1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
|
#include <torch/csrc/jit/codegen/cuda/lower_alias_memory.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/kernel_expr_evaluator.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <sstream>
#include <unordered_map>
#include <unordered_set>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace {
//! Checks that the current loop nest is not realizing a serial
//! broadcast so that each index of producer buffer will only
//! be visited once, which is the only case where aggressive
//! inner sharing is valid.
//!
bool isSerialBroadcastResolution(TensorView* producer, TensorView* consumer) {
//! Note: see issue #1785:
//! serial broadcast resolution doesn't only happen to
//! immediate producers of broadcast ops. We can also have
//! example:
//! T1[I,B] = broadcast(T0[I]])
//! T3[I,I] = T1[I,B] + T2[I,I]
//! T4[I,I] = T3[I,I]
//! and generates the following loop:
//! alloc T0[4]
//! For i in 0..3
//! T0[...] =
//!
//! For j in 0...X:
//! alloc T3[4]
//! for k in 0..3:
//! alloc T1[1]
//! T1[0] = T0[k] // <- This is actually a broadcast resolution
//! T3[k] = T1[0] + T2[...]
//! T4[...] = T3[...]
//!
//! In this case we are actually visiting each pixel of T0 in each iteration
//! of the j loop while T1 was the broadcasted tensor causing this reuse.
//!
//! The current version of checking covers this scenario by checking the root
//! ids of the consumer concrete loop id's. Any time a local tensor like T0
//! appears in a re-use scenario like above, we should see a serial loop id
//! that was derived from some root id that doesn't concretely map to T0's
//! domain.
// Serial concrete loop id's that cover consumer's iter domain.
std::vector<Val*> consumer_serial_loop_concrete_ids;
for (auto consumer_leaf_id : consumer->domain()->domain()) {
auto concrete_loop_id = GpuLower::current()->caMap()->getConcreteMappedID(
consumer_leaf_id, IdMappingMode::LOOP);
// Check for any serial loop id with non-trivial extent
if (!concrete_loop_id->isThread() &&
!concrete_loop_id->extent()->isOneInt()) {
consumer_serial_loop_concrete_ids.push_back(concrete_loop_id);
}
}
// Collect the root id's that the serial loop iterdomain
// are transformed from.
auto serial_loop_roots = InputsOf::outputs(
FusionGuard::getCurFusion(), consumer_serial_loop_concrete_ids);
// Collect exact concrete id's in producer's root domain
std::unordered_set<IterDomain*> producer_exact_concrete_root_ids;
auto producer_root =
TensorDomain::noReductions(producer->getMaybeRFactorDomain());
std::transform(
producer_root.begin(),
producer_root.end(),
std::inserter(
producer_exact_concrete_root_ids,
producer_exact_concrete_root_ids.begin()),
ir_utils::caMapExactConcreteId);
// Check if serial loop roots indexes any exact root id's that
// is not within the set of producer's root exact id's. These
// id's will imply that the same producer pixel is accessed
// in multiple iterations of the materialized serial loop.
for (auto serial_loop_root :
ir_utils::filterByType<IterDomain>(serial_loop_roots)) {
if (!producer_exact_concrete_root_ids.count(
ir_utils::caMapExactConcreteId(serial_loop_root))) {
return true;
}
}
return false;
}
//! Get string representation of Allocate size for symbolic comparison
//!
//! TODO: Some expr simplifications could also be helpful
class SymbolicSizePrinter : private OptOutConstDispatch {
public:
static std::string printSize(const kir::Allocate* allocate) {
SymbolicSizePrinter printer;
printer.handle(allocate->size());
return printer.os_.str();
}
private:
using OptOutConstDispatch::handle;
void handle(const Int* node) final {
if (auto def = node->definition()) {
OptOutConstDispatch::handle(def);
} else if (node->isConst()) {
os_ << *node->value();
} else {
os_ << "ki" << node->name();
}
}
void handle(const NamedScalar* named_scalar) final {
os_ << "@" << named_scalar->name();
}
void handle(const UnaryOp* unary_op) final {
os_ << unary_op->getUnaryOpType() << "(";
OptOutConstDispatch::handle(unary_op);
os_ << ")";
}
void handle(const BinaryOp* binary_op) final {
os_ << binary_op->getBinaryOpType() << "(";
OptOutConstDispatch::handle(binary_op->lhs());
os_ << ",";
OptOutConstDispatch::handle(binary_op->rhs());
os_ << ")";
}
private:
std::stringstream os_;
};
class BufferUseDefInfo;
//! A debug printer internal to this pass to support
//! future expansion and inline annotation of pass info.
