1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
|
#include <torch/csrc/jit/codegen/cuda/kernel_cache.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/parser.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/debug_utils.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/registry.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <c10/core/thread_pool.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/jit_log.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace {
#define THREAD_POOL_SIZE 10
// TODO: clean this up with some knobs
c10::ThreadPool* getThreadPool() {
static c10::ThreadPool pool(THREAD_POOL_SIZE);
return &pool;
}
void encodeBuffer(size_t value, std::string& buffer) {
const char* v = reinterpret_cast<char*>(&value);
for (const auto i : c10::irange(sizeof(size_t))) {
(void)i; // Suppress unused variable warning
buffer.push_back(*(v++));
}
}
} // namespace
InputsIdLookup::IdLookupReturn InputsIdLookup::lookupId(
const at::ArrayRef<IValue>& inputs) {
IdLookupReturn ret;
// lock mutex_ because we are touching encoding_
std::lock_guard<std::mutex> guard(mutex_);
encoding_.clear();
for (const auto& input : inputs) {
if (input.isTensor()) {
auto& input_tensor = input.toTensor();
for (auto size : input_tensor.sizes()) {
encodeBuffer(size, encoding_);
encoding_.push_back(' ');
}
encoding_.push_back('X');
encoding_.push_back(' ');
for (auto stride : input_tensor.strides()) {
encodeBuffer(stride, encoding_);
encoding_.push_back(' ');
}
encoding_.push_back('a');
encodeBuffer(
SchedulerRuntimeInfo::computeAlignmentSize(
(size_t)input_tensor.data_ptr()),
encoding_);
encoding_.push_back('d');
encodeBuffer(input_tensor.device().index(), encoding_);
} else {
// encode s for scalar;
encoding_.push_back('s');
}
encoding_.push_back(';');
}
auto& entry = encoding_lookup_[encoding_];
if (entry.id == 0) {
// no entry existed for given input set, set id for given entry
entry.id = current_id_++;
if (used_entry_.size() == max_cache_size_) {
// pop least recently used cache;
const auto& remove_iter = encoding_lookup_.find(used_entry_.back());
used_entry_.pop_back();
ret.evict_id = remove_iter->second.id;
ret.eviction = true;
encoding_lookup_.erase(remove_iter);
}
} else {
// short-cut to leave LRU entry as is
if (entry.lru_iter == used_entry_.begin()) {
ret.id = entry.id;
return ret;
}
used_entry_.erase(entry.lru_iter);
}
ret.id = entry.id;
entry.lru_iter = used_entry_.insert(used_entry_.begin(), encoding_);
return ret;
}
FusionExecutorCache::FusionExecutorCache(std::unique_ptr<Fusion> fusion)
: fusion_(std::move(fusion)) {
for (const auto& indices : fusion_->getOutputAliasIndices()) {
aliased_output_indices_.insert(indices);
}
}
KernelArgumentHolder FusionExecutorCache::prepareInputs(
const at::ArrayRef<IValue>& inputs) {
FUSER_PERF_SCOPE("FusionExecutorCache::prepareInputs");
KernelArgumentHolder args =
KernelArgumentHolder::createKernelArgumentHolder(inputs);
// TODO: move InputsIdLookup inside KernelArgumentHolder;
auto id_lookup_ret = inputs_id_lookup_.lookupId(inputs);
if (id_lookup_ret.eviction) {
evictCache(id_lookup_ret.evict_id);
}
args.setCacheId(id_lookup_ret.id);
return args;
}
bool FusionExecutorCache::isCompiled(const at::ArrayRef<IValue>& inputs) {
FUSER_PERF_SCOPE("FusionExecutorCache::isCompiled");
// Access kernels associated with the common device id
KernelArgumentHolder args = prepareInputs(inputs);
