1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
|
#pragma once
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_base_nodes.h>
#include <torch/csrc/jit/codegen/cuda/parallel_type_bitmap.h>
#include <torch/csrc/jit/codegen/cuda/type.h>
#include <torch/csrc/jit/codegen/cuda/utils.h>
#include <c10/macros/Export.h>
#include <c10/util/Optional.h>
#include <cstdint>
#include <string>
#include <unordered_map>
#include <vector>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
class IrBuilderPasskey;
// Abstract nodes
class Val;
class Expr;
// Values
class Bool;
class Double;
class Int;
class NamedScalar;
class IterDomain;
class TensorDomain;
class TensorView;
// Expressions
class UnaryOp;
class BinaryOp;
class TernaryOp;
class RNGOp;
class ReductionOp;
class WelfordOp;
class BroadcastOp;
namespace kir {
class Kernel;
// Values
class Predicate;
class TensorIndex;
// Expressions
class Allocate;
class BlockSync;
class GridSync;
class CpAsyncWait;
class CpAsyncCommit;
class InitMagicZero;
class UpdateMagicZero;
class ForLoop;
class IfThenElse;
class GridReduction;
class GroupedGridReduction;
class GridBroadcast;
class GridWelford;
class GroupedGridWelford;
class AllocateFusedReduction;
// Expr container
class Scope;
class TORCH_CUDA_CU_API Predicate final : public Val {
public:
explicit Predicate(
IrBuilderPasskey passkey,
PredicateType ptype,
const Expr* expr = nullptr,
Bool* thread_pred = nullptr);
explicit Predicate(IrBuilderPasskey passkey, ForLoop* unrolled_loop);
explicit Predicate(IrBuilderPasskey passkey, Bool* value);
PredicateType predicate_type() const {
return ptype_;
}
const Expr* expr() const {
TORCH_INTERNAL_ASSERT(
ptype_ != PredicateType::Unswitch &&
ptype_ != PredicateType::Vectorize && ptype_ != PredicateType::Manual);
return expr_;
}
Bool* thread_pred() {
TORCH_INTERNAL_ASSERT(
ptype_ == PredicateType::Inline ||
ptype_ == PredicateType::Misaligned || ptype_ == PredicateType::Shift ||
ptype_ == PredicateType::Padding ||
ptype_ == PredicateType::ReductionWrite);
return thread_pred_;
}
ForLoop* unrolled_loop() const {
TORCH_INTERNAL_ASSERT(ptype_ == PredicateType::Unswitch);
return unrolled_loop_;
}
bool hasValue() const {
return value_ != nullptr;
}
Bool* value() const {
TORCH_INTERNAL_ASSERT(
value_ != nullptr,
"The conditional expression for this Predicate is invalid.");
return value_;
}
void setValue(Bool* value) {
TORCH_INTERNAL_ASSERT(value != nullptr, "The Bool expression is invalid.");
value_ = value;
}
bool isConst() const final {
return hasValue() && value_->isConst();
}
private:
PredicateType ptype_ = PredicateType::Manual;
// For PredicateCompute::getInlinePredicate,
// ShiftPredicateInserter::getShiftPredicate and getPaddingPredicate
const Expr* expr_ = nullptr;
// For PredicateCompute::getInlinePredicate
Bool* thread_pred_ = nullptr;
// For ParallelType::Unswitch - UnswitchPredicate::get
ForLoop* unrolled_loop_ = nullptr;
// The Bool conditional value
// The value is nullptr until lower_predicate pass
Bool* value_ = nullptr;
};
class TORCH_CUDA_CU_API TensorIndex final : public Val {
public:
TensorIndex(
IrBuilderPasskey,
const TensorView* view,
std::vector<Val*> indices);
std::vector<Val*>::size_type nDims() const {
return indices_.size();
}
Val* index(int i) const;
const std::vector<Val*>& indices() const {
return indices_;
}
TensorView* view() const {
TORCH_INTERNAL_ASSERT(view_ != nullptr);
return const_cast<TensorView*>(view_); // NOLINT
}
private:
const TensorView* view_ = nullptr;
std::vector<Val*> indices_;
};
//! Allocate is a lower level Node that describes a buffer of memory that
//! is required as an intermediate within a kernel. The extent is the expression
//! of the size of the buffer that is generated from the TensorView that
//! describes the output of an operation.
class TORCH_CUDA_CU_API Allocate final : public Expr {
public:
//! Allocation of a multi-dimensional buffer
//!
