1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
|
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/index_compute.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <torch/csrc/jit/codegen/cuda/predicate_compute.h>
#include <torch/csrc/jit/codegen/cuda/lower_index.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
Val* IndexLowering::lowerSrcIndex(Val* src, Val* dst) const {
if (auto tv = dynamic_cast<TensorView*>(src)) {
TORCH_INTERNAL_ASSERT(dst->isA<TensorView>());
return Index::getProducerIndex(tv, dst->as<TensorView>(), for_loops_);
} else {
return src;
}
}
Val* IndexLowering::lowerDstIndex(Val* dst) const {
if (auto tv = dynamic_cast<TensorView*>(dst)) {
return Index::getConsumerIndex(tv, for_loops_);
} else {
return dst;
}
}
void IndexLowering::pushBack(Expr* expr) {
if (active_scope_ == nullptr) {
lowered_exprs_.push_back(expr);
} else {
active_scope_->push_back(expr);
}
}
Expr* IndexLowering::back() const {
if (active_scope_ == nullptr) {
TORCH_INTERNAL_ASSERT(
!lowered_exprs_.empty(), "IndexLowering::back: empty scope.");
return lowered_exprs_.back();
}
TORCH_INTERNAL_ASSERT(
!active_scope_->empty(), "IndexLowering::back: empty scope.");
return active_scope_->exprs().back();
}
void IndexLowering::insertAtTopLevel(Expr* expr) {
TORCH_INTERNAL_ASSERT(!lowered_exprs_.empty());
lowered_exprs_.insert(lowered_exprs_.end() - 1, expr);
}
void IndexLowering::handle(const kir::IfThenElse* ite) {
const auto prev_scope = active_scope_;
auto new_ite = IrBuilder::create<kir::IfThenElse>(ite->predicate());
pushBack(new_ite);
active_scope_ = &new_ite->thenBody();
for (auto expr : ite->thenBody().exprs()) {
OptOutConstDispatch::handle(expr);
}
active_scope_ = &new_ite->elseBody();
for (auto expr : ite->elseBody().exprs()) {
OptOutConstDispatch::handle(expr);
}
active_scope_ = prev_scope;
}
void IndexLowering::handle(const kir::ForLoop* for_loop) {
const auto prev_scope = active_scope_;
auto new_for_loop = IrBuilder::create<kir::ForLoop>(for_loop);
pushBack(new_for_loop);
active_scope_ = &new_for_loop->body();
for_loops_.push_back(new_for_loop);
for (auto expr : for_loop->body().exprs()) {
OptOutConstDispatch::handle(expr);
}
for_loops_.pop_back();
active_scope_ = prev_scope;
}
void IndexLowering::handle(const RNGOp* rop) {
// Write random tensor indices into the consumer
// tensor index if the output is a tensor.
auto out_tv = dynamic_cast<TensorView*>(rop->output(0));
TORCH_INTERNAL_ASSERT(out_tv != nullptr, "rand scalar not yet supported");
// TensorIndex for philox subsequence and component.
auto philox_index = SimplifyingIrBuilder::create<kir::TensorIndex>(
out_tv, Index::getLinearIndex(out_tv, for_loops_));
// TensorIndex for writing randlike output.
const auto out = lowerDstIndex(out_tv);
auto lowered = IrBuilder::create<RNGOp>(
rop->getRNGOpType(), out, rop->getRNGOffset(), philox_index);
pushBack(lowered);
GpuLower::current()->propagateExprInfo(rop, back());
}
void IndexLowering::handle(const ARangeOp* aop) {
// Write linear tensor indices into the consumer
// tensor index if the output is a tensor.
auto out_tv = dynamic_cast<TensorView*>(aop->output(0));
TORCH_INTERNAL_ASSERT(out_tv != nullptr);
// TensorIndex for philox subsequence and component.
auto linear_index = SimplifyingIrBuilder::create<kir::TensorIndex>(
out_tv, Index::getLinearIndex(out_tv, for_loops_));
// TensorIndex for writing randlike output.