class BufferReuseDebugPrinter {
enum class DebugLineType { EXPR, START_BLOCK, END_BLOCK };
struct ExprInfo {
int lineno = 0;
DebugLineType line_type = DebugLineType::EXPR;
};
using DebugEntry = std::pair<ExprInfo, Expr*>;
using DebugEntryPtr = std::unique_ptr<DebugEntry>;
public:
BufferReuseDebugPrinter() : ir_printer_(os_){};
std::string dumpDebugInfo() {
os_.clear();
for (auto& debug_entry : debug_info_) {
switch (debug_entry->first.line_type) {
case DebugLineType::START_BLOCK:
startBlock();
break;
case DebugLineType::END_BLOCK:
endBlock();
break;
case DebugLineType::EXPR:
os_ << debug_entry->first.lineno;
handle(debug_entry->second);
break;
default:
TORCH_INTERNAL_ASSERT(false, "unreachable");
}
}
os_ << "\n\n";
return os_.str();
}
private:
friend class BufferUseDefInfo;
void pushBack(int lineno, Expr* expr) {
makeExprEntry(lineno, expr);
}
void pushScope() {
makeScopeEntry(DebugLineType::START_BLOCK);
}
void popScope() {
makeScopeEntry(DebugLineType::END_BLOCK);
}
void makeExprEntry(int lineno, Expr* expr) {
auto debug_entry_ptr = std::make_unique<DebugEntry>();
debug_entry_ptr->first.lineno = lineno;
debug_entry_ptr->second = expr;
debug_info_.emplace_back(std::move(debug_entry_ptr));
}
void makeScopeEntry(DebugLineType line_type) {
TORCH_INTERNAL_ASSERT(
line_type == DebugLineType::END_BLOCK ||
line_type == DebugLineType::START_BLOCK);
auto debug_entry_ptr = std::make_unique<DebugEntry>();
debug_entry_ptr->first.line_type = line_type;
debug_entry_ptr->second = nullptr;
debug_info_.emplace_back(std::move(debug_entry_ptr));
}
void handle(const Expr* node) {
if (auto for_loop = dynamic_cast<const kir::ForLoop*>(node)) {
handle(for_loop);
} else if (auto ite = dynamic_cast<const kir::IfThenElse*>(node)) {
handle(ite);
} else {
indent();
ir_printer_.handle(node);
}
if (auto alloc = dynamic_cast<const kir::Allocate*>(node)) {
printAllocInfo(alloc);
}
}
void handle(const kir::ForLoop* node) {
indent();
os_ << "FOR ";
ir_printer_.handle(node->index());
os_ << " in ";
ir_printer_.handle(node->iter_domain());
os_ << ":\n";
}
void handle(const kir::IfThenElse* node) {
// This pass doesn't yet need to handle
// ite but could fill in the blank here
// if this printer can be used for
// other passes or we have more
// complex ite pattern.
TORCH_INTERNAL_ASSERT(false, "unsupported");
}
void printAllocInfo(const kir::Allocate* alloc);
std::stringstream& indent() {
for (const auto i : c10::irange(indent_level_)) {
(void)i; // Suppress unused variable warning
os_ << " ";
}
return os_;
}
void startBlock() {
indent_level_++;
}
void endBlock() {
indent_level_--;
}
private:
std::stringstream os_;
IrPrinter ir_printer_;
int indent_level_ = 0;
std::vector<DebugEntryPtr> debug_info_;
BufferUseDefInfo* buffer_info_ = nullptr;
};
//! Utility class for modeling the liveness interval.
//! The first write and last read
//! is based on the position on the linear order within
//! the Kernel IR.
//! The interval is semi-open,
//! i.e. [First_Write, Last_Read)
//! So the buffer is NOT available at exactly First_Write
//! position while it IS available at Last_Read.
class BufferLiveInterval {
public:
// Simple detection of intersection of two intervals
bool intersect(BufferLiveInterval* other) {
if (first_write_pos_ <= other->first_write_pos_) {
return other->first_write_pos_ < last_read_pos_;
} else {
return first_write_pos_ < other->last_read_pos_;
}
}
void markWrite(int pos) {
if (first_write_pos_ == -1) {
first_write_pos_ = pos;
}
}
void markRead(int pos) {
last_read_pos_ = pos;
TORCH_INTERNAL_ASSERT(
first_write_pos_ > 0,
"lower_alias_memory: a read seen before any write")
TORCH_INTERNAL_ASSERT(
pos > first_write_pos_,
"lower_alias_memory: marking a read before write");
all_read_pos_.push_back(pos);
}
const auto& allReads() {
return all_read_pos_;
}
auto firstWrite() const {
return first_write_pos_;
}
auto lastRead() const {
return last_read_pos_;
}
std::string toString() {
std::stringstream ss;
ss << "[ " << first_write_pos_ << " , " << last_read_pos_ << " )";
return ss.str();
}
private:
int first_write_pos_ = -1;
int last_read_pos_ = -1;
std::vector<int> all_read_pos_;
};
using BufferLiveIntervalPtrList = std::vector<BufferLiveInterval*>;
//! Thin struct to keep track of loops. The actual loop body is
//! considered live in [start_pos, end_pos)
struct ScopeInfo {
int start_pos = -1;
int end_pos = -1;
// nullptr means it's global scope
kir::ForLoop* loop = nullptr;
};
using ScopeInfoOwningPtr = std::unique_ptr<ScopeInfo>;
using ScopeInfoOwningPtrList = std::vector<ScopeInfoOwningPtr>;
//! Utility class to record the read and write of each
//! allocated buffer.