//! param shape Size of each dimension
explicit Allocate(
IrBuilderPasskey passkey,
Val* buffer,
MemoryType memory_type,
std::vector<Val*> shape = {},
bool zero_init = false);
//! Allocation of a non-dimensional buffer
//!
//! param size Size of allocation
explicit Allocate(
IrBuilderPasskey passkey,
Val* buffer,
MemoryType memory_type,
Val* size,
bool zero_init = false);
Val* buffer() const {
return buffer_;
}
MemoryType memoryType() const {
return memory_type_;
}
Val* size() const {
return size_;
}
const std::vector<Val*>& shape() const {
return shape_;
}
bool zeroInit() const {
return zero_init_;
}
const Allocate* alias() const {
return alias_;
}
void setAlias(const Allocate* alias) {
TORCH_INTERNAL_ASSERT(alias != this);
TORCH_INTERNAL_ASSERT(alias->memoryType() == memory_type_);
alias_ = alias;
}
private:
Val* buffer_ = nullptr;
MemoryType memory_type_ = MemoryType::Local;
//! Size of each dimension
std::vector<Val*> shape_;
bool zero_init_ = false;
//! Total size
Val* size_ = nullptr;
// This alias tracks the next Allocate node in a linked chain of aliases
// If the alias is nullptr, then the Allocate node uses memory in the kernel
const Allocate* alias_ = nullptr;
};
// Sync represents __syncthreads barrier for block level coordination.
//
// TODO(kir): change name to SyncThreads as we could have other barriers.
//
class TORCH_CUDA_CU_API BlockSync final : public Expr {
public:
explicit BlockSync(IrBuilderPasskey passkey, bool war_sync = false);
bool isWarHazardSync() const {
return war_sync_;
}
private:
// TODO: war_sync_ is only used for testing/validation purposes.
bool war_sync_ = false;
};
// CpAsyncWait represents wait intrinsics for cp.async
class TORCH_CUDA_CU_API CpAsyncWait final : public Expr {
public:
explicit CpAsyncWait(IrBuilderPasskey passkey, unsigned int keep_stages = 0);
//! Returns the remaining number of stages that are not synchronized
//! after this op.
unsigned int keepStages() const {
return keep_stages_;
}
private:
//! Number of stage to leave un-sync'ed by this op.
unsigned int keep_stages_ = 0;
};
// CpAsyncCommit represents commit intrinsics for cp.async
// A commit intrinsic communicates delimiter of transaction groups
// to the async load hardware. Example usage see [Cicular buffer].
class TORCH_CUDA_CU_API CpAsyncCommit final : public Expr {
public:
explicit CpAsyncCommit(IrBuilderPasskey passkey);
};
// Synchronize all blocks in device, implies cooperative group launch is
// required.