const auto out = lowerDstIndex(out_tv);
auto lowered = IrBuilder::create<ARangeOp>(
out, aop->start(), aop->end(), aop->step(), linear_index);
pushBack(lowered);
GpuLower::current()->propagateExprInfo(aop, back());
}
void IndexLowering::handle(const UnaryOp* uop) {
const auto in = lowerSrcIndex(uop->in(), uop->out());
const auto out = lowerDstIndex(uop->out());
pushBack(IrBuilder::create<UnaryOp>(uop->getUnaryOpType(), out, in));
GpuLower::current()->propagateExprInfo(uop, back());
}
void IndexLowering::handle(const BinaryOp* bop) {
const auto lhs = lowerSrcIndex(bop->lhs(), bop->out());
const auto rhs = lowerSrcIndex(bop->rhs(), bop->out());
const auto out = lowerDstIndex(bop->out());
pushBack(IrBuilder::create<BinaryOp>(bop->getBinaryOpType(), out, lhs, rhs));
GpuLower::current()->propagateExprInfo(bop, back());
}
void IndexLowering::handle(const TernaryOp* top) {
const auto in1 = lowerSrcIndex(top->in1(), top->out());
const auto in2 = lowerSrcIndex(top->in2(), top->out());
const auto in3 = lowerSrcIndex(top->in3(), top->out());
const auto out = lowerDstIndex(top->out());
pushBack(IrBuilder::create<TernaryOp>(
top->getTernaryOpType(), out, in1, in2, in3));
GpuLower::current()->propagateExprInfo(top, back());
}
void IndexLowering::handle(const ViewAsScalar* uop) {
const auto in = lowerSrcIndex(uop->in(), uop->out());
const auto out = lowerDstIndex(uop->out());
for (auto loop : for_loops_) {
if (GpuLower::current()->caMap()->areMapped(
loop->iter_domain(),
uop->vector_id()->as<IterDomain>(),
IdMappingMode::LOOP)) {
Val* index = loop->index();
pushBack(
IrBuilder::create<ViewAsScalar>(out, in, uop->vector_id(), index));
GpuLower::current()->propagateExprInfo(uop, back());
return;
}
}
TORCH_INTERNAL_ASSERT(false, "Can not find index for vector dim");
}
namespace {
struct GridCommWorkBufferSizeInfo {
// Size of overall buffer. Can be expanded for privatization
Val* size_of_privatized_buffer = nullptr;
// Size of single buffer.
Val* buffer_stride = nullptr;
};
// Get the size of the temporary work buffer for grid communication, this can be
// grid reduction, broadcast, or grid welford.
// The buffer is expanded for privatization when not persistent or grouped.
GridCommWorkBufferSizeInfo getGridCommWorkBufferSize(
const TensorDomain* td,
const std::vector<kir::ForLoop*>& for_loops,
bool is_persistent) {
// The buffer size is the number of thread blocks multiplied by the
// number of threads not used for reduction domains.
// Note: Previously it was calculated based on the shape of the
// tensor, but it makes more sense to compute the size based on the
// shape of the thread block and grid since this buffer is used for
// communications among them. Both methods should result in the same
// size if the parallel dimensions are exact, but otherwise, just
// computing the buffer size based on the tensor shape isn't
// sufficient since there could be extra threads/blocks.
Val* size_of_single_buffer = GpuLower::current()->kernel()->oneVal();
for (auto pt : kParallelTypeThreads) {
auto pt_dim = GpuLower::current()->parallelDimensionMap().get(pt);
if (pt_dim == nullptr || pt_dim->isOneInt()) {
continue;
}
if (isParallelTypeThreadDim(pt) &&
std::any_of(td->domain().begin(), td->domain().end(), [&](auto out_id) {
return out_id->getParallelType() == pt &&
(out_id->isReduction() || out_id->isBroadcast());
})) {
continue;
}
size_of_single_buffer =
SimplifyingIrBuilder::mulExpr(size_of_single_buffer, pt_dim);
}
// Expand the buffer for privatization. The buffer is expanded so
// that each non-reduction IterDomain uses a different part of the
// buffer. For persistent mode, this expansion is only done for
// grouped IterDomains.
Val* size_of_privatized_buffer = size_of_single_buffer;
// In persistent mode, if non-grouped no-reduction domain is used,
// double the buffer size to save a final grid sync
bool is_doubled = false;
for (auto fl : for_loops) {
// Buffer size of parallelized domains are already taken care
if (fl->isTrivial() || fl->iter_domain()->isReduction() ||
fl->iter_domain()->isThread()) {
continue;
}
// If persistent, i.e., allreduce, only IterDomains with
// ParallelType::Group are privatized
if (!is_persistent ||
fl->iter_domain()->getParallelType() == ParallelType::Group) {
size_of_privatized_buffer = SimplifyingIrBuilder::mulExpr(
size_of_privatized_buffer, fl->iter_domain()->extent());
} else if (is_persistent) {
is_doubled = true;
}
}
if (is_doubled) {
size_of_privatized_buffer = SimplifyingIrBuilder::mulExpr(
size_of_privatized_buffer, IrBuilder::create<Int>(2));
}
GridCommWorkBufferSizeInfo info;
info.size_of_privatized_buffer = size_of_privatized_buffer;
info.buffer_stride = size_of_single_buffer;
if (is_doubled) {
info.buffer_stride = SimplifyingIrBuilder::mulExpr(
info.buffer_stride, IrBuilder::create<Int>(2));
}
return info;
}
Val* getGridSyncBufferSize(
const TensorDomain* td,
const std::vector<kir::ForLoop*>& for_loops,
bool is_persistent) {
// See the comment above for getGridCommWorkBufferSize.
