1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/kernel_expr_evaluator.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir_dispatch.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/lower_allocation.h>
#include <unordered_set>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace {
class AllocationInserter : public kir::ExprMutator {
private:
using kir::ExprMutator::handle;
// Expanded version of BasicAllocInfo in lower_utils.h helps to track
// additional information
struct AllocationInformation {
// The for loop that the initialization of this allocation must be
// placed in, nullptr if not within a loop
kir::ForLoop* init_for_loop = nullptr;
// The expression that the initialization of this allocation must
// be placed before
Expr* init_place_before = nullptr;
// Keep track of the actual allocation loop. This can be different
// from init_for_loop only with unswitched shared memory allocations,
// which are moved outer loops to avoid duplicated allocations
// (see issue #1133).
kir::ForLoop* alloc_for_loop = nullptr;
// The expression that this allocation must be placed
// before. Similar to alloc_for_loop, this is different from
// init_place_before only with unswitched shared memory allocations.
Expr* alloc_place_before = nullptr;
// The allocation position relative to buffer
size_t alloc_pos = 0;
// The buffer this allocation is for
TensorView* buffer = nullptr;
// Info to transfer to GPU lower
bool has_halo = false;
// Local Iterdomains that this allocation covers
std::unique_ptr<std::vector<IterDomain*>> allocation_domains;
};
// Find allocation point
// Fills info.buffer, info.alloc_pos, info.init_for_loop,
// info.init_place_before, info.alloc_for_loop, info.alloc_place_before
void fillAllocationInformation(AllocationInformation& info, Expr* expr) {
auto loop_alloc_info =
loop_utils::getAllocInformation(info.buffer, for_loops_);
info.init_for_loop = loop_alloc_info.init_for_loop;
info.alloc_for_loop = loop_alloc_info.alloc_for_loop;
info.alloc_pos = loop_alloc_info.alloc_pos;
auto next_fl = [](kir::ForLoop* fl, const std::vector<kir::ForLoop*> fls) {
for (auto i : c10::irange(fls.size())) {
if (fl == fls[i]) {
if (i + 1 < fls.size()) {
return fls[i + 1];
}
}
}
TORCH_INTERNAL_ASSERT(false, "Could not find desired loop.");
};
if (info.init_for_loop == nullptr) {
info.init_place_before = for_loops_.size() > 0 ? for_loops_[0] : expr;
} else {
if (info.init_for_loop == for_loops_.back()) {
// Inline allocation, place before expr
info.init_place_before = expr;
} else {
// Place allocation after the last computeAt axis
// TODO: may be more efficient to place before the first non-computeAt
// axis
info.init_place_before = next_fl(info.init_for_loop, for_loops_);
}
}
// Set the allocation loop and the place_before expression in the
// same way as the initialization loop and place_before expression
if (info.alloc_for_loop == info.init_for_loop) {
info.alloc_for_loop = info.init_for_loop;
info.alloc_place_before = info.init_place_before;
} else {
if (info.alloc_for_loop == nullptr) {
info.alloc_place_before = for_loops_.size() > 0 ? for_loops_[0] : expr;
} else {
// Since there must be an inner unswitched domain,
// alloc_for_loop should never be the inner-most loop.
TORCH_INTERNAL_ASSERT(info.alloc_for_loop != for_loops_.back());
info.alloc_place_before = next_fl(info.alloc_for_loop, for_loops_);
}
}
}
// Create initialization expression if init_val is non-null.