class TORCH_CUDA_CU_API GridSync final : public Expr {
public:
explicit GridSync(
IrBuilderPasskey passkey,
ParallelTypeBitmap sync_dims,
Val* sync_buffer);
ParallelTypeBitmap syncDims() const {
return sync_dims_;
}
Val* syncBuffer() const {
return sync_buffer_;
}
private:
ParallelTypeBitmap sync_dims_;
Val* sync_buffer_ = nullptr;
};
// Simply prints "DEFINE_MAGIC_ZERO" in the code in accordance with magic_zero
// in helpers.cu
class TORCH_CUDA_CU_API InitMagicZero final : public Expr {
public:
explicit InitMagicZero(IrBuilderPasskey passkey);
};
// Simply prints "UPDATE_MAGIC_ZERO" in the code in accordance with magic_zero
// in helpers.cu
class TORCH_CUDA_CU_API UpdateMagicZero final : public Expr {
public:
explicit UpdateMagicZero(IrBuilderPasskey passkey);
};
// TODO(kir): promote to IR node
class TORCH_CUDA_CU_API Scope {
public:
explicit Scope(Expr* owner) : owner_(owner) {}
const std::vector<Expr*>& exprs() const {
return exprs_;
}
bool empty() const {
return exprs_.empty();
}
auto size() const {
return exprs_.size();
}
auto& operator[](size_t i) {
return exprs_[i];
}
auto& operator[](size_t i) const {
return exprs_[i];
}
// Insert expr before expression at pos
void insert(size_t pos, Expr* expr);
// Insert expr before ref
void insert_before(Expr* ref, Expr* expr);
// Insert expr after ref
void insert_after(Expr* ref, Expr* expr);
void push_back(Expr* e) {
exprs_.push_back(e);
}
// Erase expr at pos
void erase(size_t pos);
// Erase expr ref
void erase(Expr* ref);
bool contains(Expr* expr) const;
void clear();
Expr* owner() const {
return owner_;
}
private:
// Insert expr before pos
void insert(std::vector<Expr*>::const_iterator pos, Expr* expr);
// Erase expr at pos
void erase(std::vector<Expr*>::const_iterator pos);
private:
std::vector<Expr*> exprs_;
//! Owner exprssion of this scope, e.g., IfThenElse
Expr* owner_ = nullptr;
};
//! ForLoop provides scoping around an int iterator from 0 to range. Exprs
//! placed in its body are considered inside the scope of the for loop. In the
//! future the implementation should look quite different so that we can do
//! proper dependency annalysis like in Fusion.
//!
//! TODO(kir): this is not a real expression
//!
//! ForLoop may represent a part of an iteration domain representend
//! by iter_domain_. In that case, the loop extent field, extent_, may
//! be smaller than the extent of iter_domain_.
class TORCH_CUDA_CU_API ForLoop final : public Expr {
public:
//! By default, start and stop are the same as those of iter_domain.
//! Step is one by default.
//!
//! TODO: cleaner way to set options?
ForLoop(
IrBuilderPasskey passkey,
IterDomain* iter_domain,
Val* index,
Val* start,
Val* stop,
Val* step,
bool vectorize,
Val* vectorize_shift,
bool unroll_required,
DoubleBufferLoopStage double_buffer_loop_stage);
ForLoop(IrBuilderPasskey passkey, IterDomain* iter_domain);
ForLoop(IrBuilderPasskey passkey, const ForLoop* other);
Val* index() const {
return index_;
}
Val* start() const;
Val* stop() const;
Val* step() const;
Val* vectorize_shift() const {
return vectorize_shift_;
}
IterDomain* iter_domain() const {
return iter_domain_;
}
// TODO: Return pointer instead of reference to be more consistent
Scope& body() {
return body_;
}
const Scope& body() const {
return body_;
}
bool vectorize() const {
return vectorize_;
}
//! True if unrolled (i.e., "#pragma unroll" is attached)
bool isUnrolled() const;
//! True if unrolling is required
bool isUnrollRequired() const {
return unroll_required_;
}
//! Set unrolling required
void requireUnroll() {
unroll_required_ = true;
}
//! True if no actual for-loop is materialized
bool isTrivial() const;
//! Returns the stage of a double buffered iterdomain
//! that this for loop materializes.
auto doubleBufferLoopStage() const {
return double_buffer_loop_stage_;
}
private:
//! Returns if a loop could be unrolled.
bool isUnrollable() const;
private:
IterDomain* const iter_domain_ = nullptr;
Val* index_ = nullptr;
Val* start_ = nullptr;
Val* stop_ = nullptr;
Val* step_ = nullptr;
// vectorize is true when the for-loop contains a vectorize set
// the flag is used to omit the for-loop from the kernel
bool vectorize_ = false;
// [pre | vectorize | post] <= inner-most, merged root domain
// shift_ is applied to vectorize and post sections.