Val* buffer_size = GpuLower::current()->kernel()->oneVal();
for (auto pt : kParallelTypeBIDs) {
auto pt_dim = GpuLower::current()->parallelDimensionMap().get(pt);
if (pt_dim == nullptr || pt_dim->isOneInt()) {
continue;
}
if (std::any_of(td->domain().begin(), td->domain().end(), [&](auto out_id) {
return out_id->getParallelType() == pt &&
(out_id->isReduction() || out_id->isBroadcast());
})) {
continue;
}
buffer_size = SimplifyingIrBuilder::mulExpr(buffer_size, pt_dim);
}
// If not persistent, all iteration domains require a separate
// semaphore for re-entrant grid reductions
if (!is_persistent) {
for (auto fl : for_loops) {
if (fl->isTrivial()) {
continue;
}
if (fl->iter_domain()->isThread()) {
// already accounted for.
continue;
}
buffer_size = SimplifyingIrBuilder::mulExpr(
buffer_size, fl->iter_domain()->extent());
}
}
return buffer_size;
}
Val* getEntranceCountGridReduce(std::vector<kir::ForLoop*>& for_loops) {
Val* grid_reduction_entrances = GpuLower::current()->kernel()->oneVal();
for (const auto loop : for_loops) {
if (loop->isTrivial()) {
continue;
}
if (loop->iter_domain()->isThread()) {
// already accounted for.
continue;
}
// TODO: Does this work for shift/gather?
grid_reduction_entrances = SimplifyingIrBuilder::mulExpr(
grid_reduction_entrances, loop->iter_domain()->extent());
}
return grid_reduction_entrances;
}
// Linear indexing of for loops for multiple entrances into grid reduce
// TODO: What happens if there's a broadcast that's resolved (not present in the
// grid reduce) but the global buffer isn't expanded?
Val* getEntranceLinIndGridReduce(std::vector<kir::ForLoop*>& for_loops) {
Val* linear_index = GpuLower::current()->kernel()->zeroVal();
for (const auto loop : for_loops) {
if (loop->isTrivial()) {
continue;
}
if (loop->iter_domain()->isThread()) {
// already accounted for.
continue;
}
// TODO: Does this work for shift/gather?
linear_index = SimplifyingIrBuilder::addExpr(
SimplifyingIrBuilder::mulExpr(
linear_index, loop->iter_domain()->extent()),
loop->index());
}
return linear_index;
}
} // namespace
void IndexLowering::handle(const ReductionOp* rop) {
TORCH_INTERNAL_ASSERT(ir_utils::isTvOp(rop));
const auto out_tv = rop->out()->as<TensorView>();
const auto out_domain = out_tv->domain();
const bool has_block_reduce = out_domain->hasBlockReduction();
const bool has_grid_reduce = out_domain->hasGridReduction();
const auto out = lowerDstIndex(rop->out());
const auto in = lowerSrcIndex(rop->in(), rop->out());
if (has_grid_reduce) {
handleGridReduction(rop, out, in);
} else if (has_block_reduce) {
handleBlockReduction(rop, out, in);
} else {
pushBack(
IrBuilder::create<BinaryOp>(rop->getReductionOpType(), out, out, in));
GpuLower::current()->propagateExprInfo(rop, back());
}
}
void IndexLowering::handleBlockReduction(
const ReductionOp* rop,
Val* out,
Val* in) {
TORCH_INTERNAL_ASSERT(ir_utils::isTvOp(rop));
ReductionOp* indexed_rop = IrBuilder::create<ReductionOp>(
rop->getReductionOpType(), rop->init(), out, in, rop->isAllreduce());
if (rop->predicate()) {
indexed_rop->setPredicate(rop->predicate());
}
if (rop->writePredicate()) {
indexed_rop->setWritePredicate(rop->writePredicate());
}
pushBack(indexed_rop);
GpuLower::current()->propagateExprInfo(rop, back());
}
void IndexLowering::handleGridReduction(
const ReductionOp* rop,
Val* out,
Val* in) {
const auto out_tv = out->as<kir::TensorIndex>()->view();
const auto out_domain = out_tv->domain();
TORCH_INTERNAL_ASSERT(out_domain->hasGridReduction());
// If we do a grid reduction we can't have a reduction axis that is not bound
// to a grid or block dim.
TORCH_INTERNAL_ASSERT(
std::none_of(
out_domain->domain().begin(),
out_domain->domain().end(),
[](IterDomain* id) {
return !id->isThread() && id->isReduction() &&
!id->extent()->isOneInt();
}),
"Found a reduction stage that has both a non-parallelized ",
"reduction and a grid reduction. This is not supported, ",
"please use rfactor to do the serialized reduction first, ",
"then the grid reduction. ",
rop->toString());
// Use a unique buffer for work and sync flag when called within a
// loop unless it's persistent. Grid all reduce means persistence is
// required. However, not being a grid all reduce does not mean
// non-persistence. Currently, if a cooperative grid reduction is
// required anywhere in the kernel, all grid reducitons are done in
// a persistent manner, so all grid reductions should be consulted.