//!
//! Note:
//! this simplified interval analysis only works on pointwise ops and
//! reductions and broadcast. With no non-trivial IfThenElse and no
//! non-trivial re-computation.
//!
//! Will probably at some point need dataflow and index analysis to precisely
//! handle loop carried dependency.
struct AllocationUseDefInfo {
kir::Allocate* alloc_expr = nullptr;
kir::Allocate* alias_to = nullptr;
bool is_inner_alias = false;
bool should_try_alias = true;
MemoryType mem_type = MemoryType::Local;
DataType data_type = DataType::Float;
std::string size_expr;
ScopeInfo* loop_info = nullptr;
bool can_use_inner_alias = true;
int alloc_pos = -1;
std::unique_ptr<std::vector<AllocationUseDefInfo*>> inner_alias_list_ =
nullptr;
std::unique_ptr<BufferLiveInterval> inner_live_interval = nullptr;
std::unique_ptr<BufferLiveIntervalPtrList> inner_subscribed_intevals =
nullptr;
std::unique_ptr<BufferLiveInterval> outer_live_interval = nullptr;
std::unique_ptr<BufferLiveIntervalPtrList> outer_subscribed_intevals =
nullptr;
};
using AllocationInfoOwningPtr = std::unique_ptr<AllocationUseDefInfo>;
using AllocationInfoOwningList = std::vector<AllocationInfoOwningPtr>;
using AllocationInfoPtr = AllocationUseDefInfo*;
using AllocationInfoList = std::vector<AllocationInfoPtr>;
//! Analysis pass to collect the liveness info of local and shared buffers:
//! The liveness info is illustrated as follows:
//!
//! For Idx0 ...
//! Alloc(T1, register)
//! Alloc(T2, register)
//! Alloc(T3, register)
//!
//! For Idx1 ... <---------- Outer Live Interval of T1 begin
//! For Idx2 ...
//! T1 = ... <-- Inner Live Interval of T1 begin
//! T2 = ...
//! T3 = T1 + ... <-- Inner Live Interval of T1 end
//! T5 = T3 + ...
//! EndFor Idx2
//! EndFor Idx1 <------- Outer Live Interval of T1 end
//!
//! Alloc(T4, register)
//! For Idx3 ...
//! T4 = ...
//! EndFor Idx3
//! EndFor Idx0
//!
//! Each buffer is associated with an `inner_live_interval` and an
//! `outer_live_interval`,
//! Inner interval marks the exprs that are the first write and last read of
//! the buffer.
//! Outer interval marks the begining of the loop of first write and end of
//! the loop of last read, both at the same loop level as the buffer
//! allocation.
class BufferUseDefInfo {
public:
// Alias local memory if it exceeds this threshold
static constexpr long kRegisterSizeThreshold = 1;
BufferUseDefInfo(
const std::vector<Expr*>& exprs,
BufferReuseDebugPrinter* debug_printer = nullptr)
: debug_printer_(debug_printer) {
if (debug_printer) {
debug_printer->buffer_info_ = this;
}
collectScopeInfo(exprs);
collectScopeUseDefInfo(exprs);
}
//! Returns live interval info of buffer if previously
//! computed.
c10::optional<AllocationInfoPtr> getMaybeReuseInfoFor(
kir::Allocate* allocate) const {
auto alloc_it = map_allocate_to_info_.find(allocate);
if (alloc_it == map_allocate_to_info_.end()) {
return c10::nullopt;
}
auto alloc = alloc_it->second;
return alloc;
}
//! Realize alias of two buffers through inner alias analysis and
//! keep track of the re-use.
void useInnerAlias(AllocationInfoPtr from, AllocationInfoPtr to) {
to->inner_alias_list_->push_back(from);
to->inner_subscribed_intevals->push_back(from->inner_live_interval.get());
setAlias(from, to);
from->is_inner_alias = true;
}
//! Realize alias of two buffers through outer alias analysis and
//! keep track of the re-use.
void useOuterAlias(AllocationInfoPtr from, AllocationInfoPtr to) {
to->outer_subscribed_intevals->push_back(from->outer_live_interval.get());
setAlias(from, to);
}
//! To run before performing in-place sharing analysis.
//! Initializes the inner live intervals with each
//! allocation's inner live interval.
void prepareInnerSharingAnalysis() {
for (auto it : map_allocate_to_info_) {
auto alloc_info = it.second;
// At beginning only use interval for each
// allocate is their corresponding live interval
alloc_info->inner_subscribed_intevals->push_back(
alloc_info->inner_live_interval.get());
}
}
//! To run before performing outer interval based sharing analysis.
