1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
|
#include <torch/csrc/jit/codegen/cuda/contiguity.h>
#include <torch/csrc/jit/codegen/cuda/index_compute.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/lower_index_compute.h>
#include <torch/csrc/jit/codegen/cuda/lower_magic_zero.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <torch/csrc/jit/codegen/cuda/lower_validation.h>
#include <torch/csrc/jit/codegen/cuda/transform_iter.h>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
IndexFromIdGraph::IndexFromIdGraph(
IndexCompute index_,
IndexCompute concrete_index_,
std::unordered_map<IterDomain*, Val*> initial_concrete_index_map_,
std::vector<IterDomain*> loop_domains_)
: index(index_),
concrete_index(concrete_index_),
initial_concrete_index_map(initial_concrete_index_map_),
resolved_loop_domains(loop_domains_) {}
namespace {
// Maps all producer domains to consumer with broadcast
// forwarding. Used to find the allocation position.
// TODO: should this be an ir_util ? Didn't seem to be
// used too much though.
std::unordered_map<IterDomain*, IterDomain*> mapAllProducerDomainsToConsumer(
const TensorView* producer_tv,
const TensorView* consumer_tv) {
// This map has forwarded broadcast axes, it should only be used to compute
// the allocation position of the producer, and to figure out which producer
// indices are mapped to consumer trivial reductions.
std::unordered_map<IterDomain*, IterDomain*> p2c_alloc_map;
// We want to replay producer as consumer instead of the other way around
// since consumer may have some broadcasted axes producer doesn't have
// merged into loops producer may use. If we did consumer as producer we
// wouldn't have this information in the mapping.
auto replay_PasC = BestEffortReplay::replayPasC(
producer_tv,
consumer_tv,
-1,
PairwiseRootDomainMap(producer_tv, consumer_tv));
// Grab consumer domain entries and reverse replay map. TODO: Maybe
// TransformReplay::replayPasC could return this map
for (auto id : consumer_tv->domain()->domain()) {
const auto& c2p_map = replay_PasC.getReplay();
auto c2p_it = c2p_map.find(id);
if (c2p_it != c2p_map.end()) {
auto c_id = c2p_it->first;
auto p_id = c2p_it->second;
p2c_alloc_map[p_id] = c_id;
}
}
return p2c_alloc_map;
}
std::unordered_map<IterDomain*, IterDomain*> invertOneToOneMap(
const std::unordered_map<IterDomain*, IterDomain*>& map) {
std::unordered_map<IterDomain*, IterDomain*> inverted;
for (const auto& kv : map) {
bool inserted = inverted.emplace(kv.second, kv.first).second;
TORCH_INTERNAL_ASSERT(
inserted,
"Multiple mappings to the same value detected: ",
kv.second->toString());
}
return inverted;
}
//! A struct to keep track of necessary parameters used in
//! configuring index compute pass.
//! These parameters are needed to propagate the indexing from the leaf nodes of
//! the TVs and loop nests to the TVs rfactor domain during
//! index_compute.cpp::IndexCompute passes.
//! TODO:
//! Would expect this list to become shorter over time,
//! as more info can be determined holistically.
struct IndexingParameters {
//! Initial binding of index math to concrete iterdomain ids,
//! from the loop nest analysis.
std::unordered_map<IterDomain*, Val*> initial_concrete_id_index;
//! (Used in non-global indexing) the concrete iterdomains that
//! we want to skip or merge into contiguous indexing paths.
std::unordered_set<IterDomain*> zero_domains;
//! (Used in non-global indexing) the preferred path we would
//! be propagating contiguously merged indices backward.
std::unordered_set<IterDomain*> preferred_concrete_ids;
//! The inferred halo padded extents of the concrete iterdomains.
std::unordered_map<IterDomain*, Val*> concrete_id_to_halo_extent;
};
// Initial loop index map for global producer or consumer case.
IndexingParameters getGlobalIndexParameters(
const LoopIndexing& loop_indexing,
bool index_producer = false) {
IndexingParameters index_parameters;
auto& loops = loop_indexing.loops();
auto& loop_domain = loop_indexing.loopDomains();
auto& loop_index_map = index_parameters.initial_concrete_id_index;
for (auto loop_idx : c10::irange(loops.size())) {
auto loop = loops[loop_idx];
auto index_domain = ir_utils::caMapExactConcreteId(loop_domain[loop_idx]);
if (loop->isTrivial()) {
// This is useful information in the case of
// MisalignedVectorize and double buffer epilog, etc.
loop_index_map[index_domain] = loop->start();
} else {
// Default use pre-allocated integers for index
loop_index_map[index_domain] = loop->index();
}
}
// Derive the halo extents from the loop indexing result.
index_parameters.concrete_id_to_halo_extent =
GpuLower::current()->haloInfo().buildConcreteHaloExtentMap(loop_indexing);
protectNonPredicateIndexWithMagicZero(
loops,
loop_indexing.loopDomains(),
index_parameters.initial_concrete_id_index);
// Setup double buffer increment for producer case:
// TODO: could unify these double buffer index calculation
// in follow ups.