// TODO: fix this
const bool is_persistent = rop->isAllreduce();
const auto buffer_size_info =
getGridCommWorkBufferSize(out_domain, for_loops_, is_persistent);
auto work_buffer = allocateUniqueBuffer(
buffer_size_info.size_of_privatized_buffer,
out_tv->dtype(),
false,
out_tv,
work_buffer_map_);
auto sync_buffer_size =
getGridSyncBufferSize(out_domain, for_loops_, is_persistent);
auto sync_buffer = allocateUniqueBuffer(
sync_buffer_size, DataType::Int, true, out_tv, sync_buffer_map_);
const auto entrance_ind = !is_persistent
? getEntranceLinIndGridReduce(for_loops_)
: GpuLower::current()->kernel()->zeroVal();
const auto n_entrances = !is_persistent
? getEntranceCountGridReduce(for_loops_)
: GpuLower::current()->kernel()->oneVal();
// The thread predicate for GridReduction needs to be set
// separately from the main predicate. Do not combine them like
// other expressions.
const auto& thread_pred =
GpuLower::current()->threadPredMap().getPredicatedParallelTypes(out_tv);
auto grid_reduction = IrBuilder::create<kir::GridReduction>(
rop->getReductionOpType(),
rop->init(),
out,
in,
work_buffer,
sync_buffer,
entrance_ind,
n_entrances,
rop->isAllreduce());
grid_reduction->setThreadPredicate(thread_pred);
if (rop->predicate()) {
grid_reduction->setPredicate(rop->predicate());
}
if (rop->writePredicate()) {
grid_reduction->setWritePredicate(rop->writePredicate());
}
pushBack(grid_reduction);
GpuLower::current()->propagateExprInfo(rop, back());
if (rop->isAllreduce()) {
allocateUniqueFusedReduction(grid_reduction, out_tv);
}
}
void IndexLowering::handle(const GroupedReductionOp* grouped_rop) {
TORCH_INTERNAL_ASSERT(ir_utils::isTvOp(grouped_rop));
const auto out_tv = ir_utils::getTvOutput(grouped_rop);
const auto out_domain = out_tv->domain();
const bool has_block_reduce = out_domain->hasBlockReduction();
const bool has_grid_reduce = out_domain->hasGridReduction();
std::vector<Val*> indexed_outputs(grouped_rop->numExprs());
std::vector<Val*> indexed_inputs(grouped_rop->numExprs());
for (const auto i : c10::irange(grouped_rop->numExprs())) {
indexed_outputs.at(i) = lowerDstIndex(grouped_rop->output(i));
indexed_inputs.at(i) =
lowerSrcIndex(grouped_rop->input(i), grouped_rop->output(i));
}
if (has_grid_reduce) {
handleGridReduction(grouped_rop, indexed_outputs, indexed_inputs);
} else if (has_block_reduce) {
handleBlockReduction(grouped_rop, indexed_outputs, indexed_inputs);
} else {
for (const auto i : c10::irange(grouped_rop->numExprs())) {
pushBack(IrBuilder::create<BinaryOp>(
grouped_rop->getReductionOpType(i),
indexed_outputs.at(i),
indexed_outputs.at(i),
indexed_inputs.at(i)));
}
}
}
void IndexLowering::handleBlockReduction(
const GroupedReductionOp* grouped_rop,
const std::vector<Val*>& outputs,
const std::vector<Val*>& inputs) {
TORCH_INTERNAL_ASSERT(ir_utils::isTvOp(grouped_rop));
GroupedReductionOp* indexed_rop = IrBuilder::create<GroupedReductionOp>(
grouped_rop->getReductionOpTypes(),
grouped_rop->initVals(),
outputs,
inputs,
grouped_rop->isAllreduce());
if (grouped_rop->predicate()) {
indexed_rop->setPredicate(grouped_rop->predicate());
}
if (grouped_rop->writePredicate()) {
indexed_rop->setWritePredicate(grouped_rop->writePredicate());
}
pushBack(indexed_rop);
GpuLower::current()->propagateExprInfo(grouped_rop, back());
}
void IndexLowering::handleGridReduction(
const GroupedReductionOp* grouped_rop,
const std::vector<Val*>& outputs,
const std::vector<Val*>& inputs) {
const auto out_tv = ir_utils::getTvOutput(grouped_rop);
const auto out_domain = out_tv->domain();
TORCH_INTERNAL_ASSERT(out_domain->hasGridReduction());
// If we do a grid reduction we can't have a reduction axis that is not bound
// to a grid or block dim.