//! Initializes the outer live intervals with the outer live interval
//! of each allocation and copy inner sharing information.
void prepareOuterSharingAnalysis() {
for (auto it : map_allocate_to_info_) {
auto alloc_info = it.second;
if (!alias_map_.count(alloc_info)) {
alloc_info->outer_subscribed_intevals->push_back(
alloc_info->outer_live_interval.get());
// Update only if this buffer isn't an alias
for (auto inner_alias : *(alloc_info->inner_alias_list_)) {
alloc_info->outer_subscribed_intevals->push_back(
inner_alias->outer_live_interval.get());
}
}
}
}
private:
void handle(Expr* expr) {
current_pos_++;
if (debug_printer_) {
debug_printer_->pushBack(current_pos_, expr);
}
if (auto alloc = dynamic_cast<kir::Allocate*>(expr)) {
handle(alloc);
} else if (auto for_loop = dynamic_cast<kir::ForLoop*>(expr)) {
handle(for_loop);
} else if (auto ite = dynamic_cast<kir::IfThenElse*>(expr)) {
handle(ite);
} else {
collectLivenessInfo(expr);
}
}
void handleScope(const std::vector<Expr*>& exprs) {
if (debug_printer_) {
debug_printer_->pushScope();
}
for (auto expr : exprs) {
handle(expr);
}
if (debug_printer_) {
debug_printer_->popScope();
}
}
void handle(kir::ForLoop* for_loop) {
auto loop_info = map_loop_pos_to_loop_info_.at(current_pos_);
current_stack_.push_back(loop_info);
handleScope(for_loop->body().exprs());
current_stack_.pop_back();
}
void handle(kir::IfThenElse* ite) {
TORCH_INTERNAL_ASSERT(
false, "lower_alias_memory: no support for IfThenElse at this phase.");
}
// Generate allocation info for allocation after some pre-filtering
// conditions.
void handle(kir::Allocate* alloc) {
if (alloc->alias()) {
// We shouldn't really see a case like this in general, but
// some Fusion outputs could have been aliased to inputs.
// It should be safe to ignore these in the use-def analysis.
return;
}
auto tv = dynamic_cast<TensorView*>(alloc->buffer());
if (!tv) {
return;
}
// Collect the allocate info data
// Collect memory type, skip global buffers
auto mem_type = tv->getMemoryType();
if (mem_type != MemoryType::Local && mem_type != MemoryType::Shared) {
return;
}
// Skip smaller register sizes
bool should_try_alias = true;
if (mem_type == MemoryType::Local) {
const auto register_size = expr_evaluator_.evaluate(alloc->size());
if (!register_size.has_value()) {
TORCH_WARN_ONCE(
"Lower_alias_memory : dynamic sized register allocation");
return;
}
if (register_size->as<int64_t>() <= kRegisterSizeThreshold) {
should_try_alias = false;
}
}
auto data_type = tv->dtype();
auto size_print = SymbolicSizePrinter::printSize(alloc);
// Make sure we don't have conflicting information on record
TORCH_INTERNAL_ASSERT(!map_allocate_to_info_.count(alloc));
TORCH_INTERNAL_ASSERT(!map_tv_to_allocations_.count(tv->name()));
// make AllocationUseDefInfo:
auto alloc_info = makeUseDefInfo();
alloc_info->alloc_expr = alloc;
alloc_info->mem_type = mem_type;
alloc_info->data_type = data_type;
alloc_info->size_expr = size_print;
alloc_info->loop_info = current_stack_.back();
alloc_info->should_try_alias = should_try_alias;
// record short cuts
map_allocate_to_info_[alloc] = alloc_info;
map_tv_to_allocations_[tv->name()] = alloc_info;
}
void collectScopeUseDefInfo(const std::vector<Expr*>& exprs) {
// Reset position pointer
resetExprCounter();
TORCH_INTERNAL_ASSERT(global_scope_info_ != nullptr);
current_stack_.push_back(global_scope_info_);
handleScope(exprs);
}
void collectScopeInfo(const std::vector<Expr*>& exprs) {
// Reset position pointer
resetExprCounter();
collectScopeInfoWithinLoop(exprs, nullptr);
}
void collectScopeInfoWithinLoop(
const std::vector<Expr*>& exprs,
kir::ForLoop* current_loop) {
auto loop_info = makeScopeInfo(current_loop);
for (auto expr : exprs) {
current_pos_++;
if (auto for_loop = dynamic_cast<kir::ForLoop*>(expr)) {
collectScopeInfoWithinLoop(for_loop->body().exprs(), for_loop);
}
}
loop_info->end_pos = current_pos_ + 1;
}
void resetExprCounter() {
current_pos_ = -1;
}
// Iterate over the inputs and outputs of exprs and update
// the liveness info of local buffers if applicaable.
void collectLivenessInfo(const Expr* expr) {
if (!ir_utils::isTvOp(expr)) {
return;
}
auto out_tv = expr->outputs()[0]->as<TensorView>();
// Collect all tv's that resolves broadcast in this
// expr. The current analysis isn't enough to capture
// their liveness range.