if (index_producer) {
auto double_buffer_loop =
GpuLower::current()->doubleBufferInfo().getDoubleBufferLoop(
loop_indexing.consumerTv(), loops, true);
for (auto loop_idx : c10::irange(loops.size())) {
auto loop = loops[loop_idx];
if (loop == double_buffer_loop) {
TORCH_INTERNAL_ASSERT(
!loop->isTrivial(), "The double buffer loop must be materialized");
auto loop_id = loop_indexing.loopDomains()[loop_idx];
auto concrete_loop_id = ir_utils::caMapExactConcreteId(loop_id);
auto stage_depth =
GpuLower::current()->doubleBufferInfo().getStageDepthFor(
loop->iter_domain());
index_parameters.initial_concrete_id_index[concrete_loop_id] =
SimplifyingIrBuilder::addExpr(
index_parameters.initial_concrete_id_index[concrete_loop_id],
SimplifyingIrBuilder::create<Int>(stage_depth - 1));
}
}
}
return index_parameters;
}
// Initial index parameters for shared and local case
IndexingParameters getNonGlobalInitialIndexParameters(
const LoopIndexing& loop_indexing,
const TensorView* consumer_tv,
bool index_producer = false,
const TensorView* producer_tv = nullptr,
std::unordered_map<IterDomain*, IterDomain*> p2c_map = {}) {
IndexingParameters index_parameters;
const auto& loops = loop_indexing.loops();
const auto& loop_domains = loop_indexing.loopDomains();
// TODO:
// The non-global path should become shorter as we
// pull more info into id graph.
std::unordered_map<IterDomain*, IterDomain*> alloc_id_map;
if (index_producer) {
alloc_id_map = mapAllProducerDomainsToConsumer(producer_tv, consumer_tv);
}
auto alloc_tv = index_producer ? producer_tv : consumer_tv;
auto alloc_info = loop_utils::getAllocInformation(
alloc_tv, loops, alloc_id_map, index_producer);
std::unordered_map<kir::ForLoop*, Val*> loop_to_ind_map;
std::unordered_set<kir::ForLoop*> zero_loops;
kir::ForLoop* double_buffer_loop = nullptr;
if (index_producer) {
double_buffer_loop =
GpuLower::current()->doubleBufferInfo().getDoubleBufferLoop(
consumer_tv, loops, true);
}
std::tie(loop_to_ind_map, zero_loops) = indexMapFromTV(
alloc_tv,
loops,
alloc_info.init_for_loop,
!index_producer,
double_buffer_loop);
ensureStaticIndexing(alloc_tv, alloc_info.init_for_loop, loops, alloc_id_map);
TORCH_INTERNAL_ASSERT(
loops.size() <= loop_domains.size(),
"Loop domain didn't replay all loops");
for (auto loop_idx : c10::irange(loops.size())) {
auto loop = loops[loop_idx];
auto loop_domain = loop_domains[loop_idx];
auto concrete_loop_domain = ir_utils::caMapExactConcreteId(loop_domain);
index_parameters.initial_concrete_id_index[concrete_loop_domain] =
loop_to_ind_map.at(loop);
if (zero_loops.count(loop)) {
index_parameters.zero_domains.insert(concrete_loop_domain);
}
}
// Derive preferred path from loop indexing result.
const TensorView* target_tv = index_producer ? producer_tv : consumer_tv;
index_parameters.preferred_concrete_ids = buildLoopIndexingPreferredPath(
target_tv, loop_indexing, index_producer, p2c_map);
// Derive the halo extents from the loop indexing result.
index_parameters.concrete_id_to_halo_extent =
GpuLower::current()->haloInfo().buildConcreteHaloExtentMap(loop_indexing);
return index_parameters;
}
//! Initial index parameters for predicate, adjusts loop to indexing
//! may according to the information annotated on the loop nest.
//!
//! TODO:
//! This function is mostly copy pasted from previous implementation
//! at this step, further clean up is possible since:
//! 1. Much of the loop-to-ind adjustment will be issued from idgraph
//! 2. Much of the initial index logic could be shared across all
//! the 3 variants.
IndexingParameters getPredicateInitialIndexParameters(
const LoopIndexing& loop_indexing,
TensorView* consumer_tv,
kir::ForLoop* unswitch_or_vec_loop,
IterDomain* double_buffer_axis,
bool is_start_predicate) {
IndexingParameters index_parameters;
const auto& loops = loop_indexing.loops();
const auto& loop_domains = loop_indexing.loopDomains();
// This shouldn't be needed.
TORCH_INTERNAL_ASSERT(
loops.size() <= loop_domains.size(),
"Loop domain didn't replay all loops");
std::unordered_map<kir::ForLoop*, Val*> loop_to_ind_map;
// Fill initial index with each forloop's index.
std::transform(
loops.begin(),
loops.end(),
std::inserter(loop_to_ind_map, loop_to_ind_map.begin()),
[](kir::ForLoop* fl) { return std::make_pair(fl, fl->index()); });
// Generate unswitch loop to index map.
if (unswitch_or_vec_loop != nullptr) {
// Vectorized predicates are different from unswitch. Unswitch predicates
// all loops within the unswitch (the outer most unswitch) are generated
// with loop->extent-1 as the index. With vectorized predicates, only the
// vectorized loop should be like this.
bool vectorized_pred =
unswitch_or_vec_loop->iter_domain()->getParallelType() ==
ParallelType::Vectorize;
bool within_unswitch = false;
for (const auto loop_i : c10::irange(loops.size())) {
auto loop = loops[loop_i];
auto loop_id = loop->iter_domain();
auto loop_pt = loop_id->getParallelType();
auto ref_id = loop_domains.at(loop_i);
if (loop == unswitch_or_vec_loop) {
within_unswitch = true;
}
if (within_unswitch) {
// Rely on the reference to check broadcasting. The for loop could be
// broadcasted on a constant value from an unroll split. Since reference
// may convert this to an iter domain, that for loop could be valid to
// generate predication from.
// Note that loop->stop() is not used below. Instead,
// loop->iter_domain()->extent() is used, which is uniform
// across the mapped domains irrespective of halo. Predicates are
// compared with each to pick the most restrictive ones. The
// comparison is done by only using the offset, which is the
// term added to the index. So, the index term must be the
// same among all predicates, otherwise the comparison would
// be invalid. The effect by halo is added to the offset
// term. See getUnswitchStopOffset.
if (ref_id->isBroadcast()) {
// Ignore indexing into broadcasted dimensions.
continue;
} else if (loop_id->isThread()) {
// When parallelized, if the loop stop is the same as the
// extent of the associated IterDomain, i.e., no extra
// iterations for halo, predicating with the threading index
// is sufficient for both the start and stop
// predicates. That isn't the case if the loop has halo, and
// in the case either the minimum and maximum values of the
// iteration domain needs to be used.