TORCH_INTERNAL_ASSERT(
std::none_of(
out_domain->domain().begin(),
out_domain->domain().end(),
[](IterDomain* id) {
return !id->isThread() && id->isReduction() &&
!id->extent()->isOneInt();
}),
"Found a reduction stage that has both a non-parallelized ",
"reduction and a grid reduction. This is not supported, ",
"please use rfactor to do the serialized reduction first, ",
"then the grid reduction.");
const bool is_persistent = grouped_rop->isAllreduce();
auto work_buf_size_info =
getGridCommWorkBufferSize(out_domain, for_loops_, is_persistent);
std::vector<kir::Allocate*> work_buffers;
std::transform(
outputs.begin(),
outputs.end(),
std::back_inserter(work_buffers),
[&](Val* output) {
return allocateUniqueBuffer(
work_buf_size_info.size_of_privatized_buffer,
output->dtype(),
false,
output->as<kir::TensorIndex>()->view(),
work_buffer_map_);
});
auto sync_buffer_size =
getGridSyncBufferSize(out_domain, for_loops_, is_persistent);
auto sync_buffer = allocateUniqueBuffer(
sync_buffer_size, DataType::Int, true, out_tv, sync_buffer_map_);
const auto entrance_ind = !is_persistent
? getEntranceLinIndGridReduce(for_loops_)
: GpuLower::current()->kernel()->zeroVal();
const auto n_entrances = !is_persistent
? getEntranceCountGridReduce(for_loops_)
: GpuLower::current()->kernel()->oneVal();
// The thread predicate for GridReduction needs to be set
// separately from the main predicate. Do not combine them like
// other expressions.
const auto& thread_pred =
GpuLower::current()->threadPredMap().getPredicatedParallelTypes(out_tv);
auto grid_reduction = IrBuilder::create<kir::GroupedGridReduction>(
grouped_rop->getReductionOpTypes(),
grouped_rop->initVals(),
outputs,
inputs,
work_buffers,
sync_buffer,
entrance_ind,
n_entrances,
work_buf_size_info.buffer_stride,
grouped_rop->isAllreduce());
grid_reduction->setThreadPredicate(thread_pred);
if (grouped_rop->predicate()) {
grid_reduction->setPredicate(grouped_rop->predicate());
}
if (grouped_rop->writePredicate()) {
grid_reduction->setWritePredicate(grouped_rop->writePredicate());
}
pushBack(grid_reduction);
GpuLower::current()->propagateExprInfo(grouped_rop, back());
if (grouped_rop->isAllreduce()) {
allocateUniqueFusedReduction(grid_reduction, out_tv);
}
}
void IndexLowering::handle(const WelfordOp* wop) {
TORCH_INTERNAL_ASSERT(ir_utils::isTvOp(wop));
const auto out_tv = wop->outAvg()->as<TensorView>();
const auto out_domain = out_tv->domain();
const bool has_block_reduce = out_domain->hasBlockReduction();
const bool has_grid_reduce = out_domain->hasGridReduction();
if (has_grid_reduce) {
TORCH_INTERNAL_ASSERT(
std::none_of(
out_domain->domain().begin(),
out_domain->domain().end(),
[](IterDomain* id) {
return !id->isThread() && id->isReduction();
}),
"Found a reduction stage that has both a non-parallelized ",
"reduction and a grid reduction. This is not supported, ",
"please use rfactor to do the serialized reduction first, ",
"then the grid reduction.");
}
// lower IO tensors
const auto in_var =
wop->inVar() ? lowerSrcIndex(wop->inVar(), wop->outAvg()) : nullptr;
const auto in_avg = lowerSrcIndex(wop->inAvg(), wop->outAvg());
auto in_N = wop->inN();
// in Rfactor-ed case, the input N is actually a TV
if (!in_N->isScalar()) {
in_N = lowerSrcIndex(in_N, wop->outN());
}
auto out_avg = lowerDstIndex(wop->outAvg());
auto out_var = lowerDstIndex(wop->outVar());
auto out_N = lowerDstIndex(wop->outN());
WelfordOp* indexed_wop = IrBuilder::create<WelfordOp>(
out_avg,
out_var,
out_N,
in_avg,
in_var,
in_N,
wop->initAvg(),
wop->initVar(),
wop->initN(),
wop->isAllreduce());
if (wop->predicate()) {
indexed_wop->setPredicate(wop->predicate());
}
if (wop->writePredicate()) {
indexed_wop->setWritePredicate(wop->writePredicate());
}
// Serial welford
if (!has_block_reduce && !has_grid_reduce) {
pushBack(indexed_wop);
GpuLower::current()->propagateExprInfo(wop, back());
return;
}
// Block-only welford
if (!has_grid_reduce) {
pushBack(indexed_wop);
GpuLower::current()->propagateExprInfo(wop, back());
return;
}
handleGridWelford(indexed_wop);
}
void IndexLowering::handleGridWelford(WelfordOp* indexed_wop) {
const auto out_tv = indexed_wop->out()->as<kir::TensorIndex>()->view();
const auto out_domain = out_tv->domain();
// TODO: See the comment on the same variable in handleGridReduction
const bool is_persistent = indexed_wop->isAllreduce();
const auto buffer_size_info =
getGridCommWorkBufferSize(out_domain, for_loops_, is_persistent);