for (auto input_tv : ir_utils::filterByType<TensorView>(expr->inputs())) {
auto maybe_alloc_info = getMaybeAllocInfoFromTV(input_tv);
if (maybe_alloc_info.has_value()) {
if (!isSerialBroadcastResolution(input_tv, out_tv)) {
maybe_alloc_info.value()->inner_live_interval->markRead(current_pos_);
} else {
// Disable inner alias info for this buffer, since line number based
// analysis is no longer precise enough for inplace sharing
// if a serial broadcast is realized.
maybe_alloc_info.value()->can_use_inner_alias = false;
}
auto outer_loop_info =
ascendLoopNestToSameLevelAs(maybe_alloc_info.value());
if (outer_loop_info) {
maybe_alloc_info.value()->outer_live_interval->markRead(
outer_loop_info->end_pos);
} else {
// Allocate is inlined in the innermost loop,
// so outer live interval is the same as inner.
maybe_alloc_info.value()->outer_live_interval->markRead(current_pos_);
}
}
}
for (auto output_tv : ir_utils::filterByType<TensorView>(expr->outputs())) {
auto maybe_alloc_info = getMaybeAllocInfoFromTV(output_tv);
if (maybe_alloc_info.has_value()) {
maybe_alloc_info.value()->inner_live_interval->markWrite(current_pos_);
auto outer_loop_info =
ascendLoopNestToSameLevelAs(maybe_alloc_info.value());
if (outer_loop_info) {
maybe_alloc_info.value()->outer_live_interval->markWrite(
outer_loop_info->start_pos);
} else {
maybe_alloc_info.value()->outer_live_interval->markWrite(
current_pos_);
}
}
}
}
//! Find the loop level of expr that apears in the same scope as
//! the reference allocate. Eg.
//!
//! For ...
//! For ...
//! Allocate <---- reference arg
//! For ..
//! For ...
//! For ... <---- this function returns `ScopeInfo` for this loop
//! For ...
//! expr <---- current expr (implied in current_stack_ and
//! current_pos_ )
//! Assumes that expr either writes to or reads from the reference allocate.
ScopeInfo* ascendLoopNestToSameLevelAs(AllocationUseDefInfo* reference) {
auto allocate_loop_info = reference->loop_info;
if (allocate_loop_info->loop == nullptr) {
if (current_stack_.size() > 1) {
return current_stack_[1];
}
return nullptr;
}
for (const auto idx : c10::irange(current_stack_.size() - 1)) {
if (current_stack_[idx] == allocate_loop_info) {
return current_stack_[idx + 1];
}
}
TORCH_INTERNAL_ASSERT(
current_stack_.back() == allocate_loop_info,
"lower_alias_memory : expr outer loop inconsistent with allocate");
// Returning a nullptr means the allocate is in the current stack frame.
return nullptr;
}
c10::optional<AllocationInfoPtr> getMaybeAllocInfoFromTV(TensorView* tv) {
auto alloc_it = map_tv_to_allocations_.find(tv->name());
if (alloc_it == map_tv_to_allocations_.end()) {
return c10::nullopt;
}
return alloc_it->second;
}
//! Factory function for internal loop information data
ScopeInfo* makeScopeInfo(kir::ForLoop* loop) {
auto loop_info_ptr = std::make_unique<ScopeInfo>();
auto loop_info = loop_info_ptr.get();
loop_info->start_pos = current_pos_;
loop_info->end_pos = -1;
loop_info->loop = loop;
all_loop_infos_.emplace_back(std::move(loop_info_ptr));
if (loop == nullptr) {
TORCH_INTERNAL_ASSERT(
!global_scope_info_, "Should only create global scope info once!");
global_scope_info_ = loop_info;
} else {
map_loop_pos_to_loop_info_[current_pos_] = loop_info;
}
return loop_info;
}
//! Factory function for internal use-def information data
AllocationUseDefInfo* makeUseDefInfo() {
auto alloc_info_ptr = std::make_unique<AllocationUseDefInfo>();
auto alloc_info = alloc_info_ptr.get();
alloc_info->alloc_pos = current_pos_;
alloc_info->inner_alias_list_ =
std::make_unique<std::vector<AllocationUseDefInfo*>>();
alloc_info->inner_live_interval = std::make_unique<BufferLiveInterval>();
alloc_info->inner_subscribed_intevals =
std::make_unique<BufferLiveIntervalPtrList>();
alloc_info->outer_live_interval = std::make_unique<BufferLiveInterval>();
alloc_info->outer_subscribed_intevals =
std::make_unique<BufferLiveIntervalPtrList>();
all_allocations_.emplace_back(std::move(alloc_info_ptr));
return alloc_info;
}
// Realize buffer alias and keep track of the alias info.
void setAlias(AllocationInfoPtr from, AllocationInfoPtr to) {
alias_map_[from] = to;
from->alloc_expr->setAlias(to->alloc_expr);
from->alias_to = to->alloc_expr;
}
private:
friend BufferReuseDebugPrinter;
friend class SerialBroadcastIntervalExpansion;
//! Allocation sites that will participate in this analysis
std::unordered_map<const kir::Allocate*, AllocationInfoPtr>
map_allocate_to_info_;
//! Map TensorView name to Allocate node.