Expr* createInitExpr(AllocationInformation& info, Val* init_val) {
if (init_val == nullptr) {
return nullptr;
}
std::vector<IterDomain*> init_dims;
for (const auto axis_i :
c10::irange(info.alloc_pos, info.buffer->nDims())) {
if (info.buffer->axis(axis_i)->isReduction() ||
info.buffer->axis(axis_i)->isBroadcast()) {
continue;
}
auto concrete_id = gpu_lower->caMap()->getConcreteMappedID(
info.buffer->axis(axis_i), IdMappingMode::LOOP);
init_dims.push_back(concrete_id);
}
Expr* init_expr =
IrBuilder::create<UnaryOp>(UnaryOpType::Set, info.buffer, init_val);
for (auto init_loop_it = init_dims.rbegin();
init_loop_it != init_dims.rend();
++init_loop_it) {
auto id = *init_loop_it;
kir::ForLoop* new_loop = nullptr;
auto extent_with_halo = gpu_lower->haloInfo().getExtent(id);
if (extent_with_halo) {
new_loop = IrBuilder::create<kir::ForLoop>(
id,
IrBuilder::create<Int>(c10::nullopt),
nullptr,
extent_with_halo,
nullptr,
false,
nullptr,
false,
DoubleBufferLoopStage::NotApplicable);
} else {
new_loop = IrBuilder::create<kir::ForLoop>(id);
}
new_loop->body().push_back(init_expr);
init_expr = new_loop;
}
return init_expr;
}
std::vector<Val*> getGlobalAllocationSizes(AllocationInformation& info) {
const auto& domain = info.buffer->domain();
const auto& maybe_rfactor_domain = domain->hasRFactor()
? domain->getRFactorDomain()
: domain->getRootDomain();
std::vector<Val*> alloc_dims;
for (const auto id : maybe_rfactor_domain) {
if (id->isReduction() || id->isStride() || id->isBroadcast()) {
continue;
}
auto extent = id->extent();
// Use halo-extended extent if found
auto halo_extent = gpu_lower->haloInfo().getRootAxisInfo(id);
if (halo_extent.hasHalo()) {
extent = IrBuilder::addExpr(
extent, IrBuilder::create<Int>(halo_extent.width()));
}
alloc_dims.push_back(extent);
}
return alloc_dims;
}
// Get allocation extents of root axes with halo
//
// Allocation can be done with leaf IDs with halo as well, but
// allocation size could be larger than necessary.
//
// For example, suppose the shift offset of an axis is 1. When it is
// split by N, the halo size of the inner output is N+1. When the
// allocation only has the inner split output, the allocation size
// would be N+1. Suppose that ID is further split by M, the output
// extents would be N/M and M+1. The allocation size based on the
// leaves would be N/M*(M+1) or N+N/M, which is larger than N+1.
//
// This function tries to propagate back halo informatin to root
// axes to avoid inflating allocations. It fails when merged domains
// are split and only one of the split outputs is used for
// allocations since in such a case we can't un-merge and properly
// determine the extents of the merge inputs. Currently, that
// results in an exception, but it may be more reasonable to simply
// fall back to the leaf-based allocation.
//
// See the FusionShiftDoubleSplit test for an example case.
std::vector<Val*> getNonGlobalAllocExprWithHalo(
TensorView* tv,
const std::vector<IterDomain*>& alloc_domains) {
std::vector<Val*> start_vals;
std::transform(
alloc_domains.begin(),
alloc_domains.end(),
std::back_inserter(start_vals),
[](IterDomain* dom) { return dom->as<Val>(); });
// Get all exprs involved in generating the allocation IDs
auto exprs = StmtSort::getExprs(tv->fusion(), start_vals);
// Get the halo extent if found
auto getExtent = [this](IterDomain* id) {
auto extent = gpu_lower->haloInfo().getExtent(id);
if (extent == nullptr) {
extent = id->extent();
}
return extent;
};
std::unordered_map<IterDomain*, Val*> known_extents;
// IterDomains that are allocated fully. For example, if an ID is
// split and only one of them is used for allocation, that's not
// considered full. Only full domains can be unmerged, which is
// needed to propagate back the halo information to root domains.
std::unordered_set<IterDomain*> full_domains;
for (auto alloc_domain : alloc_domains) {
known_extents.insert({alloc_domain, getExtent(alloc_domain)});
full_domains.insert(alloc_domain);
}
for (auto it = exprs.rbegin(); it != exprs.rend(); ++it) {
auto expr = *it;
if (auto merge = dynamic_cast<Merge*>(expr)) {
auto out_it = known_extents.find(merge->out());
// If nothing is know about the out id, no propagation can be
// done. Note that's not necessarily an error.