const auto work_buffer_size = buffer_size_info.size_of_privatized_buffer;
auto out_avg_buffer = allocateUniqueBuffer(
work_buffer_size,
indexed_wop->outAvg()->dtype(),
false,
indexed_wop->outAvg()->as<kir::TensorIndex>()->view(),
work_buffer_map_);
auto out_var_buffer = allocateUniqueBuffer(
work_buffer_size,
indexed_wop->outVar()->dtype(),
false,
indexed_wop->outVar()->as<kir::TensorIndex>()->view(),
work_buffer_map_);
auto out_N_buffer = allocateUniqueBuffer(
work_buffer_size,
indexed_wop->outN()->dtype(),
false,
indexed_wop->outN()->as<kir::TensorIndex>()->view(),
work_buffer_map_);
auto sync_buffer_size =
getGridSyncBufferSize(out_domain, for_loops_, is_persistent);
auto sync_buffer = allocateUniqueBuffer(
sync_buffer_size, DataType::Int, true, out_tv, sync_buffer_map_);
const auto entrance_ind = !is_persistent
? getEntranceLinIndGridReduce(for_loops_)
: GpuLower::current()->kernel()->zeroVal();
const auto n_entrances = !is_persistent
? getEntranceCountGridReduce(for_loops_)
: GpuLower::current()->kernel()->oneVal();
// The thread predicate for GridReduction needs to be set
// separately from the main predicate. Do not combine them like
// other expressions.
const auto& thread_pred =
GpuLower::current()->threadPredMap().getPredicatedParallelTypes(out_tv);
auto grid_welford = IrBuilder::create<kir::GridWelford>(
indexed_wop,
out_var_buffer,
out_avg_buffer,
out_N_buffer,
sync_buffer,
entrance_ind,
n_entrances);
grid_welford->setThreadPredicate(thread_pred);
const bool block_reduce_separated =
out_domain->hasBlockReduction() && !indexed_wop->isAllreduce();
if (indexed_wop->predicate()) {
if (block_reduce_separated) {
grid_welford->setPredicate(IrBuilder::create<kir::Predicate>(
GpuLower::current()->kernel()->trueVal()));
} else {
grid_welford->setPredicate(indexed_wop->predicate());
}
}
if (indexed_wop->writePredicate()) {
grid_welford->setWritePredicate(indexed_wop->writePredicate());
}
if (block_reduce_separated) {
pushBack(indexed_wop);
GpuLower::current()->propagateExprInfo(indexed_wop, back());
}
pushBack(grid_welford);
GpuLower::current()->propagateExprInfo(indexed_wop, back());
if (indexed_wop->isAllreduce()) {
// When using the fused reduction, allocate the reduction object at
// the outer-most scope
allocateUniqueFusedReduction(grid_welford, out_tv);
}
}
void IndexLowering::handle(const GroupedWelfordOp* grouped_wop) {
TORCH_INTERNAL_ASSERT(ir_utils::isTvOp(grouped_wop));
const auto out_tv = ir_utils::getTvOutput(grouped_wop);
const auto out_domain = out_tv->domain();
const bool has_grid_reduce = out_domain->hasGridReduction();
std::vector<WelfordTriplet> indexed_outputs(grouped_wop->numExprs());
std::vector<WelfordTriplet> indexed_inputs(grouped_wop->numExprs());
for (const auto i : c10::irange(grouped_wop->numExprs())) {
const auto& output = grouped_wop->outputVals().at(i);
const auto& input = grouped_wop->inputVals().at(i);
WelfordTriplet indexed_output;
WelfordTriplet indexed_input;
for (const auto j : c10::irange(3)) {
indexed_output.get(j) = lowerDstIndex(output.get(j));
indexed_input.get(j) = lowerSrcIndex(input.get(j), output.get(j));
}
indexed_outputs[i] = indexed_output;
indexed_inputs[i] = indexed_input;
}
if (has_grid_reduce) {
handleGroupedGridWelford(
grouped_wop, indexed_outputs, indexed_inputs, grouped_wop->initVals());
} else {
TORCH_INTERNAL_ASSERT(
false,
"Only grid welford is supported. Validation should have caught non-grid welford grouping.");
}
}
std::vector<kir::Allocate*> IndexLowering::allocateWelfordWorkBuffer(
const std::vector<WelfordTriplet>& triplets,
WelfordTriplet::ValName name,
Val* buffer_size) {
std::vector<kir::Allocate*> work_buffers;
std::transform(
triplets.begin(),
triplets.end(),
std::back_inserter(work_buffers),
[&](const WelfordTriplet& output) {
return allocateUniqueBuffer(
buffer_size,
output.get(name)->dtype(),
false,
output.get(name)->as<TensorView>(),
work_buffer_map_);
});
return work_buffers;
}
void IndexLowering::handleGroupedGridWelford(
const GroupedWelfordOp* op,
const std::vector<WelfordTriplet>& output_vals,
const std::vector<WelfordTriplet>& input_vals,
const std::vector<WelfordTriplet>& init_vals) {
const auto out_tv = ir_utils::getTvOutput(op);
const auto out_domain = out_tv->domain();
TORCH_INTERNAL_ASSERT(out_domain->hasGridReduction());
// If we do a grid reduction we can't have a reduction axis that is not bound
// to a grid or block dim.