return getKernelRuntimeFor(args)->isCompiled();
}
void FusionExecutorCache::compileFusionAsync(
const at::ArrayRef<IValue>& inputs) {
FUSER_PERF_SCOPE("FusionExecutorCache::compileFusionAsync");
KernelArgumentHolder args = prepareInputs(inputs);
auto kernel_runtime = getKernelRuntimeFor(args);
kernel_runtime->startAsyncCompile(args);
}
// Note [ Permutation support in nvfuser ]
//
// Background:
// To support permutation in nvfuser with optimal performance, we would want to
// allow dimension collapsing in generated code on channels-last tensors, which
// greatly simplifies indexing. Current API in codegen only allows dimensional
// collapsing on neighboring axes. The unfortunate thing is that memory format
// design in PyTorch is implicitly marked by strides, while the semantics
// meaning of axes remain unchanged. i.e. A 4d tensor with axes [N, C, H, W]
// would have the same shape in both format, while contiguous tensor carries
// strides [C*H*W, H*W, W, 1] and channels-last tensor [H*W*C, 1, W*C, C]
//
// Approach:
// Part_1. To allow axes collapsing for permuted tensor in codegen, we can
// permute input tensor to have axes in decending order by their strides, so
// they would be viewed as `contiguous` in codegen, hence collapsed to simple
// indexing. Part_2. To ensure correct result, we need to ensure computation in
// nvfuser carries same semantics as with TorchScript graph. We need to
// Part_2_1. Maintain a bookkeeping where each codegen tensor is tagged with
// either their permutation. Part_2_2. Parsing rule should handle and
// propagate the tag properly, e.g. batch normalization has special rules for
// `channels_last` input tensor and mark output in its right permutation.
// Part_3. Codegen output tensor that has been permuted should be restored to
// original layout before returning to TorchScript
//
// For details on Part_2, refer to implementation Note [ Permutation
// Bookkeeping and Propagation in Parser ]
std::vector<at::Tensor> FusionExecutorCache::runFusionWithInputs(
const at::ArrayRef<IValue>& inputs) {
FUSER_PERF_SCOPE("FusionExecutorCache::runFusionWithInputs");
// permute input tensor for kernel execution. See Part_1 in Note [ Channels
// Last support in nvfuser ]
at::ArrayRef<IValue> perm_inputs = inputs;
const auto& to_be_permuted_inputs = fusion_->getPermutationInputMap();
std::vector<IValue> inputs_vec;
if (!to_be_permuted_inputs.empty()) {
inputs_vec = inputs.vec();
for (const auto& pair : to_be_permuted_inputs) {
auto v = inputs_vec[pair.first];
TORCH_CHECK(
v.isTensor(), "input permutation can only be applied at tensor");
auto tensor = v.toTensor();
inputs_vec[pair.first] = tensor.permute(pair.second);
}
perm_inputs = inputs_vec;
}
KernelArgumentHolder args = prepareInputs(perm_inputs);
auto kernel_runtime = getKernelRuntimeFor(args);
most_recent_runtime_ = kernel_runtime;
auto outputs = kernel_runtime->runWithInput(args);
// permute output tensor returned by kernel execution. See Part_3 in Note [
// Permutation support in nvfuser ]
for (const auto& pair : fusion_->getPermutationOutputMap()) {
if (pair.first < outputs.size()) {
outputs[pair.first] = outputs[pair.first].permute(pair.second);
}
}
// removing aliased outputs, since those are only used by input tensor update
// by fusion. It is not semantically correct to actually return them as
// outputs from fusion.