if (out_it == known_extents.end()) {
continue;
}
// Similarly, if the extent of the out id is not full extent,
// we can't un-merge it.
if (full_domains.find(merge->out()) == full_domains.end()) {
continue;
}
// Since the extent of the out id is full, the extent of each
// of the input axes is also full
known_extents.insert({merge->inner(), getExtent(merge->inner())});
full_domains.insert(merge->inner());
known_extents.insert({merge->outer(), getExtent(merge->outer())});
full_domains.insert(merge->outer());
known_extents.erase(out_it);
} else if (auto split = dynamic_cast<Split*>(expr)) {
auto inner = split->inner();
const auto inner_it = known_extents.find(inner);
auto outer = split->outer();
const auto outer_it = known_extents.find(outer);
if (inner_it != known_extents.end() &&
outer_it != known_extents.end()) {
if (full_domains.find(inner) != full_domains.end() &&
full_domains.find(outer) != full_domains.end()) {
known_extents.insert({split->in(), getExtent(split->in())});
full_domains.insert(split->in());
} else {
known_extents.insert(
{split->in(),
IrBuilder::mulExpr(outer_it->second, inner_it->second)});
}
known_extents.erase(inner_it);
known_extents.erase(outer_it);
} else if (inner_it != known_extents.end()) {
known_extents.insert({split->in(), inner_it->second});
known_extents.erase(inner_it);
} else if (outer_it != known_extents.end()) {
known_extents.insert({split->in(), outer_it->second});
known_extents.erase(outer_it);
}
} else {
TORCH_INTERNAL_ASSERT(false, "Unexpected expr: ", expr);
}
}
std::vector<Val*> alloc_dims;
for (auto root_axis : tv->getRootDomain()) {
auto it = known_extents.find(root_axis);
if (it == known_extents.end()) {
continue;
}
alloc_dims.push_back(it->second);
known_extents.erase(it);
}
// known_extents should have only mappings for root axes, so
// if anything remains in the map, it's an error
if (!known_extents.empty()) {
std::stringstream ss;
for (auto kv : known_extents) {
ss << kv.first << " ";
}
TORCH_INTERNAL_ASSERT(
false, "Non-root axes found for TV", tv->name(), ": ", ss.str());
}
return alloc_dims;
}
std::vector<Val*> getNonGlobalAllocExpr(AllocationInformation& info) {
const auto memory_type = info.buffer->getMemoryType();
TORCH_INTERNAL_ASSERT(
memory_type != MemoryType::Global,
"Invalid memory type: ",
memory_type);
std::vector<Val*> alloc_dims;
bool has_halo = false;
std::vector<IterDomain*> alloc_domains;
info.allocation_domains = std::make_unique<std::vector<IterDomain*>>();
for (const auto axis_i : c10::irange(info.buffer->nDims())) {
const auto local_id = info.buffer->axis(axis_i);
// Don't use reduction/stride/broadcast axis in the allocation
// computation
if (local_id->isReduction() || local_id->isStride() ||
local_id->isBroadcast()) {
continue;
}
auto concrete_id = gpu_lower->caMap()->getConcreteMappedID(
info.buffer->axis(axis_i), IdMappingMode::LOOP);
const bool is_block_dim =
isParallelTypeBlockDim(concrete_id->getParallelType());
const bool is_thread_dim =
isParallelTypeThreadDim(concrete_id->getParallelType());
const bool is_thread =
isParallelTypeThread(concrete_id->getParallelType());
if (axis_i < info.alloc_pos) {
// Even when the axis is outside the allocation position, if the
// tensor is shared with respect to the axis, the buffer size
// needs to be expanded for the axis. Sharing occurs in two
// cases: 1) the tensor is on shared memory with the axis
// parallelized by TIDs, and 2) the tensor is on global memory
// with the axis parallelized by TIDs or BIDs.
