1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
#pragma once
#include <torch/csrc/jit/codegen/cuda/evaluator_common.h>
#include <torch/csrc/jit/codegen/cuda/executor.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/fusion_segmenter.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/all_schedulers.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/registry.h>
#include <c10/macros/Export.h>
#include <c10/util/ArrayRef.h>
#include <mutex>
#include <type_traits>
#include <unordered_map>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
class SegmentedGroup;
class FusionHeuristics;
class SchedulerRuntimeInfo;
// Utilities for benchmarking and profiling
struct ExecutorLog {
std::shared_ptr<HeuristicParams> params = nullptr;
FusionExecutor* fusion_executor = nullptr;
};
//! FusionKernelRuntime is the unified interface from fusion graphs into
//! caching, compilation into kernels, and kernel launches.
//!
//! Each instance is also a cache entry tracked by FusionKernelRuntimeCache.
//!
//! Two types of instance can be created, one for complete/single-kernel fusion
//! and one for segmented/multi-kernel fusion.
//! Conceptually this is a generalization of FusionExecutor that supports both
//! single-kernel and multi-kernel caching/compiling/launching
class TORCH_CUDA_CU_API FusionKernelRuntime {
public:
explicit FusionKernelRuntime(
Fusion* fusion,
const KernelArgumentHolder& inputs);
//! Type notations within FusionKernelRuntime Context
using HashType = size_t;
using SchedulerEntryPtr = std::unique_ptr<SchedulerEntry>;
//! Evicts internally cached parameters based on input sizes.
//! An interface used by runtime caches.
void evictCache(size_t input_id) {
for (auto& fe : executors_) {
fe.evictCache(input_id);
}
}
//! query if we already have a compiled kernel for execution
bool isCompiled() {
std::unique_lock<std::mutex> lock0(mutex_, std::try_to_lock);
std::unique_lock<std::mutex> lock1(compiling_, std::try_to_lock);
if (!lock0.owns_lock() || !lock1.owns_lock()) {
// compilation in progress
return false;
}
return std::all_of(
executors_.begin(), executors_.end(), [](const auto& executor) {
return executor.compiled();
});
}
//! starts compilation async
void startAsyncCompile(KernelArgumentHolder& inputs);
//! maps entries in `args` to fusion inputs.
//! Note that this function also pushes extra bits like dimension extent into
//! `args` for expression evaluator binding. So consider your `args` polluted
//! after this function and use it with caution.
void mapFusionInputsToArgs(
std::unordered_map<Val*, const ArgAbstract*>& tensor_map,
KernelArgumentHolder& args);
//! Unified interface to run the managed kernels with given input
std::vector<at::Tensor> runWithInput(KernelArgumentHolder& args);
//! Turn On/Off profiling
void profile(bool to_profile = true) {
profiling_ = to_profile;
}
//! Internal knob for profiling shape inference
void disableLaunchParamCache() {
for (auto& executor : executors_) {
executor.disableLaunchParamCache();
}
}
//! Internal knob for profiling shape inference
void disableKernelLaunch() {
for (auto& executor : executors_) {
executor.setExecuteKernelFlag(false);
}
}
//! Returns if this runtime is segmented
bool isSegmented() {
return is_segmented_;
}
//! Returns the fusion segments if applicable
SegmentedFusion* fusionSegments() {
return segmented_fusion_.get();
}
//! Returns the list of heuristics in this runtime
FusionHeuristics* schedulerHeuristics() {
return heuristics_.get();
}
//! Return the most recently used executor, corresponding to the
//! most recent kernel launch.
