1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
|
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/lower_double_buffer.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
unsigned int getDoubleBufferAxisPosition(const TensorView* tv) {
// Double-buffering prefetches the next subregion of the tensor by
// doubling the allocation. The subregion is defined by the axes
// at the CA position till the inner-most position. There must be
// at least one axis that is outside (left) of the CA position,
// which defines the loop where prefetching is applied. Therefore,
// the CA position must be larger than 0.
TORCH_INTERNAL_ASSERT(tv->getComputeAtPosition() > 0);
// Unroll must not exist outside of double-buffer axis
auto first_unroll_it = std::find_if(
tv->domain()->domain().begin(),
tv->domain()->domain().end(),
[](const auto axis) {
return axis->getParallelType() == ParallelType::Unroll;
});
const int first_unroll_pos =
std::distance(tv->domain()->domain().begin(), first_unroll_it);
const int unroll_or_ca_pos =
std::min((int)tv->getComputeAtPosition(), first_unroll_pos);
TORCH_INTERNAL_ASSERT(
unroll_or_ca_pos > 0,
"Invalid tensor to double-buffer. Valid double buffer axis not found due to Unroll. ",
tv->toString());
int valid_pos = -1;
// Skip parallelized or broadcast axes
for (int i = unroll_or_ca_pos - 1; i >= 0; --i) {
auto pt = tv->axis(i)->getParallelType();
if (!isParallelTypeThread(pt) && !tv->axis(i)->isBroadcast()) {
valid_pos = i;
break;
}
}
TORCH_INTERNAL_ASSERT(
valid_pos >= 0,
"Invalid tensor to double-buffer. Valid double buffer axis not found. ",
tv->toString());
return valid_pos;
}
IterDomain* getDoubleBufferAxis(const TensorView* tv) {
return tv->axis((int)getDoubleBufferAxisPosition(tv));
}
void validateDoubleBufferedTensor(const TensorView* tv) {
auto double_buffer_pos = getDoubleBufferAxisPosition(tv);
// Like vectorization, only UnaryOp::Set with another TensorView is
// considered.
auto def = tv->definition();
TORCH_INTERNAL_ASSERT(
(def->isA<UnaryOp>() &&
def->as<UnaryOp>()->getUnaryOpType() == UnaryOpType::Set) ||
// Load store op should generally support double buffering.
def->isA<LoadStoreOp>(),
"Invalid tensor to double-buffer. Only tensor defined by UnaryOp::Set is supported: ",
def->toString());
TORCH_INTERNAL_ASSERT(
def->input(0)->isA<TensorView>(),
"Invalid tensor to double-buffer. Only tensor defined by UnaryOp::Set with TensorView is supported: ",
def->toString());
// Require the producer tensor to have been computed entirely for
// the double-buffering loop. Otherwise, the producer itself would
// also need to be double-bufferred.
auto producer = def->input(0)->as<TensorView>();
TORCH_INTERNAL_ASSERT(
producer->getComputeAtPosition() <= double_buffer_pos,
"Invalid tensor to double-buffer. The computeAt position of the producer tensor must be moved left: ",
producer->toString());
// Not strictly necessary, but only gmem -> smem or local and smem -> local
// are allowed.
const auto p_mem_type = producer->getMemoryType();
const auto c_mem_type = tv->getMemoryType();
TORCH_INTERNAL_ASSERT(
(p_mem_type == MemoryType::Global &&
(c_mem_type == MemoryType::Shared || c_mem_type == MemoryType::Local)) ||
(p_mem_type == MemoryType::Shared && c_mem_type == MemoryType::Local),
"Invalid tensor to double-buffer: ",
tv->toString(),
". Producer memory type: ",
p_mem_type,
". Consumer memory type: ",
c_mem_type);
return;
}
namespace {
// Initial inspection of a fusion to find and validate double buffered tensors
class DoubleBufferFusionInspector : private IterVisitor {
public:
DoubleBufferFusionInspector(Fusion* fusion, DoubleBufferInfo& db_info)
: db_info_(db_info) {
traverse(fusion);
}
private:
using IterVisitor::handle;
void handle(TensorView* tv) final {
if (!(tv->isDoubleBuffered() || tv->isCircularBuffered())) {
return;
}
TORCH_INTERNAL_ASSERT(
tv->definition(), "Fusion input shouldn't be double buffered.", tv);
validateDoubleBufferedTensor(tv);
auto db_axis = getDoubleBufferAxis(tv);
db_info_.setDoubleBufferAxis(tv, db_axis);
}
private:
DoubleBufferInfo& db_info_;
};
// The epilogue loop is only created when the producer of a double
// buffer tensor is on smem, in which case it would otherwise require
// an additional predicate to guard buffer overruns. When it's on
// gmem, that isn't the case, so it does not need to create an
// epilogue loop.
bool requireEpilogue(const std::vector<Expr*>& exprs) {
return std::any_of(exprs.begin(), exprs.end(), [](const Expr* expr) {
return expr->input(0)->as<TensorView>()->getMemoryType() ==
MemoryType::Shared;
});
}
// Replicates double buffer loops for Prologue, Main, and
// Epilogue. Prologue only copies the load expressions of double
// buffered tensors, whereas Epilogue does any expression other than
// the loads. Main copies everything.
class DoubleBufferLoopCloner : public kir::IrVisitor {
public:
static kir::ForLoop* clone(
kir::ForLoop* double_buffer_loop,
const std::vector<Expr*>& double_buffer_load_exprs,
DoubleBufferLoopStage loop_type) {
DoubleBufferLoopCloner cloner(
double_buffer_loop, double_buffer_load_exprs, loop_type);
cloner.clone();
return cloner.cloned_top_level_loop_;
}
private:
DoubleBufferLoopCloner(
kir::ForLoop* double_buffer_loop,
const std::vector<Expr*>& double_buffer_load_exprs,
DoubleBufferLoopStage loop_type)
: double_buffer_loop_(double_buffer_loop),
double_buffer_load_exprs_(double_buffer_load_exprs),
loop_type_(loop_type) {}
using kir::IrVisitor::handle;
void clone() {
const auto gpu_lower = GpuLower::current();
// Cloning the double buffer loop as follows:
//
// Prologue: 0 to 1
// Main: 0 to (extent-1)
// Epilogue: (extent-1) to extent
auto index = GpuLower::current()->caMap()->getIndexVariable(
double_buffer_loop_->iter_domain(), loop_type_);
auto start = double_buffer_loop_->start();
auto stop = double_buffer_loop_->stop();
auto stage_depth = gpu_lower->doubleBufferInfo().getStageDepthFor(
double_buffer_loop_->iter_domain());
if (loop_type_ == DoubleBufferLoopStage::Prolog) {
TORCH_INTERNAL_ASSERT(start->isZeroInt());
stop = SimplifyingIrBuilder::create<Int>(stage_depth - 1);
} else if (
loop_type_ == DoubleBufferLoopStage::Main &&
requireEpilogue(double_buffer_load_exprs_)) {
stop = IrBuilder::subExpr(
double_buffer_loop_->stop(), gpu_lower->kernel()->oneVal());
} else if (loop_type_ == DoubleBufferLoopStage::Epilog) {
TORCH_INTERNAL_ASSERT(requireEpilogue(double_buffer_load_exprs_));
start = IrBuilder::subExpr(
double_buffer_loop_->stop(),
SimplifyingIrBuilder::create<Int>(stage_depth - 1));
}
cloned_top_level_loop_ = IrBuilder::create<kir::ForLoop>(
double_buffer_loop_->iter_domain(),
index,
start,
stop,
gpu_lower->kernel()->oneVal(),
false,
nullptr,
double_buffer_loop_->isUnrollRequired(),
loop_type_);
handle(double_buffer_loop_);
if (stage_depth > 2) {
cloned_top_level_loop_->body().push_back(
IrBuilder::create<kir::CpAsyncCommit>());
}
}
void handle(kir::ForLoop* fl) final {
kir::ForLoop* cloned_loop = fl == double_buffer_loop_
? cloned_top_level_loop_
: IrBuilder::create<kir::ForLoop>(fl);
cloned_scopes_.push_back(&cloned_loop->body());
kir::IrVisitor::handle(fl);
cloned_scopes_.pop_back();
// Add the cloned loop into the parent loop body only when the
// cloned loop contains expressions.