TORCH_INTERNAL_ASSERT(
std::none_of(
out_domain->domain().begin(),
out_domain->domain().end(),
[](IterDomain* id) {
return !id->isThread() && id->isReduction() &&
!id->extent()->isOneInt();
}),
"Found a reduction stage that has both a non-parallelized ",
"reduction and a grid reduction. This is not supported, ",
"please use rfactor to do the serialized reduction first, ",
"then the grid reduction.");
const bool is_persistent = op->isAllreduce();
auto work_buf_size_info =
getGridCommWorkBufferSize(out_domain, for_loops_, is_persistent);
const auto work_buffers_avg = allocateWelfordWorkBuffer(
op->outputVals(),
WelfordTriplet::ValName::Avg,
work_buf_size_info.size_of_privatized_buffer);
const auto work_buffers_var = allocateWelfordWorkBuffer(
op->outputVals(),
WelfordTriplet::ValName::Var,
work_buf_size_info.size_of_privatized_buffer);
const auto work_buffers_N = allocateWelfordWorkBuffer(
op->outputVals(),
WelfordTriplet::ValName::N,
work_buf_size_info.size_of_privatized_buffer);
auto sync_buffer_size =
getGridSyncBufferSize(out_domain, for_loops_, is_persistent);
auto sync_buffer = allocateUniqueBuffer(
sync_buffer_size, DataType::Int, true, out_tv, sync_buffer_map_);
const auto entrance_ind = !is_persistent
? getEntranceLinIndGridReduce(for_loops_)
: GpuLower::current()->kernel()->zeroVal();
const auto n_entrances = !is_persistent
? getEntranceCountGridReduce(for_loops_)
: GpuLower::current()->kernel()->oneVal();
// The thread predicate needs to be set separately from the main
// predicate. Do not combine them like other expressions.
const auto& thread_pred =
GpuLower::current()->threadPredMap().getPredicatedParallelTypes(out_tv);
auto indexed_op = IrBuilder::create<kir::GroupedGridWelford>(
output_vals,
input_vals,
init_vals,
std::array<std::vector<kir::Allocate*>, 3>{
work_buffers_avg, work_buffers_var, work_buffers_N},
sync_buffer,
entrance_ind,
n_entrances,
work_buf_size_info.buffer_stride,
op->isAllreduce());
indexed_op->setThreadPredicate(thread_pred);
if (op->predicate()) {
indexed_op->setPredicate(op->predicate());
}
if (op->writePredicate()) {
indexed_op->setWritePredicate(op->writePredicate());
}
pushBack(indexed_op);
GpuLower::current()->propagateExprInfo(op, back());
if (op->isAllreduce()) {
allocateUniqueFusedReduction(indexed_op, out_tv);
}
}
void IndexLowering::handle(const LoadStoreOp* ldst) {
const auto in = lowerSrcIndex(ldst->in(), ldst->out());
const auto out = lowerDstIndex(ldst->out());
pushBack(IrBuilder::create<LoadStoreOp>(ldst->opType(), out, in));
GpuLower::current()->propagateExprInfo(ldst, back());
}
void IndexLowering::handle(const MmaOp* mma) {
const auto a = lowerSrcIndex(mma->inA(), mma->out());
const auto b = lowerSrcIndex(mma->inB(), mma->out());
const auto out = lowerDstIndex(mma->out());
auto mma_indexed =
IrBuilder::create<MmaOp>(out, a, b, mma->init(), mma->options());
pushBack(mma_indexed);
GpuLower::current()->propagateExprInfo(mma, back());
}
void IndexLowering::handle(const BroadcastOp* bop) {
TORCH_INTERNAL_ASSERT(ir_utils::isTvOp(bop));
const auto out_tv = bop->out()->as<TensorView>();
const auto out = lowerDstIndex(bop->out());
const auto in = lowerSrcIndex(bop->in(), bop->out());
auto indexed_expr =
IrBuilder::create<BroadcastOp>(out, in, bop->getBroadcastDimFlags());
const ParallelTypeBitmap parallel_bitmap =
GpuLower::current()->threadPredMap().getParallelBroadcastDomains(out_tv);
const bool block_x = parallel_bitmap.get(ParallelType::BIDx);
const bool block_y = parallel_bitmap.get(ParallelType::BIDy);
const bool block_z = parallel_bitmap.get(ParallelType::BIDz);
if (bop->predicate()) {
indexed_expr->setPredicate(bop->predicate());
}
const bool grid_broadcast_needed = block_x || block_y || block_z;
if (!grid_broadcast_needed) {