//! TODO: have a interface for grabbing all recent logs. Need to put a buffer
//! space for recent logs
ExecutorLog getMostRecentExecutorLog() {
TORCH_INTERNAL_ASSERT(
profiling_, "Executor log is only produced in profiling mode");
return most_recent_executor_log_;
}
// Try to compute heuristics based on the SegmentedFusion managed
// in this kernel runtime, and will return a nullopt if either
// any segment cannot be scheduled or the parameters don't match
using HeuristicsPtr = std::unique_ptr<FusionHeuristics>;
c10::optional<HeuristicsPtr> getMaybeHeuristicsFor(
const KernelArgumentHolder& args);
//! Copy the launch params given in the parameter heuristics to prepare
//! for kernel launch for a new input dimension but same heuristics
void updateHeuristicsLaunchParams(FusionHeuristics* update_heuristics);
private:
//! Interface to run a single kernel, either one kernel for single-kernel
//! fusions, or a kernel for a segmentedGrouup in a segmented fusion. Returns
//! the kernel outputs.
std::vector<at::Tensor> runKernelWithInput(
KernelArgumentHolder& args,
SegmentedGroup* sg);
//! Interface to compile a single kernel, either one kernel for single-kernel
//! fusions, or a kernel for a segmentedGrouup in a segmented fusion. Returns
//! the kernel outputs with tensor that doesn't own memory.
KernelArgumentHolder compileKernel(
const KernelArgumentHolder& args,
SegmentedGroup* sg);
//! Interface to run a the whole graph in a segmented fusion and return the
//! complete
//! fusion outputs.
std::vector<at::Tensor> runMultiKernelWithInput(
const at::ArrayRef<IValue>& inputs,
size_t input_id);
//! Access the list of schedulers maintained in this runtime instance
const std::vector<SchedulerEntryPtr>& schedulers();
void prepareRuntimeOrder();
private:
//! Entries indexed by groupID:
//! Executors holding compiled kernels
std::vector<FusionExecutor> executors_;
//! Heuristics object holding scheduler entries for all segments
std::unique_ptr<FusionHeuristics> heuristics_;
// Checks if this runtime instance is for a single-kernel fusion (false) or a
// segmented fusion (true).
bool is_segmented_ = true;
//! Multi-Kernel fusion segment when applies
std::unique_ptr<SegmentedFusion> segmented_fusion_ = nullptr;
//! Pre-allocated runtime workspace to speed up kernel launch preparation.
struct RuntimeWorkSpace {
//! Pre-determined order to run the segmented groups
std::vector<SegmentedGroup*> group_run_order;
//! Pre-determined order to bind tensor input meta data
std::vector<Val*> group_extent_binding_order;
} runtime_workspace_;
//! Utility to speed up value evaluation at runtime
std::unique_ptr<FusionPrecomputedValues> precomputed_values_;
// States for profiling support
bool profiling_ = false;
std::mutex mutex_;
// TODO: remove `compiling_` mutex and rely on `mutex_` only.
// we don't need the second mutex, if only I could figure out how to pass
// unique_lock into lambda
std::mutex compiling_;
// The heuristics and executor for most recent kernel launch
ExecutorLog most_recent_executor_log_;
};
//! Encoding an input set to unique id, which is used to short-cut cache entry
//! selection in our nested cache implementation to cut off overhead.
//!
//! We have implemented naive LRU cache eviction policy here, since each entry
//! in `InputsIdLookup` is attached to a static input shape/stride, and could
//! grow gigantic when we have input shapes that does not stabalize to a finite
//! set.
//!
//! \note the uniqueness of the ide generated for a given input set is only
//! local to the instance of `InputsIdLookup`.
//!
class TORCH_CUDA_CU_API InputsIdLookup : public NonCopyable {
public:
//! constructor where maximum cache size is fixed during init
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init,cppcoreguidelines-avoid-magic-numbers)
explicit InputsIdLookup(size_t max_cache_size = 100)
: max_cache_size_(max_cache_size){};
//! struct to hold return value for lookupId.
struct IdLookupReturn {
size_t id = 0;
size_t evict_id = 0;
bool eviction = false;
};
//! encode each input sets to with an unique id;
//! Returned data structure also indicates whether eviction has happened
//! within the lookup cache. This is needed because lookup shortcut is also
//! cached in nested `GraphCache`, `FusionExecutorCache` and `FusionExecutor`.