if (!cloned_loop->body().empty() && !cloned_scopes_.empty()) {
cloned_scopes_.back()->push_back(cloned_loop);
}
}
void handle(kir::IfThenElse* ite) final {
TORCH_INTERNAL_ASSERT(false, "No IfThenElse should exist yet");
}
void handle(Expr* expr) final {
if (expr->isA<kir::ForLoop>() || expr->isA<kir::IfThenElse>()) {
kir::IrVisitor::handle(expr);
return;
}
TORCH_INTERNAL_ASSERT(!cloned_scopes_.empty());
if (loop_type_ == DoubleBufferLoopStage::Main) {
cloned_scopes_.back()->push_back(expr);
return;
}
// In Prologue and Epilogue, either load expressions or anything
// else are copied. Note that there can be multiple exprs defining
// double buffered TVs (e.g., buffer initialization).
auto out_tv = ir_utils::getTvOutput(expr);
const auto is_double_buffer_load_expr = std::any_of(
double_buffer_load_exprs_.begin(),
double_buffer_load_exprs_.end(),
[out_tv](const auto load_expr) {
auto double_buffer_tv = ir_utils::getTvOutput(load_expr);
TORCH_INTERNAL_ASSERT(double_buffer_tv != nullptr);
return out_tv == double_buffer_tv;
});
if ((loop_type_ == DoubleBufferLoopStage::Prolog &&
is_double_buffer_load_expr) ||
(loop_type_ == DoubleBufferLoopStage::Epilog &&
!is_double_buffer_load_expr)) {
cloned_scopes_.back()->push_back(expr);
}
}
private:
kir::ForLoop* double_buffer_loop_ = nullptr;
const std::vector<Expr*>& double_buffer_load_exprs_;
const DoubleBufferLoopStage loop_type_;
kir::ForLoop* cloned_top_level_loop_ = nullptr;
std::deque<kir::Scope*> cloned_scopes_;
};
using InsertionInfo = std::unordered_map<kir::ForLoop*, std::vector<Expr*>>;
// Traverse lowered loop-nests and find all double buffer loops and
// associated load expressions.
class DoubleBufferLoopNestInspector : private kir::IrVisitor {
public:
static InsertionInfo run(const std::vector<Expr*>& exprs) {
DoubleBufferLoopNestInspector inspector(exprs);
return inspector.insertion_info_;
}
private:
DoubleBufferLoopNestInspector(const std::vector<Expr*>& exprs) {
handle(exprs);
}
using kir::IrVisitor::handle;
// Collect double buffer related information on a expr
// that is a memory load, i.e. a LoadStore or a Set.
void handlePossibleLoadExpr(Expr* expr) {
const auto gpu_lower = GpuLower::current();
auto out_tv = ir_utils::getTvOutput(expr);
if (out_tv == nullptr) {
return;
}
// Ignore init loop
if (!(out_tv->isDoubleBuffered() || out_tv->isCircularBuffered()) ||
!expr->input(0)->isA<TensorView>()) {
return;
}
auto double_buffer_loop =
gpu_lower->doubleBufferInfo().getDoubleBufferLoop(out_tv, for_loops_);
TORCH_INTERNAL_ASSERT(
double_buffer_loop != nullptr,
"No double buffer loop found for a double buffered tensor: ",
out_tv->toString());
validateDoubleBufferLoop(double_buffer_loop);
insertion_info_[double_buffer_loop].push_back(expr);
}
void handle(UnaryOp* uop) final {
handlePossibleLoadExpr(uop);
}
void handle(LoadStoreOp* ldst) final {
handlePossibleLoadExpr(ldst);
}
static void validateDoubleBufferLoop(kir::ForLoop* loop) {
TORCH_INTERNAL_ASSERT(
loop->start()->isZeroInt(), "Unsupported loop: ", loop->toString());
TORCH_INTERNAL_ASSERT(
loop->step()->isOneInt(), "Unsupported loop: ", loop->toString());
TORCH_INTERNAL_ASSERT(
!loop->vectorize(),
"Vectorized loop should not be the allocation loop for double-buffered tensor: ",
loop->toString());
TORCH_INTERNAL_ASSERT(
!loop->vectorize_shift(),
"Vectorize shift loop should not be the allocation loop for double-buffered tensor: ",
loop->toString());
}
InsertionInfo insertion_info_;
};
// Apply double buffering transformations
class DoubleBufferInserter : private kir::ExprMutator {
public:
// When there exist multiple double buffer loops, apply
// transformations to inner-most loops first. A single ExprMutator
// pass can only process one loop.
