profile();
  ValidateAllocation::validate(this);
  analyze();
  // Make sure this is after analyze as it sets summary_
  summary_.vectorized_accesses = GpuLower::current()->vectorizedAccesses();
  summary_.vectorized_set_info = GpuLower::current()->vectorizedSetInfo();
  summary_.sync_map = GpuLower::current()->syncMap();
  summary_.parallel_dimension_map_ =
      GpuLower::current()->parallelDimensionMap();
}

void Kernel::analyze() {
  FUSER_PERF_SCOPE("Kernel::analyze");

  const KernelIrScanner ir_scanner(this);
  summary_ = ir_scanner.summary();
}

void Kernel::print() const {
  IrPrinter ir_printer(std::cout);
  ir_printer.handle(this);
}

//! Register the Val with this fusion
void Kernel::registerVal(Val* val) {
  if (inContainer(val)) {
    return;
  }
  if (val->kernel()) {
    TORCH_CHECK(
        val->kernel() == this,
        val->toString(),
        " was not found in the active kernel.");
  }

  Fusion::registerVal(val);
}

//! Register expr with this fusion.
//! When we register an expression, we want to update the dependency tracking
//! of Vals. We add expr to our general expr_set_,
void Kernel::registerExpr(Expr* expr) {
  if (inContainer(expr)) {
    return;
  }

  if (expr->kernel()) {
    TORCH_CHECK(
        expr->kernel() == this,
        expr->toString(),
        " was not found in the active kernel.");
  }

  for (Val* input : expr->inputs()) {
    TORCH_INTERNAL_ASSERT(
        inContainer(input),
        "Input\n",
        input->toString(),
        " to expr,\n",
        expr->toString(),
        ",\n is invalid because it is not in the same kernel.");
  }

  for (Val* output : expr->outputs()) {
    TORCH_INTERNAL_ASSERT(
        inContainer(output),
        "Output\n",
        output->toString(),
        " to expr,\n",
        expr->toString(),
        ",\n is invalid because it is not in the same kernel.");
  }

  // Register expr is explicitly non-SSA when coming from a kernel. This is
  // detected inside Fusion::registerExpr
  Fusion::registerExpr(expr);
}

std::vector<Expr*>& KernelInternalProxy::topLevelExprs() {
  return kernel_->top_level_exprs_;
}

void KernelPerformanceProfile::registerExpr(const Expr* expr) {
  if (expr_entry_map_.find(expr) != expr_entry_map_.end()) {
    return;
  }

  auto slot = getNewIndex();
  expr_entry_map_.emplace(expr, slot);
}

int KernelPerformanceProfile::getNewIndex() {
  return num_profile_entries_++;
}

bool KernelPerformanceProfile::isProfiled(const Expr* expr) const {
  return expr_entry_map_.find(expr) != expr_entry_map_.end();
}

c10::optional<int> KernelPerformanceProfile::getIndex(const Expr* expr) const {
  auto it = expr_entry_map_.find(expr);
  if (it == expr_entry_map_.end()) {
    return c10::optional<int>();
  } else {
    return it->second;
  }
}

std::array<int, 2> KernelPerformanceProfile::getIndicesInProfileBuffer(
    const Expr* expr) const {
  TORCH_INTERNAL_ASSERT(
      isProfiled(expr), "Not a profiled expression: ", expr->toString());

  int cycle_index = getIndex(expr).value() * 2;
  int count_index = cycle_index + 1;

  return {cycle_index, count_index};
}

std::string KernelPerformanceProfile::toString(const at::Tensor& buffer) const {
  std::stringstream ss;
  ss << "Kernel performance profile:\n";
  if (!buffer.defined()) {
    ss << "No profile found\n";
    return ss.str();
  }

  double kilo_freq = at::cuda::getCurrentDeviceProperties()->clockRate;

  ss << std::setprecision(3) << std::fixed;

  for (const auto& kv : expr_entry_map_) {
    auto expr = kv.first;
    auto index = kv.second;
    auto out_tv = ir_utils::getTvOutput(expr);
    double cycles = static_cast<double>(buffer[index][0].item<int64_t>());
    auto count = buffer[index][1].item<int64_t>();
    auto cycles_per_call = count == 0 ? 0.0 : cycles / count;
    auto us_per_call = cycles_per_call / kilo_freq * 1000.0;
    ss << expr->getExprType().value() << ", T" << out_tv->name() << ", "
       << us_per_call << " us, " << count << "\n";
  }

  return ss.str();
}

} // namespace kir
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch