1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/iter_visitor.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir_dispatch.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/lower_fused_reduction.h>
#include <algorithm>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
namespace {
//! An instance of reduction patterns to fuse
class FusedReductionBroadcastInfo : public PolymorphicBase {
public:
FusedReductionBroadcastInfo(ReductionOp* reduction, bool with_broadcast)
: reductions_({reduction}), with_broadcast_({with_broadcast}) {}
FusedReductionBroadcastInfo(WelfordOp* welford, bool with_broadcast)
: reductions_({welford}), with_broadcast_({with_broadcast}) {}
FusedReductionBroadcastInfo(
GroupedReductionOp* grouped_rop,
bool with_broadcast)
: reductions_({grouped_rop}), with_broadcast_({with_broadcast}) {}
const std::vector<Expr*>& reductions() const {
return reductions_;
}
const std::vector<bool>& withBroadcast() const {
return with_broadcast_;
}
private:
// Holds ReductionOp, WelfordOp or GroupedReductionOp.
std::vector<Expr*> reductions_;
// True each reduction also broadcasts
std::vector<bool> with_broadcast_;
};
//! Inspect a fusion to detect eligible sequences of expressions to
//! use the fused reduction kernel
class FusionInspector : private IterVisitor {
public:
static std::vector<FusedReductionBroadcastInfo> run(Fusion* fusion) {
FusionInspector inspector(fusion);
return inspector.fusion_list_;
}
private:
FusionInspector(Fusion* fusion) {
traverse(fusion);
}
using IterVisitor::handle;
void handle(ReductionOp* rop) final {
/// If it's a grid reduction, keep track of tensors that depend on
/// this reduction.
// Only consider when out is on register as that is assumed in the
// fused reduction kernel.
auto out = ir_utils::getTvOutput(rop);
if (out->getMemoryType() == MemoryType::Local &&
out->domain()->hasGridReduction()) {
reduction_dep_[out].insert(rop);
}
}
void handle(WelfordOp* wop) final {
/// If it's a grid reduction, keep track of tensors that depend on
/// this reduction.
// Only consider when out is on register as that is assumed in the
// fused reduction kernel.
auto out = ir_utils::getTvOutput(wop);
if (out->getMemoryType() == MemoryType::Local &&
out->domain()->hasGridReduction()) {
reduction_dep_[out].insert(wop);
}
}
void handle(GroupedReductionOp* grouped_rop) final {
auto out = ir_utils::getTvOutput(grouped_rop);
if (out->getMemoryType() == MemoryType::Local &&
out->domain()->hasGridReduction()) {
reduction_dep_[out].insert(grouped_rop);
}
}
void handle(Expr* expr) final {
IterVisitor::handle(expr);
for (auto in_tv : ir_utils::filterByType<TensorView>(expr->inputs())) {
for (auto reduction_op : reduction_dep_[in_tv]) {
if (fused_exprs_.find(reduction_op) != fused_exprs_.end()) {
continue;
}
for (auto out_tv :
ir_utils::filterByType<TensorView>(expr->outputs())) {
reduction_dep_[out_tv].insert(reduction_op);
}
}
}
}
// In the case of welford, use the fused broadcast reduction when at
// least one of the outputs is broadcast.
void handle(BroadcastOp* bop) final {
// Detect a pattern where a reduction is followed by a broadcast
auto bop_out = bop->out()->as<TensorView>();
auto bop_in = bop->in()->as<TensorView>();
for (Expr* preceding_expr : reduction_dep_[bop_in]) {
auto parallel_reduction_axes =
getReductionParallelTypeStates(preceding_expr);
// If not matching, propagate the reduction further down to
// subsequent expressions
if (!isBroadcastFuseable(bop_out, parallel_reduction_axes)) {
continue;
}
if (fused_exprs_.find(preceding_expr) != fused_exprs_.end()) {
// Already added to the fusion list. This can happen with
// welford as there can be multiple broadcast consumer
// expressions.
continue;
}
if (preceding_expr->isA<ReductionOp>()) {
fusion_list_.emplace_back(preceding_expr->as<ReductionOp>(), true);
} else if (preceding_expr->isA<GroupedReductionOp>()) {
fusion_list_.emplace_back(
preceding_expr->as<GroupedReductionOp>(), true);
} else if (preceding_expr->isA<WelfordOp>()) {
fusion_list_.emplace_back(preceding_expr->as<WelfordOp>(), true);
} else {
TORCH_INTERNAL_ASSERT(
false, "Invalid preceding expr: ", preceding_expr->toString());
}
fused_exprs_.insert(preceding_expr);
}
}
ParallelTypeBitmap getReductionParallelTypeStates(Expr* expr) {
ParallelTypeBitmap parallel_reduction_axes;
for (auto id : ir_utils::getTvOutput(expr)->domain()->domain()) {
auto pt = id->getParallelType();
if (id->isReduction() && isParallelTypeThread(pt)) {
parallel_reduction_axes.set(pt);
}
}
return parallel_reduction_axes;
}
// Requires reduction parallel dimensions to exactly match parallel broadcast
// dimensions
bool isBroadcastFuseable(
TensorView* broadcast_out,
const ParallelTypeBitmap& parallel_reduction_axes) {
const auto broadcast_parallel_types =
GpuLower::current()->threadPredMap().getParallelBroadcastDomains(
broadcast_out);
// If no parallel broadcast, nothing to fuse
if (broadcast_parallel_types.none()) {
return false;
}
// Make sure the broadcast parallel types are the types reduced by
// the preceding reduction op
for (auto id : broadcast_out->domain()->domain()) {
auto pt = id->getParallelType();
if (!isParallelTypeThread(pt)) {
continue;
}
// Parallel broadcast must be included in reduction_states
if (id->isBroadcast() && broadcast_parallel_types.get(pt)) {
if (!parallel_reduction_axes.get(pt)) {
return false;
}
}
}
return true;
}
private:
//! List of expression sequences to fuse
std::vector<FusedReductionBroadcastInfo> fusion_list_;
//! Keep track of fused reduction/welford exprs to avoid duplication
std::unordered_set<Expr*> fused_exprs_;
//! Keep track of ReductionOp/WelfordOp expressions that are
//! (indirectly) input to a tensor
std::unordered_map<TensorView*, std::unordered_set<Expr*>> reduction_dep_;
};
//! Transform a fusion to use the fused reduction kernel.