static std::vector<Expr*> run(
const std::vector<Expr*>& exprs,
InsertionInfo insertion_info) {
auto inserted_exprs = exprs;
while (!insertion_info.empty()) {
DoubleBufferInserter inserter(inserted_exprs, insertion_info);
inserted_exprs = inserter.exprs_;
}
return inserted_exprs;
}
private:
DoubleBufferInserter(
const std::vector<Expr*>& exprs,
InsertionInfo& insertion_info)
: insertion_info_(insertion_info) {
auto num_double_buffer_loops = insertion_info.size();
traverseAndInsert(exprs);
TORCH_INTERNAL_ASSERT(processed_loop_ != nullptr);
TORCH_INTERNAL_ASSERT(insertion_info.size() == num_double_buffer_loops - 1);
}
using kir::ExprMutator::handle;
void handle(kir::ForLoop* loop) final {
kir::ExprMutator::handle(loop);
// If another loop is already taken care of, no more loop should
// be done in the same pass
if (processed_loop_ != nullptr) {
return;
}
auto it = insertion_info_.find(loop);
if (it == insertion_info_.end()) {
return;
}
insert(loop, it->second);
processed_loop_ = loop;
insertion_info_.erase(loop);
}
void insert(
kir::ForLoop* double_buffer_loop,
const std::vector<Expr*>& loads) {
auto prologue_loop = DoubleBufferLoopCloner::clone(
double_buffer_loop, loads, DoubleBufferLoopStage::Prolog);
registerInsertBefore(double_buffer_loop, prologue_loop);
auto write_to_smem =
std::any_of(loads.begin(), loads.end(), [](const Expr* expr) {
return expr->output(0)->as<TensorView>()->getMemoryType() ==
MemoryType::Shared;
});
// RAW sync is not inserted for double buffered tensors. The only
// exception is the prologue load.
bool insert_cpasync_wait = false;
if (write_to_smem) {
// Here the initial sync before entering double buffer loop is
// inserted.
// If any of the double buffered tensor in this double buffer
// loop is async copy. We want to wait for the gmem loads to
// finish before synchronizing the block.
if (std::any_of(loads.begin(), loads.end(), ir_utils::isCpAsyncOp)) {
auto stage_depth =
GpuLower::current()->doubleBufferInfo().getStageDepthFor(
double_buffer_loop->iter_domain());
auto cp_async_wait =
IrBuilder::create<kir::CpAsyncWait>(stage_depth - 2);
registerInsertBefore(double_buffer_loop, cp_async_wait);
insert_cpasync_wait = true;
}
// Insert the initial block sync before entering main loop.
if (std::any_of(loads.begin(), loads.end(), [](Expr* expr) {
return GpuLower::current()
->syncMap()
.needsRawSync(ir_utils::getTvOutput(expr))
.hasTID();
})) {
// If any of the double buffered loads require sync, as indicated
// by sync info map, insert the sync before entering the double buffer
// loop.
// TODO:
// Currently not supporting double buffer in gmem, but short to mid
// term not yet a priority to go for this case.
auto sync = IrBuilder::create<kir::BlockSync>(false);
registerInsertBefore(double_buffer_loop, sync);
}
}
auto main_loop = DoubleBufferLoopCloner::clone(
double_buffer_loop, loads, DoubleBufferLoopStage::Main);
registerReplace(double_buffer_loop, main_loop);
// Insert the wait instruction in this pass instead
// of relying on WAR sync pass to do it.