int offset = 0;
for (const auto& v : aliased_output_indices_) {
outputs.erase(outputs.begin() + v - offset);
offset++;
}
return outputs;
}
void FusionExecutorCache::evictCache(size_t cache_id) {
auto it = id_to_kernel_runtime_.find(cache_id);
TORCH_INTERNAL_ASSERT(it != id_to_kernel_runtime_.end());
it->second->evictCache(cache_id);
id_to_kernel_runtime_.erase(it);
}
FusionKernelRuntime* FusionExecutorCache::getKernelRuntimeFor(
const KernelArgumentHolder& args) {
// Check for id hit case
auto unique_id = *args.getCacheId();
auto id_it = id_to_kernel_runtime_.find(unique_id);
if (id_it != id_to_kernel_runtime_.end()) {
return id_it->second;
}
// Access kernels associated with the common device id
auto& kernel_runtimes = kernel_runtimes_[args.getDeviceIndex()];
// Check for re-use hit case
// a kernel runtime is re-usable if all the compiled
// kernels have the same heuristic parameters
std::unique_ptr<FusionHeuristics> new_heuristics;
auto reuse_it = std::find_if(
kernel_runtimes.begin(),
kernel_runtimes.end(),
[&args, &new_heuristics](auto& kernel_runtime) {
auto maybe_heuristics = kernel_runtime->getMaybeHeuristicsFor(args);
if (!maybe_heuristics.has_value()) {
return false;
}
new_heuristics = std::move(maybe_heuristics.value());
return true;
});
FusionKernelRuntime* kernel_runtime = nullptr;
if (reuse_it != kernel_runtimes.end()) {
kernel_runtime = reuse_it->get();
kernel_runtime->updateHeuristicsLaunchParams(new_heuristics.get());
} else {
// graph miss, need to re-build an optimized graph for this case
kernel_runtimes.emplace_back(
std::make_unique<FusionKernelRuntime>(fusion_.get(), args));
kernel_runtime = kernel_runtimes.back().get();
if (profiling_) {
kernel_runtime->profile(true);
}
}
id_to_kernel_runtime_[unique_id] = kernel_runtime;
return kernel_runtime;
}
FusionKernelRuntime::FusionKernelRuntime(
Fusion* fusion,
const KernelArgumentHolder& args) {
FUSER_PERF_SCOPE("FusionKernelRuntime::FusionKernelRuntime");
// Make a copy of fusion and do segmentation and translation
// on this copy
auto fusion_copy = std::make_unique<Fusion>(*fusion);
// Run segmentation on the copied fusion
SchedulerRuntimeInfo runtime_info(fusion_copy.get(), args, true);
// Initialize the evaluator simplifer
precomputed_values_ =
std::make_unique<FusionPrecomputedValues>(fusion_copy.get());
//! Try to schedule the complete fusion
scheduler_debug_utils::canScheduleMessage(
"***Runtime***: Try to schedule fusion un-segmented:\n");
const auto maybe_complete_fusion_heuristic =
SchedulerEntry::proposeHeuristics(fusion_copy.get(), runtime_info);
//! Decide if this fusion is segmented or not
const bool segmented = !maybe_complete_fusion_heuristic.has_value();
if (segmented) {
// Take ownership and segment transformed fusion
segmented_fusion_ =
SegmentCandidateFinder::segment(std::move(fusion_copy), args);
} else {
segmented_fusion_ = SegmentedFusion::fromCompleteFusion(
std::move(fusion_copy), maybe_complete_fusion_heuristic.value());
}
heuristics_ = segmented_fusion_->makeInitialHeuristics(args);
executors_ = std::vector<FusionExecutor>(segmented_fusion_->groups().size());
if (isDebugDumpEnabled(DebugDumpOption::FusionSegments)) {
segmented_fusion_->print();
}
// Even if we go through the segmented path we may still end up
// with a segmented fusion with one group. This case still
// counts as un-segmented.
is_segmented_ = segmented_fusion_->groups().size() > 1;
// Pre-compute the executor order so that the run time path
// would go directly to kernel launch.