//
// Note: Better performance was obtained if using
// threadIdx in unswitch predicates was avoided. More
// specifically, in the Hdiff stencil example, instead of
// predicating with threadIdx.x for both the start and stop
// predicates, using zero and (blockDim.x - 1) for the start
// and stop predicates, respectively, resulted in less
// register pressure. The alternative codegen can be done by
// adding this to the first if condition:
// loop_id->isBlockDim(). This would not be a concern if the
// else part could be omitted, so canOmitElseClause should
// be used as well.
if (loop->stop() == loop_id->extent()) {
loop_to_ind_map[loop] = loop->start();
} else if (is_start_predicate) {
loop_to_ind_map[loop] = GpuLower::current()->kernel()->zeroVal();
} else {
// Note that the parallel dimension is used rather than
// loop-stop(). See the above comment.
loop_to_ind_map[loop] =
GpuLower::current()->parallelDimensionMap().get(loop_pt);
}
} else if (is_start_predicate) {
loop_to_ind_map[loop] = GpuLower::current()->kernel()->zeroVal();
} else {
// Similar to the above, loop_id()->extent() is
// used here instead of loop->stop(). See the above comment.
loop_to_ind_map[loop] = SimplifyingIrBuilder::subExpr(
loop_id->extent(), GpuLower::current()->kernel()->oneVal());
}
}
// If a vectorized predicate, bail after the vectorized loop was found.
// Don't continue unswitching loops.
if (vectorized_pred && within_unswitch) {
break;
}
}
}
// Modify trivial loops to use the loop start value.
// FIXME: eventually should be all lifted in idgraph.
for (const auto loop : loops) {
auto& idx = loop_to_ind_map.at(loop);
// If the loop is trivial, the loop index can only be the loop
// start value.
if (idx == loop->index() && loop->isTrivial()) {
idx = loop->start();
}
}
// Increment double buffer loop index
if (double_buffer_axis != nullptr) {
auto db_loop = GpuLower::current()->doubleBufferInfo().getDoubleBufferLoop(
double_buffer_axis, loops, true);
if (db_loop != nullptr) {
auto loop_to_ind_map_it = loop_to_ind_map.find(db_loop);
TORCH_INTERNAL_ASSERT(loop_to_ind_map_it != loop_to_ind_map.end());
auto cur_index = loop_to_ind_map_it->second;
// if cur_index is not the same as the index of db_loop, it must
// be true that that index has been modified to support
// unswitch. In that case, it is not necessary to move ahead the
// index for double buffering.
auto stage_depth =
GpuLower::current()->doubleBufferInfo().getStageDepthFor(
db_loop->iter_domain());
if (cur_index == db_loop->index()) {
loop_to_ind_map[db_loop] = SimplifyingIrBuilder::addExpr(
cur_index, SimplifyingIrBuilder::create<Int>(stage_depth - 1));
}
}
}
// Convert loop-to-ind map to concrete-to-ind map
for (int loop_idx : c10::irange(loops.size())) {
auto loop = loops.at(loop_idx);
auto concrete_loop_domain =
ir_utils::caMapExactConcreteId(loop_domains.at(loop_idx));
index_parameters.initial_concrete_id_index[concrete_loop_domain] =
loop_to_ind_map.at(loop);
}
// Note that, unlike non-predicate indexing, magic-zero insertion is
// not done at this point but is done individually for each indexed
// domain. See Index::getReferenceRootPredicates.
// Derive the halo extents from the loop indexing result.
index_parameters.concrete_id_to_halo_extent =
GpuLower::current()->haloInfo().buildConcreteHaloExtentMap(loop_indexing);
return index_parameters;
}
} // namespace
class LoopIndexingAnalysis {
public:
static LoopIndexing fromLoopAndConsumer(
const std::vector<kir::ForLoop*>& loops,
const TensorView* consumer_tv) {
LoopIndexingAnalysis analysis(loops, consumer_tv);
return analysis.getLoopIndexing();
}
private:
explicit LoopIndexingAnalysis(
const std::vector<kir::ForLoop*>& loops,
const TensorView* consumer_tv);
//! Populate derived information into a LoopIndexing
//! data structure.
LoopIndexing getLoopIndexing() {
LoopIndexing indexing;
indexing.loops_ = loops_;
indexing.consumer_tv_ = consumer_tv_;
indexing.loop_root_ = loop_root_domains_;
indexing.loop_domains_ = loop_domains_.vector();
indexing.index_exprs_ = replayed_exprs_;
indexing.out_of_line_exprs_ = out_of_line_exprs_;
return indexing;
}
//! Validates that the current loop structure is well formed, in the sense
//! that ca_map would not map any two loops in the loop nest together.
void validateLoopStructure(const std::vector<kir::ForLoop*>& loops);
//! Start at the loop iter domains, and traverse back into history on the
//! concrete IDs in the exact map calling "visitExpr" expressions through the
//! history.
void traverseFromDomainVals();
//! Concretize the given iterdomain and record the visit (in deterministic
//! order) in terms of the exact mapped concrete id. Marks the mapping of the
//! id to the concrete id in "concrete_to_original_id_" and returns the
//! concrete id.
IterDomain* concretizeAndVisitId(IterDomain* id);
//! If an equivalent expression has already been processed this function
//! simply returns. Otherwise puts the exact concrete IDs of inputs in
//! consumed_concrete_, and concrete IDs of outputs in produced_concrete_.
//! Then adds the expression to replayed_exprs_.
void visitExpr(Expr* expr);
//! Iterates through provided vals, calls concretizeAndVisitId on them, and
//! returns if any of the returned vals are in existing_ids. This is used to
//! check if inputs or outputs of ID expressions have already been
//! produced/consumed in the traversal. Indexing only needs to consume/produce
//! one IterDomain per exact disjoint set.
bool visitIdsAndCheckDuplication(
const std::vector<Val*>& vals,
const std::unordered_set<IterDomain*>& existing_ids);
//! Fills loop_domains_ with the corresponding replayed_concrete_id mapping to
//! the provided loops. Must be done after the exact iterdomain "replay"
//! (traverseFromDomainVals). loop_domains_ are the original_id not the
//! concrete_id (translated with concrete_to_original_id). These iter domains
//! are used to grab the history that will be replayed in IndexCompute. We're
//! looking for "new" root domains and subsequent transformations, filling in
//! any missing "outputs" (or inputs for backward traversal). Then fills
//! loop_domains_ with all of these iter domains.
void constructLoopDomains();
//! Fills out_of_line_exprs_ by traversing the selected list of
//! expressions in reverse topological order and collect iterdomains
//! on the indexing paths that only involves leaf id's on the right
//! of consumer's ca axis.
void collectOutOfLineExprs();
private:
//! Original loop nest input to derive info from.
const std::vector<kir::ForLoop*>& loops_;
//! Original consumer tv to derive view info from.
const TensorView* consumer_tv_ = nullptr;
// Exact concrete domains that has been used
// in the traversal connection.
std::unordered_set<IterDomain*> produced_concrete_;
std::unordered_set<IterDomain*> consumed_concrete_;
//! Iterdomains that the corresponding loops are generated from.
std::vector<IterDomain*> initial_loop_domain_ids_;
//! All Id's in consumer's transform history
std::vector<Val*> all_consumer_id_vals_;
//! Concrete iterdomains visited in the domain traversal,
//! in the order they are visited in traverseFromDomainVals.
VectorOfUniqueEntries<IterDomain*> replayed_concrete_ids_;
//! Keeping track of the original visited id's before they
//! were concretized.
std::unordered_map<IterDomain*, IterDomain*> concrete_to_original_id_;
//! Map from concrete id to its single consumer on the selected
//! iterdomain expression list.
std::unordered_map<IterDomain*, Expr*> concrete_id_to_consumer_;
//! Source domains that all the Iterdomain transforms
//! in the loop nest originated from.
std::vector<IterDomain*> loop_root_domains_;
//! Leaf domains representing the original loop structure
VectorOfUniqueEntries<IterDomain*> loop_domains_;
//! Selected list of exprs that will produce and consume each
//! of the exact concrete ids from the loop nest exactly once.
std::vector<Expr*> replayed_exprs_;
//! Set of expressions from the selected list that can be
//! resolved from axes on the right of ca axes.
std::vector<Expr*> out_of_line_exprs_;
};
LoopIndexingAnalysis::LoopIndexingAnalysis(
const std::vector<kir::ForLoop*>& loops,
const TensorView* consumer_tv)
: loops_(loops), consumer_tv_(consumer_tv) {
// Validate consistency in given loop nest
validateLoopStructure(loops);
// Populate initial loop iter domains.
std::transform(
loops.begin(),
loops.end(),
std::back_inserter(initial_loop_domain_ids_),
[](kir::ForLoop* fl) { return fl->iter_domain(); });
// Collect consumer id's for view rfactor traversal.
all_consumer_id_vals_ = DependencyCheck::getAllValsBetween(
{consumer_tv->getRootDomain().begin(),
consumer_tv->getRootDomain().end()},
{consumer_tv->domain()->domain().begin(),
consumer_tv->domain()->domain().end()});
// Resolve definition of each exact concrete id's involved in the whole loop
// nest transform history
traverseFromDomainVals();
// Construct concrete to consumer map. The replayed exprs are guaranteed to
// consume each concrete id once so this map is well defined.
for (auto expr : replayed_exprs_) {
for (auto input_id : ir_utils::filterByType<IterDomain>(expr->inputs())) {
concrete_id_to_consumer_[ir_utils::caMapExactConcreteId(input_id)] = expr;
}
}
// Reconstruct the iterdomain view of the original loopnest after resolving
// the exact definition of each index.
constructLoopDomains();
//! Collect the set of indexing expressions that can be
//! resolved out of line.
collectOutOfLineExprs();
}
void LoopIndexingAnalysis::validateLoopStructure(
const std::vector<kir::ForLoop*>& loops) {
// Throw an error when two loops are mapped with each other, which
// violates an assumption that unique mappings between concrete
// IterDomains and the IterDomains of the loop structure must be
// established. It should be a reasonable assumption, but fusions
// like below won't work:
// tv0 = [I0]
// tv1 = broadcast(tv0, {true, false});
// tv2 = broadcast(tv0, {false, true});
// tv3 = tv1 + tv2
// Notice that the two axes of each of tv1, tv2 and tv3 are mapped
// with each other. We believe it is unlikely this limitation
// becomes a real concern in practice.