Val* vectorize_shift_ = nullptr;
//! True if unroll is required for avoiding stack allocation
bool unroll_required_ = false;
Scope body_;
//! Tracks if this for loop is implementing a stage of
//! a double buffered iterdomain.
DoubleBufferLoopStage double_buffer_loop_stage_ =
DoubleBufferLoopStage::NotApplicable;
};
//! IfThenElse provides scoping for an boolean operator. Exprs placed in its
//! body are considered inside the scope of the if statement. In the future the
//! implementation should look quite different so that we can do proper
//! dependency annalysis like in Fusion.
//!
//! TODO(kir): this is not a real expression
//!
class TORCH_CUDA_CU_API IfThenElse final : public Expr {
public:
explicit IfThenElse(IrBuilderPasskey passkey, Predicate* cond);
Scope& thenBody() {
return then_body_;
}
const Scope& thenBody() const {
return then_body_;
}
Scope& elseBody() {
return else_body_;
}
const Scope& elseBody() const {
return else_body_;
}
bool hasElse() const {
return !else_body_.empty();
}
private:
Scope then_body_;
Scope else_body_;
};
//! Grid reduction operation
//!
//! This node is used only after lowering a fusion to explicitly mark a grid
//! reduction and the buffer allocation needed to do it.
//!
//! This node provides FusionExecutor the information it needs to allocate the
//! reduction and sync buffers.
class TORCH_CUDA_CU_API GridReduction final : public ReductionOp {
public:
GridReduction(
IrBuilderPasskey passkey,
BinaryOpType reduction_op_type,
Val* init,
Val* out,
Val* in,
Allocate* reduction_buffer,
Allocate* sync_buffer,
Val* entrance_index,
Val* entrances,
bool is_allreduce = false);
Allocate* reduction_buffer() const {
return reduction_buffer_;
}
Allocate* sync_buffer() const {
return sync_buffer_;
}
// Which instance of entering this grid reduction is this iteration?
Val* entrance_index() const {
return entrance_index_;
}
// How many times will this grid reduction be entered
Val* entrances() const {
return entrances_;
}
const ParallelTypeBitmap& threadPredicate() const {
return thread_predicate_;
}
void setThreadPredicate(const ParallelTypeBitmap& thread_predicate) {
thread_predicate_ = thread_predicate;
}
private:
Allocate* reduction_buffer_ = nullptr;
Allocate* sync_buffer_ = nullptr;
// gridReduce has template flags for thread predicates. In order to
// use them, the thread predicate is held here separately from
// Expr::predicate_.
ParallelTypeBitmap thread_predicate_;
Val* entrance_index_ = nullptr;
Val* entrances_ = nullptr;
};
class TORCH_CUDA_CU_API GroupedGridReduction final : public GroupedReductionOp {
public:
GroupedGridReduction(
IrBuilderPasskey passkey,
std::vector<BinaryOpType> reduction_op_type,
std::vector<Val*> init,
std::vector<Val*> out,
std::vector<Val*> in,
std::vector<Allocate*> reduction_buffers,
Allocate* sync_buffer,
Val* entrance_index,
Val* entrances,
Val* buffer_stride,
bool is_allreduce = false);
const std::vector<Allocate*>& reduction_buffers() const {
return reduction_buffers_;
}
Allocate* reduction_buffer(size_t i) const {
return reduction_buffers_.at(i);
}
Allocate* sync_buffer() const {
return sync_buffer_;
}
// Which instance of entering this grid reduction is this iteration?
Val* entrance_index() const {
return entrance_index_;
}
// How many times will this grid reduction be entered
Val* entrances() const {
return entrances_;
}
Val* buffer_stride() const {
return buffer_stride_;
}
const ParallelTypeBitmap& threadPredicate() const {
return thread_predicate_;
}
void setThreadPredicate(const ParallelTypeBitmap& thread_predicate) {
thread_predicate_ = thread_predicate;
}
private:
std::vector<Allocate*> reduction_buffers_;
Allocate* sync_buffer_ = nullptr;
// gridReduce has template flags for thread predicates. In order to
// use them, the thread predicate is held here separately from
// Expr::predicate_.