//! Note: this assumes that each tensor view is only allocated once.
std::unordered_map<StmtNameType, AllocationInfoPtr> map_tv_to_allocations_;
//! Keeps track of all the allocations that have been set to alias
std::unordered_map<AllocationInfoPtr, AllocationInfoPtr> alias_map_;
//! Keep track of stack:
std::vector<ScopeInfo*> current_stack_;
//! Contains start and end position of the global scope
ScopeInfo* global_scope_info_ = nullptr;
//! map loop start position to loop info
std::unordered_map<int, ScopeInfo*> map_loop_pos_to_loop_info_;
//! Owning list of collected allocation info
AllocationInfoOwningList all_allocations_;
//! Owning list of collected allocation info
ScopeInfoOwningPtrList all_loop_infos_;
//! Expression Evaluator to infer size of register allocation
kir::ExpressionEvaluator expr_evaluator_;
//! Position counter when iterating through the exprs list
int current_pos_ = -1;
//! Debug info:
BufferReuseDebugPrinter* debug_printer_ = nullptr;
};
void BufferReuseDebugPrinter::printAllocInfo(const kir::Allocate* alloc) {
TORCH_INTERNAL_ASSERT(buffer_info_ != nullptr);
std::string message_header(" \033[1;32m^^^^^ ---Buffer Reuse Info--- ");
std::string message_end(" \033[0m\n");
if (!buffer_info_->map_allocate_to_info_.count(alloc)) {
// This buffer is not considered for any sharing, either
// because of un-supported op or size below threshold.
return;
}
auto alloc_info = buffer_info_->map_allocate_to_info_.at(alloc);
indent() << message_header;
if (alloc_info->alias_to) {
if (alloc_info->is_inner_alias) {
os_ << "(inner) ";
} else {
os_ << "(outer) ";
}
os_ << " alias to alloc at pos "
<< buffer_info_->getMaybeReuseInfoFor(alloc_info->alias_to)
.value()
->alloc_pos
<< " ";
} else {
os_ << " not aliased ";
}
os_ << " , ";
if (alloc_info->can_use_inner_alias) {
os_ << "inner live interval: ";
os_ << alloc_info->inner_live_interval->toString() << " , ";
}
os_ << "size expr : " << alloc_info->size_expr << " , "
<< "outer live interval: " << alloc_info->outer_live_interval->toString();
indent() << message_end;
}
//! Reuse Allocation nodes via pointer aliasing
class AllocateReuseModifier {
public:
static void modify(const std::vector<Expr*>& exprs) {
AllocateReuseModifier modifier(exprs);
}
static void debugPrint(const std::vector<Expr*>& exprs) {
BufferReuseDebugPrinter debug_printer;
AllocateReuseModifier modifier(exprs, &debug_printer);
std::cout << debug_printer.dumpDebugInfo();
}
private:
AllocateReuseModifier(
const std::vector<Expr*>& exprs,
BufferReuseDebugPrinter* debug_printer_ = nullptr)
: buffer_info_(exprs, debug_printer_) {
// Perform in-place sharing first and then outer liveness
// based sharing. Since outer liveness info can still
// be used with some buffers already aliasing through
// in-place re-use but wouldn't be the case if we did
// outer liveness based sharing first.
buffer_info_.prepareInnerSharingAnalysis();
handleScope(exprs);
inner_aliasing_pass_ = false;
buffer_info_.prepareOuterSharingAnalysis();
handleScope(exprs);
}
// Second visit of an allocate op
void handle(kir::Allocate* allocate) {
// Check that if this allocation site is one that
// we want to re-use or replace with an alias
auto maybe_alloc_info = buffer_info_.getMaybeReuseInfoFor(allocate);
if (maybe_alloc_info.has_value() &&
maybe_alloc_info.value()->alias_to == nullptr) {
// Try to re-use existing allocates
if (!tryReuseOtherAllocate(maybe_alloc_info.value())) {
// If didn't re-use, should register this
// allocate so that future allocates
// can re-use this one.
current_visible_buffer_stack_.back()->push_back(
maybe_alloc_info.value());
}
}
}
bool tryReuseOtherAllocate(AllocationInfoPtr alloc_info) {
if (!alloc_info->should_try_alias) {
return false;
}
if (!alloc_info->inner_alias_list_->empty()) {
// Avoid 2-hop aliasing for simplicity. Can support if really need in
// extreme cases.