//! see [ Note -- 2 level cache implementation ]
IdLookupReturn lookupId(const at::ArrayRef<IValue>& inputs);
//! debugging API that returns the size of lookup table
size_t size() const {
return encoding_lookup_.size();
}
private:
// string to store encoded input meta information. Reuse the buffer instead of
// stringtream gives few us perf gain.
std::string encoding_; // Note: shared state, guarded by mutex_
// mutex_ used to guard reused encoding_
std::mutex mutex_;
//! entry stored in `encoding_lookup_` to implement LRU
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
struct EncodingEntry {
size_t id = 0;
std::list<std::string>::iterator lru_iter;
};
//! maximum cache size for LRU
const size_t max_cache_size_;
//! next available unique id, we monotonically increase `current_id_` avoid
//! conflicts
size_t current_id_ = 1;
//! entry in the cache, This is used to implement LRU cache, where entries in
//! the list is ordered by their recent usage (freshly used entry is placed at
//! the beginning)
std::list<std::string> used_entry_;
//! map from `std::string` to a unique id `size_t` (packaged in
//! `EncodingEntry`
//! ). We store an iterator to `used_entry_` to implement LRU
std::unordered_map<std::string, EncodingEntry> encoding_lookup_;
};
//! [ Note -- 2 level cache implementation ]
//!
//! We have 2 level cache for a separation in function to keep them simpler.
//!
//! 2 level hierarchically nested cache is to handle the code generation and
//! execution of a given PyTorch IR graph that is unique in its computational
//! graph (see note on unique computational graph down).
//!
//! The nested cache structures are:
//! a. GraphCache
//! - GraphCache translates PyTorch IR into Fusion IR and pass it to a
//! `FusionExecutorCache`;
//! - GraphCache assumes all inputs to comply with profiling information,
//! mostly tensor size & contiguity (see note on unique computational
//! graph). The assumption is assured at runtime by
//! `prim::CudaFusionGuard`;
//! b. FusionExecutorCache
//! - has a single `Fusion`, FusionExecutorCache handles kernel schedule
//! and passed scheduled tensor to `FusionExecutor` to generate code;
//! - create `FusionExecutor` instances to handle heuristics from dynamic
//! shape (varying tensor sizes);
//! - create `FusionExecutor` instances to handle different devices;
//! - holds input cache `InputsIdLookup`, which allow cache on heuristics
//! and launch parameters to reduce latency.
//!
//! * note on unique computational graph
//! In theory, computational graph should refer to only the computational nodes
//! in a subgraph and should remain agnostic to input meta info, like
//! shape, strides, type e.t.c.. However, the contract right here is fuzzy.
//! Different executor applies their own protocol of what is a unique
//! computational graph. e.g. Legacy Executor embeds tensor type &
//! dimensionality in the graph, while Profiling Executor keeps symbolic shape
//! as well as stride order in the graph as well.
//!
//! Our definition of a "unique" computational graph is aligned with `Fusion`
//! IR, hence the requirement extends to meta information on input tensors.
//! Which means, for each input tensor, following properties are fixed:
//! a) stride order;
//! b) contiguity information;
//! c) broadcasting semantics (size-1 or not);
//! d) rank;
//! e) scalar type;
//!
//!
//! [ Note -- Segmented Fusion Tentative Design ]
//! Segmentation adds an extra dimension in caching. Initial implementation,
//! assumed graph partition strategy is independent of input pattern, which we
//! can revisit once we have more advanced graph segmentation logic Each
//! FusionExecutorCache corresponds to one graph and one graph segmentation.
//!
//!
class TORCH_CUDA_CU_API FusionExecutorCache {
public:
//! create new fusion executor cache at a given device to handle kernel
//! generation of dynamic sizes
//! fusion executor is taking the ownership of `fusion`
explicit FusionExecutorCache(std::unique_ptr<Fusion> fusion);
//! Execute fusion graph with given inputs, create `FusionExecutor` as needed
//! Note this function also handles permutation & input update outside of
//! codegen.
std::vector<at::Tensor> runFusionWithInputs(
const at::ArrayRef<IValue>& inputs);
Fusion* fusion() {
return fusion_.get();
}
void printFusion() {
fusion_->printMath();
}
FusionKernelRuntime* getMostRecentKernelRuntime() {
return most_recent_runtime_;
}
// TODO: in a follow up we need a global logging structure
// to capture runtime profiling info. We also need to define
// a suitable profiling window / buffer size.