// Map concrete id to the original loop iter domain.
std::unordered_map<IterDomain*, IterDomain*> concrete_to_loop;
for (auto it_i = loops.begin(); it_i != loops.end(); ++it_i) {
// Largely duplicating original logic
auto loop_id = (*it_i)->iter_domain();
auto concrete_loop_id = ir_utils::caMapExactConcreteId(loop_id);
TORCH_INTERNAL_ASSERT(
!concrete_to_loop.count(concrete_loop_id),
"Unsupported loop structure. Two loops are mapped together.",
loop_id->toString(),
" and ",
concrete_to_loop.at(concrete_loop_id)->toString());
concrete_to_loop[concrete_loop_id] = loop_id;
}
}
void LoopIndexingAnalysis::traverseFromDomainVals() {
// Order is really important here, start with outer most for loops in a
// depth first manner. The outer most loops are topologically closer to the
// outputs, so their broadcast dimensions are "more" resolved than those
// towards the inner most loops.
std::deque<IterDomain*> to_visit(
initial_loop_domain_ids_.begin(), initial_loop_domain_ids_.end());
std::unordered_set<Expr*> visited_exprs;
std::unordered_set<IterDomain*> visited_ids;
while (!to_visit.empty()) {
auto out_id = to_visit.front();
to_visit.pop_front();
if (!visited_ids.emplace(out_id).second) {
continue;
}
auto expr = out_id->definition();
if (auto rfactor_id =
getRfactorIDToTraverse(out_id, all_consumer_id_vals_)) {
to_visit.emplace_front(rfactor_id);
}
// ID's will be copied for the reference as we replay transformations. If
// there was no transformations on an iteration domain, a copy of the
// iteration domain for the reference is made here.
if (expr == nullptr) {
if (std::find(
initial_loop_domain_ids_.begin(),
initial_loop_domain_ids_.end(),
out_id) != initial_loop_domain_ids_.end()) {
concretizeAndVisitId(out_id);
}
continue;
}
if (!visited_exprs.emplace(expr).second) {
continue;
}
visitExpr(expr);
auto inp_ids = ir_utils::filterByType<IterDomain>(expr->inputs());
// Make sure to put at the begining of the deque to maintain correct
// ordering.
to_visit.insert(to_visit.begin(), inp_ids.begin(), inp_ids.end());
}
}
IterDomain* LoopIndexingAnalysis::concretizeAndVisitId(IterDomain* id) {
auto concrete_id = ir_utils::caMapExactConcreteId(id);
if (replayed_concrete_ids_.pushBack(concrete_id)) {
concrete_to_original_id_[concrete_id] = id;
}
return concrete_id;
}
void LoopIndexingAnalysis::visitExpr(Expr* expr) {
if (auto swizzle2d = dynamic_cast<Swizzle2D*>(expr)) {
// Swizzle outputs are already forwarded through
// by exact CA map, so currently they are just
// ignored in the replay pass except
// that we want to note this node visited.
concretizeAndVisitId(swizzle2d->outX());
concretizeAndVisitId(swizzle2d->outY());
return;
}
// Current implementation just tries to
// follow the exact behavior of reference replay
// except that no expr was actually "replayed".
// Record all inputs, and stop if current expr
// duplicates id consumption or production.
if (visitIdsAndCheckDuplication(expr->inputs(), consumed_concrete_)) {
return;
}
if (visitIdsAndCheckDuplication(expr->outputs(), produced_concrete_)) {
return;
}
// Record the expr if no duplication on input or output found
replayed_exprs_.push_back(expr);
// Record the consumed and produced concrete ids by the newly
// recorded expression.
auto consumed_ids = ir_utils::filterByType<IterDomain>(expr->inputs());
std::transform(
consumed_ids.begin(),
consumed_ids.end(),
std::inserter(consumed_concrete_, consumed_concrete_.end()),
ir_utils::caMapExactConcreteId);
auto produced_ids = ir_utils::filterByType<IterDomain>(expr->outputs());
std::transform(
produced_ids.begin(),
produced_ids.end(),
std::inserter(produced_concrete_, produced_concrete_.end()),
ir_utils::caMapExactConcreteId);
}
bool LoopIndexingAnalysis::visitIdsAndCheckDuplication(
const std::vector<Val*>& vals,
const std::unordered_set<IterDomain*>& existing_ids) {
bool duplication = false;
for (auto id : ir_utils::filterByType<IterDomain>(vals)) {
duplication = duplication || existing_ids.count(concretizeAndVisitId(id));
}
return duplication;
}
void LoopIndexingAnalysis::constructLoopDomains() {
for (auto loop_id : initial_loop_domain_ids_) {
// Find the replayed_concrete_id mapping to the loop id.
auto ref_id_it = std::find_if(
replayed_concrete_ids_.vector().begin(),
replayed_concrete_ids_.vector().end(),
[&](IterDomain* concrete_id) {
return
// Make sure the replayed_concrete_id is a leaf ID
!concrete_id_to_consumer_.count(concrete_id) &&
// Use permissive map so the selected ID indeed represents the
// loop.
GpuLower::current()->caMap()->areMapped(
concrete_id, loop_id, IdMappingMode::PERMISSIVE);
});
TORCH_INTERNAL_ASSERT(
ref_id_it != replayed_concrete_ids_.vector().end(),
"Could not find required iter domain in reference replay: ",
loop_id->toString());
auto ref_id = *ref_id_it;
loop_domains_.pushBack(concrete_to_original_id_.at(ref_id));
}
// Construct the root domain as the inputs of the replayed domain
auto loops_replayed_domain_vals =
ir_utils::filterByType<Val>(loop_domains_.vector());
auto root_domain_vals = IterVisitor::getInputsTo(
{loops_replayed_domain_vals.begin(), loops_replayed_domain_vals.end()});
// Fill loop roots:
auto root_domain_ids = ir_utils::filterByType<IterDomain>(root_domain_vals);
loop_root_domains_ =
std::vector<IterDomain*>(root_domain_ids.begin(), root_domain_ids.end());
// The domain may have dangling iteration domains, i.e. the inner output of
// a split but not the outer. Find which replayed vals are dependant on the
// root domains.
auto all_replayed_vals =
ir_utils::filterByType<Val>(replayed_concrete_ids_.vector());
auto all_ids_from_root = DependencyCheck::getAllValsBetween(
{root_domain_vals.begin(), root_domain_vals.end()},
{all_replayed_vals.begin(), all_replayed_vals.end()});
// Fill all dangling outputs as otherwise backwards visitor in index compute
// will complain for not having all outputs of the traversal.