return false;
}
// Move backwards on list of re-usable allocates on the stack, prefer
// reusing nearest allocation
for (auto reuse_stack_it = current_visible_buffer_stack_.rbegin();
reuse_stack_it != current_visible_buffer_stack_.rend();
reuse_stack_it++) {
for (auto alloc_to_reuse_it = (*reuse_stack_it)->rbegin();
alloc_to_reuse_it != (*reuse_stack_it)->rend();
alloc_to_reuse_it++) {
auto alloc_to_reuse = *alloc_to_reuse_it;
// Check if this re-use candidate is an alias
if (alloc_to_reuse->alias_to != nullptr) {
continue;
}
// Check if this alloc has the same mem type
if (alloc_info->mem_type != alloc_to_reuse->mem_type) {
continue;
}
// Check if this alloc has the same size
if (alloc_info->size_expr != alloc_to_reuse->size_expr) {
continue;
}
// Check if this alloc has the same data type
if (alloc_info->data_type != alloc_to_reuse->data_type) {
continue;
}
// Check if live intervals have any overlap
auto subscribed_intervals = inner_aliasing_pass_
? alloc_to_reuse->inner_subscribed_intevals.get()
: alloc_to_reuse->outer_subscribed_intevals.get();
auto alloc_live_interval = inner_aliasing_pass_
? alloc_info->inner_live_interval.get()
: alloc_info->outer_live_interval.get();
if (std::any_of(
subscribed_intervals->begin(),
subscribed_intervals->end(),
[alloc_live_interval](auto subscribed_interval) {
return alloc_live_interval->intersect(subscribed_interval);
})) {
continue;
}
// Special checks for inner sharing pass
if (inner_aliasing_pass_ &&
!isValidInnerSharing(alloc_to_reuse, alloc_info)) {
continue;
}
if (alloc_info->alloc_expr->buffer()->isA<TensorView>()) {
if (!alloc_info->alloc_expr->buffer()->isA<TensorView>()) {
continue;
}
auto this_tv = alloc_info->alloc_expr->buffer()->as<TensorView>();
auto reuse_tv = alloc_info->alloc_expr->buffer()->as<TensorView>();
// Check that either both tv's are vectorized acceses, or neither are.
// Vectorized allocations require correct alignment so they can only
// alias with other allocations with the right alignment
const auto& va = GpuLower::current()->vectorizedAccesses();
if ((va.find(this_tv) == va.end()) !=
(va.find(reuse_tv) == va.end())) {
return false;
}
// Shared memory is all aligned to 128 bits, local memory might not be
if (this_tv->getMemoryType() == MemoryType::Local &&
va.find(this_tv) != va.end()) {
// Make sure alignment matches
if (va.at(this_tv) != va.at(reuse_tv)) {
return false;
}
}
}
// TODO:
// Outer interval based sharing supports arbitrary re-indexing into
// the same buffer and would require additional syncs if fully
// enabled.
// Need a few more checks to insert syncs if necessary before turning
// on this sharing.
if (!inner_aliasing_pass_ &&
alloc_info->mem_type == MemoryType::Shared) {
continue;
}
// Now re-use the alloc here and be sure to update
reUseAllocation(alloc_info, alloc_to_reuse);
return true;
}
}
return false;
}
void handle(Expr* expr) {
if (auto ite = dynamic_cast<kir::IfThenElse*>(expr)) {
handle(ite);
} else if (auto for_loop = dynamic_cast<kir::ForLoop*>(expr)) {
handle(for_loop);
} else if (auto allocate = dynamic_cast<kir::Allocate*>(expr)) {
handle(allocate);
}
}
void handle(const kir::ForLoop* for_loop) {
handleScope(for_loop->body().exprs());
}
void handle(const kir::IfThenElse* for_loop) {
TORCH_INTERNAL_ASSERT(
false,
"lower_alias_memory: IfThenElse before unrolling is not yet supported");
}
void handleScope(const std::vector<Expr*>& exprs) {
current_visible_buffer_stack_.emplace_back(
std::make_unique<AllocationInfoList>());
for (auto expr : exprs) {
handle(expr);
}
current_visible_buffer_stack_.pop_back();
}
struct InPlaceSharingInfo {
bool has_broadcast_between = false;
bool has_unsupported_op = false;
};
//! Careful heavy check on inner sharing candidates,
//! current enforced conditions are:
//!
//! 1. The two buffers have producer-consumer relationship
//! 2. No halo in the allocated iter domains
//! 3. Require index equivalence when sharing across broadcast
bool isValidInnerSharing(
AllocationUseDefInfo* alloc_info,
AllocationUseDefInfo* to_reuse) {
// Disable if either of the buffers do not support inner sharing
if (!alloc_info->can_use_inner_alias || !to_reuse->can_use_inner_alias) {
return false;
}
// Assume inputs are TV allocations, which should have been checked
// before reaching this point.
auto this_tv = alloc_info->alloc_expr->buffer()->as<TensorView>();
auto reuse_tv = to_reuse->alloc_expr->buffer()->as<TensorView>();
// Aggressively disable inner sharing for swizzled tvs since
// the indexing order is in general not tractable.