// The WAR sync pass today would insert the wait function
// exactly where we need it but the purpose of this wait
// insertion isn't exactly WAR protection.
//
// TODO: [Double Buffer Sync]
// We might eventually want to move the block sync inserted
// by WAR pass here as well since this sync insertion is kind
// of both WAR and RAW (or neither RAW nor WAR, depends
// on how we look at it).
// Eg. in the case when a intermediate
// tensor is double buffered.
//
// __block_sync(); // This is the initial sync
// For i in ... // Double buffer loop
// A[i%2] = ...;
// ... = A[1-i%2];
// __block_sync(); // sync within loop
// ...
// The "sync within loop" can be placed anywhere in the
// double buffer loop while in the case of RAW and WAR
// there'd be extra insertion point restrictions.
// We are currently not actively exploring opportunities
// with this property of "double buffer sync" so this
// is more conceptual at the moment, aka low priority.
if (insert_cpasync_wait) {
insertCpAsyncWaitInMainLoop(main_loop);
}
if (requireEpilogue(loads)) {
auto epilogue_loop = DoubleBufferLoopCloner::clone(
double_buffer_loop, loads, DoubleBufferLoopStage::Epilog);
registerInsertAfter(double_buffer_loop, epilogue_loop);
}
}
// Simple conservative rule for inserting async copy wait
// primitive in the double buffer loop:
void insertCpAsyncWaitInMainLoop(kir::ForLoop* main_loop) {
TORCH_INTERNAL_ASSERT(
!main_loop->body().empty(),
"Double buffer sync insertion: empty main loop.");
// Note: This pass explicitly assumes that WAR sync has been
// inserted so would need to be updated if we re-order the
// passes. Cleanups suggested in [Double Buffer Sync]
// would resolve this dependency on pass ordering.
auto end_of_loop_expr = main_loop->body().exprs().back();
auto stage_depth = GpuLower::current()->doubleBufferInfo().getStageDepthFor(
main_loop->iter_domain());
auto cp_async_wait = IrBuilder::create<kir::CpAsyncWait>(stage_depth - 2);
// Check if a sync has been inserted by WAR sync pass.
auto block_sync_it = std::find_if(
main_loop->body().exprs().rbegin(),
main_loop->body().exprs().rend(),
[](const Expr* expr) { return expr->isA<kir::BlockSync>(); });
if (block_sync_it == main_loop->body().exprs().rend()) {
// If there's no sync, i.e. no tensor needs cross
// thread communication. We still need a wait but
// it can just be anywhere in the loop. Chose to
// place at the end arbitrarily.
main_loop->body().insert_after(end_of_loop_expr, cp_async_wait);
} else {
// If a sync has been inserted, wait needs to be placed
// before the sync.
main_loop->body().insert_before(*block_sync_it, cp_async_wait);
}
}
private:
InsertionInfo& insertion_info_;
kir::ForLoop* processed_loop_ = nullptr;
};
} // namespace
void DoubleBufferInfo::build(Fusion* fusion) {
DoubleBufferFusionInspector inspector(fusion, *this);
// Build double buffered loop id's
for (auto& info : map_) {
auto double_buffer_axis = info.second.double_buffer_axis;
// Keeps track of which loop disjoint set has been
// double buffered. In index allocation, one index
// variable would need to be allocated in each
// double buffer stage.
concrete_double_buffered_loop_id_.insert(
GpuLower::current()->caMap()->getConcreteMappedID(
double_buffer_axis, IdMappingMode::LOOP));
}
}
bool DoubleBufferInfo::isDoubleBufferedIterDomain(IterDomain* id) {
auto concrete_loop_id = GpuLower::current()->caMap()->getConcreteMappedID(
id, IdMappingMode::LOOP);
return concrete_double_buffered_loop_id_.count(concrete_loop_id);
}
DoubleBufferInfo::TvInfo& DoubleBufferInfo::getTvInfo(const TensorView* tv) {
TORCH_INTERNAL_ASSERT(
tv->isDoubleBuffered() || tv->isCircularBuffered(),
"Not a double-buffered tensor: ",
tv->toString());
return map_[tv];
}
void DoubleBufferInfo::setDoubleBufferAxis(
const TensorView* tv,
IterDomain* axis) {
getTvInfo(tv).double_buffer_axis = axis;
// Also validate the stage consistency with CA map.