ParallelTypeBitmap thread_predicate_;
Val* entrance_index_ = nullptr;
Val* entrances_ = nullptr;
// Stride of reduction buffers
Val* buffer_stride_ = nullptr;
};
//! Grid broadcast operation
//!
//! This node is used only after lowering a fusion to explicitly mark a grid
//! broadcast and the buffer allocation needed to do it.
//!
//! This node provides FusionExecutor the information it needs to allocate the
//! broadcast and sync buffers.
class TORCH_CUDA_CU_API GridBroadcast final : public Expr {
public:
GridBroadcast(
IrBuilderPasskey passkey,
BroadcastOp* broadcast_op,
Allocate* broadcast_buffer,
Allocate* sync_buffer);
BroadcastOp* broadcast_op() const {
return broadcast_op_;
}
Allocate* broadcast_buffer() const {
return broadcast_buffer_;
}
Allocate* sync_buffer() const {
return sync_buffer_;
}
private:
BroadcastOp* broadcast_op_ = nullptr;
Allocate* broadcast_buffer_ = nullptr;
Allocate* sync_buffer_ = nullptr;
};
//! Grid welford operation
//!
//! This node is used only after lowering a fusion to explicitly mark a grid
//! reduction and the buffer allocation needed to do it.
//!
//! This node provides FusionExecutor the information it needs to allocate the
//! reduction and sync buffers.
//!
//! TODO: Make this a subclass of WelfordOp
class TORCH_CUDA_CU_API GridWelford final : public Expr {
public:
GridWelford(
IrBuilderPasskey passkey,
WelfordOp* welford_op,
Allocate* var_buffer,
Allocate* avg_buffer,
Allocate* n_buffer,
Allocate* sync_buffer,
Val* entrance_index,
Val* entrances);
WelfordOp* welford_op() const {
return welford_op_;
}
Allocate* var_buffer() const {
return var_buffer_;
}
Allocate* avg_buffer() const {
return avg_buffer_;
}
Allocate* N_buffer() const {
return n_buffer_;
}
Allocate* sync_buffer() const {
return sync_buffer_;
}
// Which instance of entering this grid reduction is this iteration?
Val* entrance_index() const {
return entrance_index_;
}
// How many times will this grid reduction be entered
Val* entrances() const {
return entrances_;
}
const ParallelTypeBitmap& threadPredicate() const {
return thread_predicate_;
}
void setThreadPredicate(const ParallelTypeBitmap& thread_predicate) {
thread_predicate_ = thread_predicate;
}
private:
WelfordOp* welford_op_ = nullptr;
Allocate* var_buffer_ = nullptr;
Allocate* avg_buffer_ = nullptr;
Allocate* n_buffer_ = nullptr;
Allocate* sync_buffer_ = nullptr;
Val* entrance_index_ = nullptr;
Val* entrances_ = nullptr;
// gridReduce has template flags for thread predicates. In order to
// use them, the thread predicate is held here separately from
// Expr::predicate_.
ParallelTypeBitmap thread_predicate_;
};
class TORCH_CUDA_CU_API GroupedGridWelford final : public GroupedWelfordOp {
public:
// input, output and init vals are vectors of triplets
GroupedGridWelford(
IrBuilderPasskey passkey,
std::vector<WelfordTriplet> output_vals,
std::vector<WelfordTriplet> input_vals,
std::vector<WelfordTriplet> init_vals,
std::array<std::vector<Allocate*>, 3> reduction_buffers,
Allocate* sync_buffer,
Val* entrance_index,
Val* entrances,
Val* buffer_stride,
bool is_allreduce = false);
const std::array<std::vector<Allocate*>, 3>& reduction_buffers() const {
return reduction_buffers_;
}
Allocate* sync_buffer() const {
return sync_buffer_;
}
// Which instance of entering this grid reduction is this iteration?