pushBack(indexed_expr);
GpuLower::current()->propagateExprInfo(bop, back());
return;
}
// Grid broadcast
const auto out_domain = out_tv->domain();
const auto work_buffer_size =
getGridCommWorkBufferSize(out_domain, for_loops_, true)
.size_of_privatized_buffer;
auto work_buffer = allocateUniqueBuffer(
work_buffer_size, out->dtype(), false, out_tv, work_buffer_map_);
auto sync_buffer_size = getGridSyncBufferSize(out_domain, for_loops_, true);
auto sync_buffer = allocateUniqueBuffer(
sync_buffer_size, DataType::Int, true, out_tv, sync_buffer_map_);
auto grid_broadcast = IrBuilder::create<kir::GridBroadcast>(
indexed_expr, work_buffer, sync_buffer);
if (bop->predicate()) {
grid_broadcast->setPredicate(bop->predicate());
}
pushBack(grid_broadcast);
GpuLower::current()->propagateExprInfo(bop, back());
}
void IndexLowering::handle(const kir::Allocate* allocate) {
// TODO(kir): remove the need for const_cast
pushBack(const_cast<kir::Allocate*>(allocate)); // NOLINT
}
void IndexLowering::handle(const kir::BlockSync* sync) {
// TODO(kir): remove the need for const_cast
pushBack(const_cast<kir::BlockSync*>(sync)); // NOLINT
}
void IndexLowering::handle(const kir::GridSync* sync) {
// TODO(kir): remove the need for const_cast
pushBack(const_cast<kir::GridSync*>(sync)); // NOLINT
}
void IndexLowering::handle(const kir::CpAsyncWait* wait) {
// TODO(kir): remove the need for const_cast
pushBack(const_cast<kir::CpAsyncWait*>(wait)); // NOLINT
}
void IndexLowering::handle(const kir::CpAsyncCommit* commit) {
// TODO(kir): remove the need for const_cast
pushBack(const_cast<kir::CpAsyncCommit*>(commit)); // NOLINT
}
void IndexLowering::generate(const std::vector<Expr*>& exprs) {
for (auto expr : exprs) {
OptOutConstDispatch::handle(expr);
}
}
kir::Allocate* IndexLowering::allocateUniqueBuffer(
Val* buffer_size,
DataType dtype,
bool zero_init,
TensorView* out_tv,
std::unordered_map<TensorView*, kir::Allocate*>& alloc_map) {
// Return an existing allocation if exists
auto it = alloc_map.find(out_tv);
if (it != alloc_map.end()) {
return it->second;
}
// No existing allocation found. Create a new one
auto new_buffer =
ir_utils::allocGlobalBufferForGridComm(buffer_size, dtype, zero_init);
// Keep track of the allocation
alloc_map.emplace(out_tv, new_buffer);
// A buffer may be used in both the unswitched paths, so it must be
// placed outside of the current scope. Simplying placing it at the
// top-level scope should work.
insertAtTopLevel(new_buffer);
return new_buffer;
}
void IndexLowering::allocateUniqueFusedReduction(
Expr* expr,
TensorView* out_tv) {
auto it = fused_reduction_map_.find(out_tv);
if (it != fused_reduction_map_.end()) {
return;
}
kir::AllocateFusedReduction* fused_reduction_alloc_reduction = nullptr;
switch (expr->getExprType().value()) {
case ExprType::GridReduction:
fused_reduction_alloc_reduction =
IrBuilder::create<kir::AllocateFusedReduction>(
expr->as<kir::GridReduction>());
break;
case ExprType::GridWelford:
fused_reduction_alloc_reduction =
IrBuilder::create<kir::AllocateFusedReduction>(
expr->as<kir::GridWelford>());
break;
case ExprType::GroupedGridReduction:
fused_reduction_alloc_reduction =
IrBuilder::create<kir::AllocateFusedReduction>(
expr->as<kir::GroupedGridReduction>());
break;
case ExprType::GroupedGridWelford:
fused_reduction_alloc_reduction =
IrBuilder::create<kir::AllocateFusedReduction>(
expr->as<kir::GroupedGridWelford>());
break;
default:
TORCH_INTERNAL_ASSERT(false, "Invalid expr: ", expr->toString());
}
fused_reduction_map_.emplace(out_tv, fused_reduction_alloc_reduction);
// When using the fused reduction, allocate the reduction object at
// the outer-most scope
insertAtTopLevel(fused_reduction_alloc_reduction);
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|