for (auto id : ir_utils::filterByType<IterDomain>(all_ids_from_root)) {
if (id->uses().empty()) {
loop_domains_.pushBack(ir_utils::caMapExactConcreteId(id));
}
}
}
IndexFromIdGraph getTensorIndexFromIdGraph(
const std::vector<kir::ForLoop*>& loops,
const TensorView* consumer_tv,
const TensorView* producer_tv,
bool is_global,
std::unordered_map<IterDomain*, IterDomain*> c2p_map) {
bool index_producer = producer_tv != nullptr;
auto target_tv = index_producer ? producer_tv : consumer_tv;
auto loop_indexing =
LoopIndexingAnalysis::fromLoopAndConsumer(loops, consumer_tv);
IndexingParameters index_parameters;
std::unordered_map<IterDomain*, IterDomain*> p2c_map;
// The p2c map is only needed when indexing producer
// as producer has replayed ids.
if (index_producer) {
p2c_map = invertOneToOneMap(c2p_map);
}
if (is_global) {
index_parameters = getGlobalIndexParameters(loop_indexing, index_producer);
} else {
index_parameters = getNonGlobalInitialIndexParameters(
loop_indexing, consumer_tv, index_producer, producer_tv, p2c_map);
}
IndexCompute indexing(
index_parameters.initial_concrete_id_index,
index_parameters.zero_domains,
index_parameters.preferred_concrete_ids,
index_parameters.concrete_id_to_halo_extent);
// Run first backward traversal to generate
// loop nest based indexing math.
indexing.run(loop_indexing);
// Populate indexing through exact map from initial indexing
auto consumer_root = index_producer ? consumer_tv->getRootDomain()
: consumer_tv->getMaybeRFactorDomain();
// First collect all iterdomains in consumer transform history.
auto all_consumer_vals = DependencyCheck::getAllValsBetween(
{consumer_root.begin(), consumer_root.end()},
{consumer_tv->domain()->domain().begin(),
consumer_tv->domain()->domain().end()});
// Indexable domains are the concrete id's we visited when
// traversing the "reference" indexing pass.
std::unordered_map<IterDomain*, IterDomain*> initial_indexable_map;
// Map the concrete id indexing back to the producer or consumer tv
std::unordered_map<IterDomain*, IterDomain*> index_update_map;
for (IterDomain* consumer_id :
ir_utils::filterByType<IterDomain>(all_consumer_vals)) {
// Track the non-concrete id we were trying to bind index
// to, whether from producer or consumer.
auto target_id = consumer_id;
// use mapped producer id when indexing producer
if (index_producer) {
auto target_id_it = c2p_map.find(consumer_id);
if (target_id_it == c2p_map.end()) {
// consumer id not found in c2p map
// skip binding for this id.
continue;
}
target_id = target_id_it->second;
}
// Exact id will have to be pulled from consumer side as the
// producer side are replayed ids.
auto exact_concrete_id = ir_utils::caMapExactConcreteId(consumer_id);
index_update_map[exact_concrete_id] = target_id;
// Keep track of concrete id's that were used for indexing.
if (indexing.indexMap().count(exact_concrete_id)) {
initial_indexable_map[exact_concrete_id] = exact_concrete_id;
}
}
// No contig indexing was done in reference indexing
ContigIDs contig_finder(
target_tv->domain()->domain(),
target_tv->getMaybeRFactorDomain(),
target_tv->domain()->contiguity(),
initial_indexable_map,
p2c_map);
auto target_indexing = indexing.updateIndexCompute(
target_tv->domain(), index_update_map, contig_finder);
// Fill validation info.
// TODO: cleanup seems possible.
if (index_producer) {
fillProducerVectorizedContigRootDomains(
producer_tv, consumer_tv, c2p_map, contig_finder);
} else {
fillConsumerVectorizedContigRootDomains(consumer_tv, contig_finder);
}
return IndexFromIdGraph(
target_indexing,
indexing,
index_parameters.initial_concrete_id_index,
loop_indexing.loopDomains());
}
IndexFromIdGraph getPredicateIndexingFromIdGraph(
const std::vector<kir::ForLoop*>& loops,
TensorView* consumer_tv,
kir::ForLoop* unswitch_or_vec_loop,
IterDomain* double_buffer_axis,
bool is_start_predicate) {
// Run replay pass on the loop nest to generate the deterministic
// traversal info from loop structure.
auto loop_indexing =
LoopIndexingAnalysis::fromLoopAndConsumer(loops, consumer_tv);
// Bind initial index variables to the loop nodes and adjust
// according to loop and unswitch info.
auto index_parameters = getPredicateInitialIndexParameters(
loop_indexing,
consumer_tv,
unswitch_or_vec_loop,
double_buffer_axis,
is_start_predicate);
// Run first backward traversal to generate
// loop nest based indexing math.
IndexCompute indexing(
index_parameters.initial_concrete_id_index,
index_parameters.zero_domains,
index_parameters.preferred_concrete_ids,
index_parameters.concrete_id_to_halo_extent);
indexing.run(loop_indexing);
// Map the concrete id indexing back to consumer tv
std::unordered_map<IterDomain*, IterDomain*> index_update_map;
// First collect all iterdomains in consumer transform history.
auto all_consumer_vals = DependencyCheck::getAllValsBetween(
{consumer_tv->getMaybeRFactorDomain().begin(),
consumer_tv->getMaybeRFactorDomain().end()},
{consumer_tv->domain()->domain().begin(),
consumer_tv->domain()->domain().end()});
for (IterDomain* consumer_id :
ir_utils::filterByType<IterDomain>(all_consumer_vals)) {
// Track the non-concrete id we were trying to bind index
// to, whether from producer or consumer.
auto exact_concrete_id = ir_utils::caMapExactConcreteId(consumer_id);
index_update_map[exact_concrete_id] = consumer_id;
}
// No contiguity info is used in the predicate indexing pass,
// the predicate generation logic that uses the index math
// generated here will take contiguity into account.