if (!((memory_type == MemoryType::Shared && is_thread_dim) ||
(memory_type == MemoryType::Global && is_thread))) {
continue;
}
alloc_domains.push_back(info.buffer->axis(axis_i));
} else {
if (
// If shared memory, don't use any IDs bound to a grid dimension
(memory_type == MemoryType::Shared && is_block_dim) ||
// If local memory, don't use any IDs bound to a grid or block
// dimension
(memory_type == MemoryType::Local && is_thread)) {
continue;
}
alloc_domains.push_back(info.buffer->axis(axis_i));
}
auto extent = concrete_id->extent();
if (gpu_lower->haloInfo().getExtent(info.buffer->axis(axis_i)) !=
nullptr) {
has_halo = true;
}
alloc_dims.push_back(extent);
info.allocation_domains->push_back(local_id);
}
// When an axis with halo extension is detected, propagate back
// the halo extents from leaf IDs to root IDs
if (has_halo) {
info.has_halo = true;
return getNonGlobalAllocExprWithHalo(info.buffer, alloc_domains);
}
return alloc_dims;
}
kir::Allocate* createAllocExpr(AllocationInformation& info, bool is_output) {
if (is_output) {
return nullptr;
}
std::vector<Val*> alloc_dims;
const MemoryType memory_type = info.buffer->getMemoryType();
if (memory_type == MemoryType::Global) {
alloc_dims = getGlobalAllocationSizes(info);
} else {
alloc_dims = getNonGlobalAllocExpr(info);
}
if (alloc_dims.size() == 0 &&
info.buffer->domain()->noReductions().size() != 0) {
alloc_dims.push_back(info.buffer->container()->oneVal());
}
// Double the allocation size if double-buffered. Record the
// original size for indexing.
if (info.buffer->isDoubleBuffered() || info.buffer->isCircularBuffered()) {
Val* original_alloc_size = nullptr;
for (auto alloc_dim : alloc_dims) {
if (original_alloc_size == nullptr) {
original_alloc_size = alloc_dim;
} else {
original_alloc_size =
IrBuilder::mulExpr(original_alloc_size, alloc_dim);
}
}
GpuLower::current()->doubleBufferInfo().setOriginalAllocSize(
info.buffer, original_alloc_size);
int double_buffer_stage = 2;
if (info.buffer->isCircularBuffered()) {
double_buffer_stage = info.buffer->circularBufferDepth();
}
alloc_dims.push_back(IrBuilder::create<Int>(double_buffer_stage));
}
// Create the allocation node
return IrBuilder::create<kir::Allocate>(
info.buffer, info.buffer->getMemoryType(), alloc_dims);
}
void handle(Expr* expr) override {
if (!ir_utils::isTvOp(expr) || expr->isA<kir::Allocate>()) {
ExprMutator::handle(expr);
return;
}
// // Found where the allocation needs to be inserted
for (const auto i : c10::irange(expr->outputs().size())) {
auto out = expr->output(i);
if (!out->isA<TensorView>()) {
continue;
}
auto out_tv = out->as<TensorView>();
auto default_val = gpu_lower->predicateElimination().getInitValue(out_tv);
Val* init = nullptr;
if (expr->isA<ReductionOp>() && out_tv->hasReduction()) {
TORCH_INTERNAL_ASSERT(
default_val == nullptr,
"Reduction should not have a default initialization value for predicate elimination.");
init = expr->as<ReductionOp>()->init();
} else if (expr->isA<GroupedReductionOp>() && out_tv->hasReduction()) {
TORCH_INTERNAL_ASSERT(
default_val == nullptr,
"Reduction should not have a default initialization value for predicate elimination.");
init = expr->as<GroupedReductionOp>()->initVal(i);
} else if (expr->isA<MmaOp>()) {
init = expr->as<MmaOp>()->init();
} else if (expr->isA<WelfordOp>()) {
TORCH_INTERNAL_ASSERT(
default_val == nullptr,
"Welford should not have a default initialization value for predicate elimination.");
const auto welford = expr->as<WelfordOp>();
if (out->name() == welford->outVar()->name()) {
init = welford->initVar() == nullptr ? IrBuilder::create<Double>(0)
: welford->initVar();
} else if (out->name() == welford->outAvg()->name()) {
init = welford->initAvg() == nullptr ? IrBuilder::create<Double>(0)
: welford->initAvg();
} else {
TORCH_INTERNAL_ASSERT(
out->name() == welford->outN()->name(), "Unreachable");
init = welford->initN();
}
} else if (expr->isA<GroupedWelfordOp>()) {
TORCH_INTERNAL_ASSERT(
default_val == nullptr,
"Welford should not have a default initialization value for predicate elimination.");
init = expr->as<GroupedWelfordOp>()->getInitValOfOutput(out);
} else if (default_val != nullptr) {
init = default_val;
}
const bool is_output = out->isFusionOutput();
// Don't need to alloc outputs, and if we don't need to initialize we're
// done.