ExecutorLog getMostRecentExecutorInfo() {
TORCH_INTERNAL_ASSERT(most_recent_runtime_ != nullptr);
return most_recent_runtime_->getMostRecentExecutorLog();
}
void profile(bool to_profile) {
profiling_ = to_profile;
for (auto& it : kernel_runtimes_) {
for (auto& kernel_runtime : it.second) {
kernel_runtime->profile(to_profile);
}
}
}
//! Internal knob for profiling shape inference
void disableLaunchParamCache() {
for (auto& it : kernel_runtimes_) {
for (auto& kernel_runtime : it.second) {
kernel_runtime->disableLaunchParamCache();
}
}
}
//! Internal knob for profiling shape inference
void disableKernelLaunch() {
for (auto& it : kernel_runtimes_) {
for (auto& kernel_runtime : it.second) {
kernel_runtime->disableKernelLaunch();
}
}
}
//! converts inputs from IValue to KernelArgumentHolder, also handles cache
//! lookup
KernelArgumentHolder prepareInputs(const at::ArrayRef<IValue>& inputs);
//! query if there's a kernel ready to go for given inputs
bool isCompiled(const at::ArrayRef<IValue>& inputs);
//! compile a kernel executor for given inputs. Note: the compilation is
//! async, there's some restriction on the user side. e.g. don't overlap
//! compilation and execution for the same FusionExecutor entry. This is
//! experimental at this moment, please use with extra caution.
void compileFusionAsync(const at::ArrayRef<IValue>& inputs);
private:
//! evict cached short cut entry in `code_to_fe_lookup_` as well as cached
//! entry in `FusionExecutor`
void evictCache(size_t cache_id);
FusionKernelRuntime* getKernelRuntimeFor(const KernelArgumentHolder& inputs);
private:
//! original un-scheduled `Fusion`;
std::unique_ptr<Fusion> fusion_;
//! inputs to unique_id lookup table;
InputsIdLookup inputs_id_lookup_;
//! Graphs after input dependent transfoms
std::unordered_map<size_t, std::vector<std::unique_ptr<FusionKernelRuntime>>>
kernel_runtimes_;
//! Logging state for most recent compilation
bool profiling_ = false;
//! Logging state for most recent compilation
ExecutorLog most_recent_executor_log_;
//! short-cut for cache hit
std::unordered_map<size_t, FusionKernelRuntime*> id_to_kernel_runtime_;
//! Profiling info:
//! TODO: this can be largely expanded to look at complete
//! caching profiles. Currently it just makes it easier to test
FusionKernelRuntime* most_recent_runtime_ = nullptr;
//! indices of fusion outputs that are aliased to inputs. These are used only
//! to support in-place update and should have been dropped before pushing
//! outputs to stack.
std::set<int> aliased_output_indices_;
};
class GraphCache {
public:
//! TODO: we should probably change shared_ptr to unique_ptr, as we want to
//! claim the ownership of the computational graph.
//! create GraphCache on a given graph;
//! We extract global stride index order and translate PyTorch JIT IR to
//! Fusion IR.
explicit GraphCache(const std::shared_ptr<Graph>& graph);
//! execute graph with given inputs
std::vector<at::Tensor> runGraphWithInputs(
const at::ArrayRef<IValue>& inputs);
private:
//! construct FusionExecutorCache
void createFusion(const std::shared_ptr<Graph>& graph);
private:
//! FusionExecutorCache that performs schedule and kernel execution;
std::unique_ptr<FusionExecutorCache> fusion_executor_cache_;
//! num of outputs
size_t num_of_outputs_ = 0;
};
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|