prepareRuntimeOrder();
}
std::vector<at::Tensor> FusionKernelRuntime::runKernelWithInput(
KernelArgumentHolder& args,
SegmentedGroup* sg) {
FUSER_PERF_SCOPE("FusionKernelRuntime::runKernelWithInput");
std::lock_guard<std::mutex> guard(mutex_);
// This function will be called once on un-segmented fusion,
// for segmented fusion, this function will be called on each segment
// In the case of segmented fusion, segmented group needs to be given so
// a kernel is compiled and run for a segmented group
// In the case of complete fusion, sg = nullptr, and the original fusion
// is complied and run
TORCH_INTERNAL_ASSERT(sg, "runKernelWithInput: need valid group to run");
auto group_id = sg->groupId();
LaunchParams launch_params;
auto scheduler_entry = schedulers()[group_id].get();
// Check that the heuristics are matched, in the case of segmented fusion
TORCH_INTERNAL_ASSERT(!sg || scheduler_entry->heuristic() == sg->heuristic());
if (!executors_[group_id].compiled()) {
FUSER_PERF_SCOPE("FusionKernelRuntime::runKernelWithInput::Compile");
std::unique_ptr<Fusion> fusion_to_run;
// Running a segment group as a single kernel,
// make a fusion to run from segmented fusion
fusion_to_run = segmented_fusion_->makeFusion(sg);
FusionGuard fg(fusion_to_run.get());
scheduler_entry->schedule(fusion_to_run.get());
launch_params = scheduler_entry->params()->lparams;
executors_[group_id].compileFusion(
fusion_to_run.get(), args, launch_params);
} else {
launch_params = scheduler_entry->params()->lparams;
}
if (profiling_) {
most_recent_executor_log_.fusion_executor = &executors_[group_id];
most_recent_executor_log_.params = scheduler_entry->params()->clone();
}
auto& executor = executors_[group_id];
if (isDebugDumpEnabled(DebugDumpOption::PerfDebugVerbose)) {
executor.setMeasureKernelTimeFlag(true);
}
auto outputs = executor.runFusion(args, launch_params);
// Print relevant information all at once for easy debuging of perf
if (isDebugDumpEnabled(DebugDumpOption::PerfDebugVerbose)) {
std::cout << "\nRun kernel:\n";
if (sg) {
segmented_fusion_->makeFusion(sg)->printMath();
} else {
segmented_fusion_->completeFusion()->printMath();
}
std::cout << "With inputs:\n";
for (auto i : c10::irange(args.size())) {
args[i]->print();
}
std::cout << "Compiler log: " << executor.compilerLog() << "\n";
std::cout << scheduler_entry->params()->toString() << "\n";
std::cout << "With arguments: " << executor.lastLaunchParams().toString();
std::cout << executor.kernelName() << " " << executor.bytesProcessed()
<< " bytes/ " << std::setprecision(3) << executor.kernelTimeMs()
<< " ms "
<< ((double)executor.bytesProcessed() /
((double)executor.kernelTimeMs() / 1000)) /
(double)1.0e9
<< " GB/s" << std::endl;
executor.setMeasureKernelTimeFlag(false);
}
return outputs;
}
void FusionKernelRuntime::prepareRuntimeOrder() {
// Setup group run order:
std::unordered_set<Val*> available_input;
// setup the order tensor dimensions are bound
for (const size_t i : c10::irange(segmented_fusion_->inputs().size())) {
auto input_val = segmented_fusion_->inputs()[i];
available_input.insert(input_val);
if (auto input_tv = dynamic_cast<TensorView*>(input_val)) {
auto root_dom = TensorDomain::noReductions(input_tv->getRootDomain());
for (const size_t dim : c10::irange(root_dom.size())) {
const auto extent = root_dom[dim]->extent();
available_input.insert(extent);
runtime_workspace_.group_extent_binding_order.push_back(extent);
}
}
}
// Keep track of groups that has run
std::vector<bool> group_ran(segmented_fusion_->groups().size(), false);
while (!std::all_of(
group_ran.begin(), group_ran.end(), [](bool b) { return b; })) {
bool one_ran = false;
// Find the first segment with all inputs available to run
for (const size_t group_i :
c10::irange(segmented_fusion_->groups().size())) {
auto& group = segmented_fusion_->groups()[group_i];
if (group_ran[group_i]) {
continue;
}
const auto& group_inputs = group->inputs();
bool ready_to_run = std::all_of(
group_inputs.begin(),
group_inputs.end(),
[&available_input](Val* val) { return available_input.count(val); });
if (ready_to_run) {
runtime_workspace_.group_run_order.push_back(group);
const auto& group_outputs = group->outputs();
// Insert graph segment output to tensor map
for (const size_t group_out_i : c10::irange(group_outputs.size())) {
available_input.insert(group_outputs[group_out_i]);
}
group_ran[group_i] = true;
one_ran = true;
}
}
TORCH_INTERNAL_ASSERT(
one_ran,
"Couldn't run all groups, something must have gone wrong in segmentation.");
}
}
// passing args by value, since we will be modify this
void FusionKernelRuntime::startAsyncCompile(KernelArgumentHolder& args_old) {
// only single compilation is supported at this moment.
std::unique_lock<std::mutex> unique_lock(mutex_, std::try_to_lock);
TORCH_CHECK(
unique_lock.owns_lock(),
"Calling startAsyncCompile on a FusionKernelRuntime that's already starting a compilation thread is not supported");
std::unique_lock<std::mutex> unique_lock2(compiling_, std::try_to_lock);
TORCH_CHECK(
unique_lock2.owns_lock(),
"Calling startAsyncCompile on a FusionKernelRuntime that's already starting a compilation thread is not supported 2");
// for some reason I can't seem to move unique_lock and it keeps using copy.