ContigIDs contig_finder(
consumer_tv->domain()->domain(),
consumer_tv->getMaybeRFactorDomain(),
std::vector<bool>(consumer_tv->getMaybeRFactorDomain().size(), false),
{});
// Run second backward traversal to map back to the consumer_tv
auto target_indexing = indexing.updateIndexCompute(
consumer_tv->domain(), index_update_map, contig_finder);
return IndexFromIdGraph(
target_indexing,
indexing,
index_parameters.initial_concrete_id_index,
loop_indexing.loopDomains());
}
namespace {
class LoopIndexingTraversal {
enum class TraversalOrder { ForwardTopological, BackwardTopological };
public:
static std::vector<Expr*> forwardTopologicalOrder(
const std::vector<Expr*>& exprs) {
LoopIndexingTraversal traversal(exprs, TraversalOrder::ForwardTopological);
return traversal.getExprList();
}
static std::vector<Expr*> backwardTopologicalOrder(
const std::vector<Expr*>& exprs) {
LoopIndexingTraversal traversal(exprs, TraversalOrder::BackwardTopological);
return traversal.getExprList();
}
private:
explicit LoopIndexingTraversal(
const std::vector<Expr*>& exprs,
TraversalOrder traversal_order);
// Returns the vals following the expression in either
// forward or backward order.
const std::vector<Val*>& nextValsInTraversalOrder(Expr* expr);
// Returns the vals that the expression follows in either
// forward or backward order.
const std::vector<Val*>& prevValsInTraversalOrder(Expr* expr);
// Returns the sorted list according to the given traversal order.
std::vector<Expr*> getExprList();
private:
// Reference to original un-sorted expression list.
const std::vector<Expr*>& exprs_;
// The traversal order in this pass.
const TraversalOrder traversal_order_ = TraversalOrder::ForwardTopological;
// Internal record of concrete id's and it's corresponding
// iterdomain expression that defines the exact index.
std::unordered_map<IterDomain*, Expr*> concrete_id_to_dependency_;
};
LoopIndexingTraversal::LoopIndexingTraversal(
const std::vector<Expr*>& exprs,
TraversalOrder traversal_order)
: exprs_(exprs), traversal_order_(traversal_order) {
// Populate concrete id dependencies:
for (auto expr : exprs_) {
auto next_ids =
ir_utils::filterByType<IterDomain>(nextValsInTraversalOrder(expr));
for (auto id : next_ids) {
auto concrete_id = ir_utils::caMapExactConcreteId(id);
TORCH_INTERNAL_ASSERT(
concrete_id_to_dependency_.insert(std::make_pair(concrete_id, expr))
.second,
"Repeated dependency, invalid iterdomain traversal.");
}
}
}
const std::vector<Val*>& LoopIndexingTraversal::nextValsInTraversalOrder(
Expr* expr) {
switch (traversal_order_) {
case TraversalOrder::ForwardTopological:
return expr->outputs();
break;
case TraversalOrder::BackwardTopological:
return expr->inputs();
break;
default:
TORCH_INTERNAL_ASSERT(false, "unimplemented traversal order");
}
return expr->inputs();
}
const std::vector<Val*>& LoopIndexingTraversal::prevValsInTraversalOrder(
Expr* expr) {
switch (traversal_order_) {
case TraversalOrder::ForwardTopological:
return expr->inputs();
break;
case TraversalOrder::BackwardTopological:
return expr->outputs();
break;
default:
TORCH_INTERNAL_ASSERT(false, "unimplemented traversal order");
}
return expr->inputs();
}
std::vector<Expr*> LoopIndexingTraversal::getExprList() {
std::deque<Expr*> to_visit(exprs_.begin(), exprs_.end());
// pre-allocate result space.
std::vector<Expr*> result;
result.reserve(exprs_.size());
// Keeps track of visited and inserted expressions.
// An expr is visited if it has been placed in result list.
// An expr is inserted if the traversal has put the expr on
// the top of the stack once. Repeated insertion of the same
// expression would never be observed if the underlying
// dependency of the expressions is cycle free.
std::unordered_set<Expr*> visited, inserted;
while (!to_visit.empty()) {
auto top = to_visit.front();
if (visited.count(top)) {
to_visit.pop_front();
continue;
}
bool ready = true;
for (auto prev_id :
ir_utils::filterByType<IterDomain>(prevValsInTraversalOrder(top))) {
auto prev_expr_it = concrete_id_to_dependency_.find(
ir_utils::caMapExactConcreteId(prev_id));
if (prev_expr_it != concrete_id_to_dependency_.end()) {
auto prev_expr = prev_expr_it->second;
if (!visited.count(prev_expr)) {
ready = false;
to_visit.push_front(prev_expr);
TORCH_INTERNAL_ASSERT(
inserted.insert(prev_expr).second,
"Circular dependency in loop index expressions.");
break;
}
}
}
if (ready) {
visited.insert(top);
result.emplace_back(top);
to_visit.pop_front();
}
}
return result;
}
} // namespace
void LoopIndexingAnalysis::collectOutOfLineExprs() {
// Keep track of all the id's that can be resolved without
// iterdomains on the left of ca axes.
std::unordered_set<IterDomain*> out_of_line_ids;
// Start the set with all the leaf ids.
std::transform(
consumer_tv_->domain()->domain().begin() +
consumer_tv_->getComputeAtPosition(),
consumer_tv_->domain()->domain().end(),
std::inserter(out_of_line_ids, out_of_line_ids.end()),
ir_utils::caMapExactConcreteId);
// Get the original selected list of index expressions
// in reverse topological order.