class FusionTransformer {
public:
static void run(
Fusion* fusion,
const std::vector<FusedReductionBroadcastInfo>& fusion_list) {
FusionTransformer transformer(fusion, fusion_list);
}
private:
FusionTransformer(
Fusion* fusion,
const std::vector<FusedReductionBroadcastInfo>& fusion_list)
: fusion_(fusion), fusion_list_(fusion_list) {
transform();
}
void transform() {
for (const auto& info : fusion_list_) {
transform(info);
}
// If the thread predicate map is modified, rebuild the
// map. build() only updates mappings that need to be updated.
if (thread_pred_map_modified_) {
GpuLower::current()->threadPredMap().build(fusion_);
}
}
void transform(const FusedReductionBroadcastInfo& info) {
TORCH_INTERNAL_ASSERT(
info.reductions().size() == 1, "Horizontal fusion not supported yet");
for (const auto i : c10::irange(info.reductions().size())) {
const auto expr = info.reductions().at(i);
const auto with_broadcast = info.withBroadcast().at(i);
Expr* fused_expr = nullptr;
if (auto reduction = dynamic_cast<ReductionOp*>(expr)) {
TORCH_INTERNAL_ASSERT(!reduction->isAllreduce());
auto red_op_type = reduction->getReductionOpType();
auto init = reduction->init();
auto out = reduction->out();
auto in = reduction->in();
fusion_->removeExpr(reduction);
fused_expr =
IrBuilder::create<ReductionOp>(red_op_type, init, out, in, true);
} else if (auto welford = dynamic_cast<WelfordOp*>(expr)) {
TORCH_INTERNAL_ASSERT(!welford->isAllreduce());
auto out_avg = welford->outAvg();
auto out_var = welford->outVar();
auto out_n = welford->outN();
auto init_avg = welford->initAvg();
auto init_var = welford->initVar();
auto init_n = welford->initN();
auto in_avg = welford->inAvg();
auto in_var = welford->inVar();
auto in_n = welford->inN();
fusion_->removeExpr(welford);
fused_expr = IrBuilder::create<WelfordOp>(
WelfordTriplet{out_avg, out_var, out_n},
WelfordTriplet{in_avg, in_var, in_n},
WelfordTriplet{init_avg, init_var, init_n},
true);
} else if (auto grouped_rop = dynamic_cast<GroupedReductionOp*>(expr)) {
TORCH_INTERNAL_ASSERT(!grouped_rop->isAllreduce());
auto op_types = grouped_rop->getReductionOpTypes();
auto init_vals = grouped_rop->initVals();
auto outputs = grouped_rop->outputs();
auto inputs = grouped_rop->inputs();
fusion_->removeExpr(grouped_rop);
fused_expr = IrBuilder::create<GroupedReductionOp>(
op_types, init_vals, outputs, inputs, true);
} else {
TORCH_INTERNAL_ASSERT(false, "Invalid expr: ", expr->toString());
}
TORCH_INTERNAL_ASSERT(fused_expr != nullptr);
// Do not just remove the broadcast but just reset the thread
// predicate of the broadcast op. Since fusion is applied only
// when all parallel broadcast domains are to be parallel
// reduction, all parallel types can be reset.
if (with_broadcast) {
// It may be just fine to remove the broadcast expr, but
// technically speaking that would violate the root domain mapping
// as broadcast domains would appear in the consumer of the
// broadcast output tensor without a broadcast expression.
for (auto reduction_out :
ir_utils::filterByType<TensorView>(fused_expr->outputs())) {
for (auto id : reduction_out->domain()->domain()) {
if (id->isReduction()) {
GpuLower::current()->fusedReductionInfo().markAsAllreduce(id);
GpuLower::current()->threadPredMap().markAsUpdated(reduction_out);
thread_pred_map_modified_ = true;
}
}
}
}
}
}
private:
Fusion* fusion_ = nullptr;
const std::vector<FusedReductionBroadcastInfo>& fusion_list_;
bool thread_pred_map_modified_ = false;
};
} // namespace
void fuseReductionsAndBroadcasts(Fusion* fusion) {
auto fusion_list = FusionInspector::run(fusion);
FusionTransformer::run(fusion, fusion_list);
}
void FusedReductionInfo::markAsAllreduce(IterDomain* id) {
allreduce_ids_.insert(id);
}
bool FusedReductionInfo::isAllreduce(IterDomain* id) const {
return allreduce_ids_.find(id) != allreduce_ids_.end();
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|