// auto compile_fusion = [args = std::move(args_old), lock =
// std::move(unique_lock), this] () mutable {
auto compile_fusion = [args = std::move(args_old), this]() mutable {
std::lock_guard<std::mutex> guard(compiling_);
// locking mutex_ since we are touching executors_ during compilation.
// c10::DeviceGuard dg(c10::Device(DeviceType::CUDA,
// args.getDeviceIndex())); CUDAGuard uses runtime API directly, which is
// thread safe.
c10::cuda::CUDAGuard dg(args.getDeviceIndex());
FUSER_PERF_SCOPE("FusionKernelRuntime::startAsyncCompile");
TORCH_INTERNAL_ASSERT(
args.size() == segmented_fusion_->inputs().size(),
"Inputs were not set up correctly, recieved ",
args.size(),
" inputs but expecting ",
segmented_fusion_->inputs().size());
c10::Device device(c10::DeviceType::CUDA, args.getDeviceIndex());
std::unordered_map<Val*, const ArgAbstract*> tensor_map;
mapFusionInputsToArgs(tensor_map, args);
// TODO: compilation can happen in parallel! We can have output sizes
// inferred on un-compiled kernel and setup all tensor_map prior to
// compilation.
for (auto group_to_run : runtime_workspace_.group_run_order) {
// TODO: index mode should be updated per segmented kernel
// Prepare input vector
KernelArgumentHolder group_runtime_inputs(args.getIndexMode());
group_runtime_inputs.setDeviceIndex(args.getDeviceIndex());
for (auto input : group_to_run->inputs()) {
group_runtime_inputs.push(tensor_map.at(input));
}
// Run graph segment
KernelArgumentHolder group_runtime_outputs =
compileKernel(group_runtime_inputs, group_to_run);
// map output args to tensor map
const auto& group_outputs = group_to_run->outputs();
for (const size_t group_out_i : c10::irange(group_outputs.size())) {
args.push(group_runtime_outputs[group_out_i]);
tensor_map.emplace(group_outputs[group_out_i], args.back());
}
}
};
getThreadPool()->run(compile_fusion);
}
// TODO: replace the boilerplate in runKernelWithInput
KernelArgumentHolder FusionKernelRuntime::compileKernel(
const KernelArgumentHolder& args,
SegmentedGroup* sg) {
FUSER_PERF_SCOPE("FusionKernelRuntime::compileKernel");
// This function will be called once on un-segmented fusion,
// for segmented fusion, this function will be called on each segment
// In the case of segmented fusion, segmented group needs to be given so
// a kernel is compiled and run for a segmented group
// In the case of complete fusion, sg = nullptr, and the original fusion
// is complied and run
TORCH_INTERNAL_ASSERT(sg, "compileKernel: need valid group to run");
auto group_id = sg->groupId();
LaunchParams launch_params;
auto scheduler_entry = schedulers()[group_id].get();
// Check that the heuristics are matched, in the case of segmented fusion
TORCH_INTERNAL_ASSERT(!sg || scheduler_entry->heuristic() == sg->heuristic());
if (!executors_[group_id].compiled()) {
FUSER_PERF_SCOPE("FusionKernelRuntime::compileKernel::Compile");
std::unique_ptr<Fusion> fusion_to_run;
// Running a segment group as a single kernel,
// make a fusion to run from segmented fusion
fusion_to_run = segmented_fusion_->makeFusion(sg);
FusionGuard fg(fusion_to_run.get());
scheduler_entry->schedule(fusion_to_run.get());
launch_params = scheduler_entry->params()->lparams;
executors_[group_id].compileFusion(
fusion_to_run.get(), args, launch_params);
} else {
// TODO: this is a false negative assert, since we could be compiling
// something for elevated high water mark on block size.