Val* entrance_index() const {
return entrance_index_;
}
// How many times will this grid reduction be entered
Val* entrances() const {
return entrances_;
}
Val* buffer_stride() const {
return buffer_stride_;
}
const ParallelTypeBitmap& threadPredicate() const {
return thread_predicate_;
}
void setThreadPredicate(const ParallelTypeBitmap& thread_predicate) {
thread_predicate_ = thread_predicate;
}
private:
std::array<std::vector<Allocate*>, 3> reduction_buffers_;
Allocate* sync_buffer_ = nullptr;
// gridReduce has template flags for thread predicates. In order to
// use them, the thread predicate is held here separately from
// Expr::predicate_.
ParallelTypeBitmap thread_predicate_;
Val* entrance_index_ = nullptr;
Val* entrances_ = nullptr;
// Stride of reduction buffers
Val* buffer_stride_ = nullptr;
};
// Allocate an instance of the fused reduction class.
class TORCH_CUDA_CU_API AllocateFusedReduction final : public Expr {
public:
explicit AllocateFusedReduction(
IrBuilderPasskey passkey,
GridReduction* grid_reduction);
explicit AllocateFusedReduction(
IrBuilderPasskey passkey,
GridWelford* grid_welford);
explicit AllocateFusedReduction(
IrBuilderPasskey passkey,
GroupedGridReduction* grouped_grid_reduction);
explicit AllocateFusedReduction(
IrBuilderPasskey passkey,
GroupedGridWelford* grouped_grid_welford);
Expr* gridExpr() const {
return grid_expr_;
}
TensorIndex* out() const;
const ParallelTypeBitmap& threadPredicate() const;
private:
//! GridReduction, GridWelford, GroupedGridReduction or GroupedGridWelford
Expr* grid_expr_ = nullptr;
};
//! An IR node consisting of a pair of integers
//! to facilitate definition of 2D swizzle operators.
//! All swizzle 2D ops takes two inputs and outputs
//! an integer pair.
//! TODO:
//! currently this IR node is only allowed as input
//! to the new PairSelect node. In follow ups would
//! possibly build out to support out of line
//! definition of the pair alone.
class TORCH_CUDA_CU_API IntPair : public Val {
public:
IntPair(IrBuilderPasskey passkey);
};
//! An IR node marking selection of first or second
//! value from a pair of integers, e.g.:
//! Pair(X,Y) -> X or Y.
//! This IR node is used to facilitate generation
//! of inline 2D swizzle math.
class TORCH_CUDA_CU_API PairSelect : public Expr {
public:
//! Indicates which value from the input
//! integer pair to output.
enum class Selection { X = 0, Y };
PairSelect(IrBuilderPasskey, Val* out, IntPair* in, Selection selection);
Val* out() const {
return out_;
}
IntPair* in() const {
return in_;
}
auto selection() const {
return selection_;
}
private:
Val* const out_ = nullptr;
IntPair* const in_ = nullptr;
Selection selection_;
};
//! An integer IR node that will be generated
//! using custom integer swizzle functions
//! from the cuda runtime functions.
//! Most supported swizzle functions require
//! the sizes of each dimension defined so
//! all operators will take the extents as inputs.
class TORCH_CUDA_CU_API Swizzle2DInt : public Expr {
public:
Swizzle2DInt(
IrBuilderPasskey,
IntPair* out,
Val* in_x,
Val* in_y,
Val* extent_x,
Val* extent_y,
Swizzle2DType swizzle_type);
IntPair* out() const {
return out_;
}
Val* inX() const {
return in_x_;
}
Val* inY() const {
return in_y_;
}
Val* extentX() const {
return extent_x_;
}
Val* extentY() const {
return extent_y_;
}
const auto& swizzleType() const {
return swizzle_type_;
}
private:
IntPair* const out_ = nullptr;
Val* const in_x_ = nullptr;
Val* const in_y_ = nullptr;
Val* const extent_x_ = nullptr;
Val* const extent_y_ = nullptr;
Swizzle2DType swizzle_type_;
};
} // namespace kir
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|