if (is_output && init == nullptr) {
continue;
}
AllocationInformation allocation;
allocation.buffer = out_tv;
fillAllocationInformation(allocation, expr);
auto alloc_expr = createAllocExpr(allocation, is_output);
auto init_expr = createInitExpr(allocation, init);
// Write information to GPULower
writeInfoToGPULower(allocation, alloc_expr);
// Register allocations before initializations to keep them in the right
// order
if (alloc_expr != nullptr) {
if (allocation.buffer->getMemoryType() == MemoryType::Shared) {
// Shared allocations go at the begining of scope
TORCH_INTERNAL_ASSERT(!exprs_.empty());
registerInsertBefore(exprs_[0], alloc_expr, nullptr);
} else {
TORCH_INTERNAL_ASSERT(allocation.alloc_place_before != nullptr);
kir::Scope* scope = allocation.alloc_for_loop == nullptr
? nullptr
: &allocation.alloc_for_loop->body();
registerInsertBefore(
allocation.alloc_place_before, alloc_expr, scope);
}
}
if (init_expr != nullptr) {
TORCH_INTERNAL_ASSERT(allocation.init_place_before != nullptr);
kir::Scope* scope = allocation.init_for_loop == nullptr
? nullptr
: &allocation.init_for_loop->body();
registerInsertBefore(allocation.init_place_before, init_expr, scope);
}
}
}
// Sends alloc_expr, info.has_halo, info.allocation_domains to GpuLower
void writeInfoToGPULower(
const AllocationInformation& allocation,
kir::Allocate* alloc_expr) {
auto& lower_alloc_info_map = GpuLower::current()->localAllocationInfoMap();
if (alloc_expr == nullptr) {
// Skip output allocation.
return;
}
TORCH_INTERNAL_ASSERT(
!lower_alloc_info_map.count(alloc_expr),
"duplicated allocation info entry");
// Create info entry for GPULower
auto lower_alloc_info_ptr = std::make_unique<LocalAllocationInfo>();
lower_alloc_info_ptr->alloc_expr = alloc_expr;
lower_alloc_info_ptr->has_halo = allocation.has_halo;
if (allocation.allocation_domains) {
lower_alloc_info_ptr->alloc_domains = *(allocation.allocation_domains);
}
// Write entry to the stored map
lower_alloc_info_map[alloc_expr] = std::move(lower_alloc_info_ptr);
}
void handle(kir::IfThenElse*) final {
TORCH_INTERNAL_ASSERT(
false,
"Pass does not support conditional statements, ",
"this pass should be run before any conditionals are placed in code.");
}
AllocationInserter(const std::vector<Expr*>& exprs)
: gpu_lower(GpuLower::current()) {
kir::ExprMutator::traverseAndInsert(exprs);
}
private:
GpuLower* gpu_lower;
public:
static std::vector<Expr*> insert(const std::vector<Expr*>& exprs) {
AllocationInserter inserter(exprs);
return inserter.exprs_;
}
};
} // namespace
std::vector<Expr*> insertAllocations(const std::vector<Expr*>& exprs) {
FUSER_PERF_SCOPE("GpuLower::Lower::insertAllocations");
return AllocationInserter::insert(exprs);
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|