TORCH_CHECK(false, "compiling an already compiled kernel");
}
auto& executor = executors_[group_id];
auto outputs = executor.inferOutputSizes(args, launch_params);
return outputs;
}
void FusionKernelRuntime::mapFusionInputsToArgs(
std::unordered_map<Val*, const ArgAbstract*>& tensor_map,
KernelArgumentHolder& args) {
int extent_index = 0;
auto original_args_size = args.size();
// Bind args in the tensor_map
for (const auto i : c10::irange(original_args_size)) {
tensor_map.emplace(segmented_fusion_->inputs()[i], args[i]);
// Bind tensorview inputs values in case some segmented group
// needs it down the road.
// TODO: we probably have done this already up to this point
// should consider caching the expression evaluators, both
// more convenient and safer than replication
if (auto tensor_arg_abstract =
dynamic_cast<const TensorArgAbstract*>(args[i])) {
// Note this is very ugly way. We are pushing every single extent to args,
// because we don't have a better place to hold them.
auto rank = tensor_arg_abstract->getRank();
for (const auto dim : c10::irange(rank)) {
args.push(tensor_arg_abstract->getSize(dim));
tensor_map.emplace(
runtime_workspace_.group_extent_binding_order[extent_index++],
args.back());
}
}
}
}
std::vector<at::Tensor> FusionKernelRuntime::runWithInput(
KernelArgumentHolder& args) {
FUSER_PERF_SCOPE("FusionKernelRuntime::runWithInput");
TORCH_INTERNAL_ASSERT(
args.size() == segmented_fusion_->inputs().size(),
"Inputs were not set up correctly, recieved ",
args.size(),
" inputs but expecting ",
segmented_fusion_->inputs().size());
c10::Device device(c10::DeviceType::CUDA, args.getDeviceIndex());
std::unordered_map<Val*, const ArgAbstract*> tensor_map;
mapFusionInputsToArgs(tensor_map, args);
// TODO: we don't need this any more, since TensorArgAbstract already holds a
// reference to tensor
std::unordered_map<Val*, at::Tensor> output_holder;
if (isDebugDumpEnabled(DebugDumpOption::PerfDebugVerbose)) {
std::cout << "=================RUNNING FUSION SEGMENTS================="
<< std::endl;
}
for (auto group_to_run : runtime_workspace_.group_run_order) {
// TODO: index mode should be updated per segmented kernel
// Prepare input vector
KernelArgumentHolder group_runtime_inputs(args.getIndexMode());
group_runtime_inputs.setDeviceIndex(args.getDeviceIndex());
for (auto input : group_to_run->inputs()) {
group_runtime_inputs.push(tensor_map.at(input));
}
// TODO: currently we are still outputing PyTorch tensors, instead of
// something abstract. This is quite unsatisfying. Prepare input vector
// Run graph segment
std::vector<at::Tensor> group_runtime_outputs =
runKernelWithInput(group_runtime_inputs, group_to_run);
const auto& group_outputs = group_to_run->outputs();
// Insert graph segment output to tensor map
TORCH_INTERNAL_ASSERT(
group_outputs.size() == group_runtime_outputs.size(),
"output size does not match");
for (const size_t group_out_i : c10::irange(group_outputs.size())) {
output_holder[group_outputs[group_out_i]] =
group_runtime_outputs[group_out_i];
args.push(group_runtime_outputs[group_out_i]);
tensor_map.emplace(group_outputs[group_out_i], args.back());
}
}
if (isDebugDumpEnabled(DebugDumpOption::PerfDebugVerbose)) {
std::cout << "=============FINISHED RUNNING FUSION SEGMENTS============"
<< std::endl;
}
// Produce final global output
std::vector<at::Tensor> fusion_outputs;
for (auto output : segmented_fusion_->outputs()) {
const auto iter = output_holder.find(output);
if (iter != output_holder.end()) {
fusion_outputs.push_back(iter->second);
} else {
bool empty_type_check = output->getDataType().has_value() &&
output->getDataType().value() == DataType::Float;
// Only support two cases of empty tensor here, since
// this is hot path.
auto out_tv = output->as<TensorView>();
// TODO: should be only one of the two once the "empty"
// definition has been unified throughout the ops.