unsigned int stage_depth = 0;
if (tv->isCircularBuffered()) {
stage_depth = tv->circularBufferDepth();
} else {
// Double buffer is essentially
// circular buffer with depth 2.
stage_depth = 2;
}
// Set and validate the new stage depth.
setStageDepth(axis, stage_depth);
}
void DoubleBufferInfo::setStageDepth(IterDomain* id, unsigned int stage_depth) {
auto concrete_loop_id = GpuLower::current()->caMap()->getConcreteMappedID(
id, IdMappingMode::LOOP);
auto maybe_exisiting_depth_it = stage_depth_.find(concrete_loop_id);
if (maybe_exisiting_depth_it == stage_depth_.end()) {
stage_depth_[concrete_loop_id] = stage_depth;
} else {
TORCH_INTERNAL_ASSERT(
stage_depth == maybe_exisiting_depth_it->second,
"Unsupported multiple depth pipelining, was set to ",
maybe_exisiting_depth_it->second,
" by ",
maybe_exisiting_depth_it->first->toString(),
" and then set to ",
stage_depth,
" by ",
concrete_loop_id->toString());
}
}
IterDomain* DoubleBufferInfo::getDoubleBufferAxis(const TensorView* tv) {
if (!(tv->isDoubleBuffered() || tv->isCircularBuffered())) {
return nullptr;
}
return getTvInfo(tv).double_buffer_axis;
}
unsigned int DoubleBufferInfo::getStageDepthFor(
IterDomain* double_buffer_axis) {
auto concrete_id = GpuLower::current()->caMap()->getConcreteMappedID(
double_buffer_axis, IdMappingMode::LOOP);
auto maybe_depth_it = stage_depth_.find(concrete_id);
TORCH_INTERNAL_ASSERT(
maybe_depth_it != stage_depth_.end(), "Stage depth not found");
return maybe_depth_it->second;
}
kir::ForLoop* DoubleBufferInfo::getDoubleBufferLoop(
IterDomain* axis,
const std::vector<kir::ForLoop*>& loops,
bool ignore_prologue) {
auto loop_it = std::find_if(loops.begin(), loops.end(), [&](const auto loop) {
return GpuLower::current()->caMap()->areMapped(
loop->iter_domain(), axis, IdMappingMode::EXACT) &&
(!ignore_prologue ||
loop->doubleBufferLoopStage() != DoubleBufferLoopStage::Prolog);
});
if (loop_it != loops.end()) {
return *loop_it;
} else {
return nullptr;
}
}
kir::ForLoop* DoubleBufferInfo::getDoubleBufferLoop(
const TensorView* tv,
const std::vector<kir::ForLoop*>& loops,
bool ignore_prologue) {
auto axis = getDoubleBufferAxis(tv);
if (axis == nullptr) {
return nullptr;
}
return getDoubleBufferLoop(axis, loops, ignore_prologue);
}
void DoubleBufferInfo::setOriginalAllocSize(
const TensorView* tv,
Val* original_alloc_size) {
getTvInfo(tv).original_alloc_size = original_alloc_size;
}
Val* DoubleBufferInfo::getOriginalAllocSize(const TensorView* tv) {
if (!(tv->isDoubleBuffered() || tv->isCircularBuffered())) {
return nullptr;
}
return getTvInfo(tv).original_alloc_size;
}
std::vector<Expr*> DoubleBufferPass::run(const std::vector<Expr*>& exprs) {
auto insertion_info = DoubleBufferLoopNestInspector::run(exprs);
return DoubleBufferInserter::run(exprs, insertion_info);
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|