// But outer sharing should still apply.
if (this_tv->hasSwizzleOp() || reuse_tv->hasSwizzleOp()) {
return false;
}
// Check the values in between the two buffers.
auto vals_between_this_and_reuse =
DependencyCheck::getAllValsBetween({this_tv}, {reuse_tv});
if (vals_between_this_and_reuse.empty()) {
vals_between_this_and_reuse =
DependencyCheck::getAllValsBetween({reuse_tv}, {this_tv});
}
if (!vals_between_this_and_reuse.empty()) {
// Temporarily disable sharing across difficult
// ops for inner sharing and can be relaxed gradually.
auto topo_info = checkOpsInBetween(vals_between_this_and_reuse);
// Avoid difficult and future introduced ops
if (topo_info.has_unsupported_op) {
return false;
}
// Get information on the allocated domains of the
// two buffers
auto& local_alloc_map = GpuLower::current()->localAllocationInfoMap();
auto alloc_it = local_alloc_map.find(alloc_info->alloc_expr);
auto to_reuse_it = local_alloc_map.find(to_reuse->alloc_expr);
if (alloc_it == local_alloc_map.end() ||
to_reuse_it == local_alloc_map.end()) {
return false;
}
// Disable in-place reusing for halo ops, since halo
// can issue pointwise op multiple points at some points.
if (alloc_it->second->has_halo || to_reuse_it->second->has_halo) {
return false;
}
// Require matched iterdomains for sharing across broadcast
if (topo_info.has_broadcast_between) {
auto& alloc_domains = alloc_it->second->alloc_domains;
auto& reuse_domains = to_reuse_it->second->alloc_domains;
return allocationDomainsIndexMapped(alloc_domains, reuse_domains);
}
// If only pointwise and reduction ops in between and no broadcast
// should be ok to re-use in place.
return true;
}
// this and reuse are not dependencies of each other,
// which means we cannot use inner sharing.
return false;
}
InPlaceSharingInfo checkOpsInBetween(std::vector<Val*>& all_used_vals) {
InPlaceSharingInfo info;
std::unordered_set<Val*> all_used_val_set(
all_used_vals.begin(), all_used_vals.end());
for (auto val : all_used_vals) {
if (auto tv = dynamic_cast<TensorView*>(val)) {
auto tv_def = tv->definition();
if (!tv_def) {
continue;
}
if (!isPointwiseTvOp(tv_def) && !ir_utils::isReductionTvOp(tv_def)) {
if (isBroadcastTvOp(tv_def)) {
info.has_broadcast_between = true;
} else {
info.has_unsupported_op = true;
}
}
}
}
return info;
}
bool allocationDomainsIndexMapped(
std::vector<IterDomain*>& alloc_domains,
std::vector<IterDomain*>& reuse_domains) {
// Require that the allocated domains are exactly mapped.
if (alloc_domains.size() != reuse_domains.size()) {
return false;
}
// Check index map for the corresponding axes.
for (const auto id_it : c10::irange(alloc_domains.size())) {
if (!GpuLower::current()->caMap()->areMapped(
alloc_domains[id_it],
reuse_domains[id_it],
IdMappingMode::EXACT)) {
return false;
}
}
return true;
}
void reUseAllocation(
AllocationUseDefInfo* alloc_info,
AllocationUseDefInfo* to_reuse) {
// Update analysis result
if (inner_aliasing_pass_) {
buffer_info_.useInnerAlias(alloc_info, to_reuse);
} else {
buffer_info_.useOuterAlias(alloc_info, to_reuse);
}
}
// Do we have a true pointwise op?
// (ie. a TV op, excluding direct assignments and reductions)
bool isPointwiseTvOp(const Expr* expr) {
if (ir_utils::isTvOp(expr)) {
return expr->isA<UnaryOp>() || expr->isA<BinaryOp>() ||
expr->isA<TernaryOp>();
}
return false;
}
// Utility to capture reduction ops
bool isBroadcastTvOp(const Expr* expr) {
if (!ir_utils::isTvOp(expr)) {
return false;
}
return expr->isA<BroadcastOp>();
}
private:
// Analysis result from the first pass collecting the use-defs
BufferUseDefInfo buffer_info_;
// Internal data keeping track of currently visible allocations as
// the pass iterate through the expr list, grouped by the stack
// layer of alloc ops.
std::vector<std::unique_ptr<AllocationInfoList>>
current_visible_buffer_stack_;
// Marks state of current pass
bool inner_aliasing_pass_ = true;
};
} // namespace
std::vector<Expr*> reuseMemoryAllocations(const std::vector<Expr*>& exprs) {
FUSER_PERF_SCOPE("reuseMemoryAllocations");
bool debug_print = isDebugDumpEnabled(DebugDumpOption::BufferReuseInfo);
if (debug_print) {
AllocateReuseModifier::debugPrint(exprs);
}
AllocateReuseModifier::modify(exprs);
return exprs;
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|