bool empty_tensor_check = out_tv->isZeroDim() || out_tv->isEmptyTensor();
// This is the check for an empty tensor;
TORCH_INTERNAL_ASSERT(
empty_tensor_check && empty_type_check,
"Is empty tensor? ",
!empty_tensor_check,
" Is empty type check? ",
!empty_type_check,
" Output empty tensor check failed for tensor: ",
out_tv->toString(),
" In function: ",
__FUNCTION__);
// TODO: would need to clean up this part when
// we have a unified and consistent way to generate
// size-0 tensors.
const auto tensor_options =
at::TensorOptions().dtype(at::kFloat).device(device);
fusion_outputs.emplace_back(at::empty({0}, tensor_options));
}
}
return fusion_outputs;
}
const std::vector<FusionKernelRuntime::SchedulerEntryPtr>& FusionKernelRuntime::
schedulers() {
return heuristics_->heuristicsList();
}
void FusionKernelRuntime::updateHeuristicsLaunchParams(
FusionHeuristics* update_heuristics) {
FUSER_PERF_SCOPE("FusionKernelRuntime::updateHeuristicsLaunchParams");
auto scheduler_list_length = heuristics_->heuristicsList().size();
TORCH_INTERNAL_ASSERT(
update_heuristics->heuristicsList().size() == scheduler_list_length);
for (const auto i : c10::irange(scheduler_list_length)) {
auto& schedulerPtr = heuristics_->heuristicsList()[i];
schedulerPtr->updateLaunchConstraint(
update_heuristics->heuristicsList()[i]->params()->lparams);
}
}
c10::optional<FusionKernelRuntime::HeuristicsPtr> FusionKernelRuntime::
getMaybeHeuristicsFor(const KernelArgumentHolder& args) {
FUSER_PERF_SCOPE("FusionKernelRuntime::getMaybeHeuristicsFor");
auto complete_fusion = segmented_fusion_->completeFusion();
SchedulerRuntimeInfo runtime_info(complete_fusion, args);
precomputed_values_->bindFusionInputs(args);
precomputed_values_->evaluate();
runtime_info.expressionEvaluator().bindPrecomputedValues(
precomputed_values_.get());
c10::optional<FusionKernelRuntime::HeuristicsPtr> ret;
ret = std::make_unique<FusionHeuristics>();
size_t total_groups = segmented_fusion_->groups().size();
for (const auto group_index : c10::irange(total_groups)) {
auto group = segmented_fusion_->groups()[group_index];
auto maybe_scheduler_entry = group->getMaybeSchedulerEntry(runtime_info);
if (!maybe_scheduler_entry.has_value()) {
return c10::nullopt;
}
auto scheduler_entry = std::move(maybe_scheduler_entry.value());
if (!scheduler_entry->sameAs(
heuristics_->heuristicsList()[group_index].get())) {
return c10::nullopt;
}
ret.value()->emplaceBack(std::move(scheduler_entry));
}
return ret;
}
void GraphCache::createFusion(const std::shared_ptr<Graph>& graph) {
FUSER_PERF_SCOPE("GraphCache::createFusion");
fusion_executor_cache_ =
std::make_unique<FusionExecutorCache>(parseJitIR(graph));
num_of_outputs_ = graph->outputs().size();
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
GraphCache::GraphCache(const std::shared_ptr<Graph>& graph) {
FUSER_PERF_SCOPE("GraphCache::GraphCache");
TORCH_INTERNAL_ASSERT(
IsNewExecutorEnabled(), "legacy executor is not supported by nvfuser");
GRAPH_DEBUG("GraphCache constructor: ", this);
GRAPH_DUMP("GraphCache created for graph", graph);
createFusion(graph);
}
std::vector<at::Tensor> GraphCache::runGraphWithInputs(
const at::ArrayRef<IValue>& inputs) {
FUSER_PERF_SCOPE("GraphCache::runGraphWithInputs");
GRAPH_DEBUG("running GraphCache: ", this);
auto outputs = fusion_executor_cache_->runFusionWithInputs(inputs);
TORCH_INTERNAL_ASSERT(
outputs.size() == num_of_outputs_,
"FusionExecutorCache returned ",
outputs.size(),
" outputs, doesn't match computational graph, which requires ",
num_of_outputs_);
return outputs;
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|