auto backward_expr_list =
LoopIndexingTraversal::backwardTopologicalOrder(replayed_exprs_);
for (auto expr : backward_expr_list) {
auto id_outputs = ir_utils::filterByType<IterDomain>(expr->outputs());
if (
// Check that all of the outputs are out of line
std::all_of(
id_outputs.begin(),
id_outputs.end(),
[&out_of_line_ids](IterDomain* id) {
return out_of_line_ids.count(ir_utils::caMapExactConcreteId(id));
})) {
// Record out of line expression
out_of_line_exprs_.push_back(expr);
// Add all of the expression inputs as out of line id's.
auto id_inputs = ir_utils::filterByType<IterDomain>(expr->inputs());
std::transform(
id_inputs.begin(),
id_inputs.end(),
std::inserter(out_of_line_ids, out_of_line_ids.end()),
ir_utils::caMapExactConcreteId);
}
}
}
std::vector<Expr*> LoopIndexing::getForwardExprList() const {
return LoopIndexingTraversal::forwardTopologicalOrder(index_exprs_);
}
std::vector<Expr*> LoopIndexing::getBackwardExprList() const {
return LoopIndexingTraversal::backwardTopologicalOrder(index_exprs_);
}
std::unordered_set<IterDomain*> LoopIndexing::getAllExactConcreteIdSet() const {
std::unordered_set<IterDomain*> all_id_set;
for (auto expr : index_exprs_) {
auto out_ids = ir_utils::filterByType<IterDomain>(expr->outputs());
std::transform(
out_ids.begin(),
out_ids.end(),
std::inserter(all_id_set, all_id_set.end()),
ir_utils::caMapExactConcreteId);
auto in_ids = ir_utils::filterByType<IterDomain>(expr->inputs());
std::transform(
in_ids.begin(),
in_ids.end(),
std::inserter(all_id_set, all_id_set.end()),
ir_utils::caMapExactConcreteId);
}
return all_id_set;
}
namespace {
//! Returns true if id is mapped together with any id in
//! the vector ids by permissive compute at map.
bool isPermissivelyMappedWithAny(IterDomain* id, const std::vector<Val*>& ids) {
return std::any_of(ids.begin(), ids.end(), [&](Val* val) {
return val->isA<IterDomain>() &&
GpuLower::current()->caMap()->areMapped(
id, val->as<IterDomain>(), IdMappingMode::PERMISSIVE);
});
}
class LoopIndexingPreferredPathCompute : public IterVisitor {
public:
static std::unordered_set<IterDomain*> compute(
const TensorView* original_tv,
const LoopIndexing& loop_indexing,
bool use_replay_map,
const std::unordered_map<IterDomain*, IterDomain*>& p2c_map) {
LoopIndexingPreferredPathCompute compute;
auto all_concrete_ids = loop_indexing.getAllExactConcreteIdSet();
// Annotate all ids
auto all_original_ids = DependencyCheck::getAllValsBetween(
{original_tv->getMaybeRFactorDomain().begin(),
original_tv->getMaybeRFactorDomain().end()},
{original_tv->domain()->domain().begin(),
original_tv->domain()->domain().end()});
for (auto original_id :
ir_utils::filterByType<IterDomain>(all_original_ids)) {
auto mapped_id = original_id;
if (use_replay_map) {
auto c_id_it = p2c_map.find(original_id);
if (c_id_it == p2c_map.end()) {
continue;
}
mapped_id = c_id_it->second;
}
auto concrete_original_id = ir_utils::caMapExactConcreteId(mapped_id);
if (all_concrete_ids.count(concrete_original_id)) {
if (original_id->isBroadcast() || original_id->isReduction() ||
original_id->isStride()) {
continue;
}
compute.preferred_path_.insert(concrete_original_id);
}
}
for (auto expr : loop_indexing.getForwardExprList()) {
compute.handle(expr);
}
return compute.preferred_path_;
}
private:
void handle(Expr* e) override {
// If an input ID is marked, propagate the marking to outputs of the
// expression
auto all_iter_inputs = ir_utils::filterByType<IterDomain>(e->inputs());
if (std::any_of(
all_iter_inputs.begin(),
all_iter_inputs.end(),
[&](IterDomain* inp_id) {
return this->preferred_path_.find(ir_utils::caMapExactConcreteId(
inp_id)) != this->preferred_path_.end();
})) {
auto all_iter_outputs = ir_utils::filterByType<IterDomain>(e->outputs());
std::transform(
all_iter_outputs.begin(),
all_iter_outputs.end(),
std::inserter(preferred_path_, preferred_path_.end()),
ir_utils::caMapExactConcreteId);
}
}
std::unordered_set<IterDomain*> preferred_path_;
};
} // namespace
// External interface for preferred path propagation.
std::unordered_set<IterDomain*> buildLoopIndexingPreferredPath(
const TensorView* original_tv,
const LoopIndexing& loop_indexing,
bool use_replay_map,
std::unordered_map<IterDomain*, IterDomain*> p2c_map) {
return LoopIndexingPreferredPathCompute::compute(
original_tv, loop_indexing, use_replay_map, p2c_map);
}
// Get an rfactor IterDomain that is mapped with an IterDomain. If
// multiple such IDs exist, select one whose input IDs are mapped with
// the consumer IDs. This is to ensure the path from the leaf
// IterDomains to the root matches with the consumer tensor.
IterDomain* getRfactorIDToTraverse(
IterDomain* id,
const std::vector<Val*>& consumer_all_ids) {
const auto& rfactor_ids =
GpuLower::current()->caMap()->getViewRfactorDomainsOfIdGroup(
id, IdMappingMode::PERMISSIVE);
if (rfactor_ids.empty()) {
return nullptr;
}
for (auto rfactor_id : rfactor_ids) {
auto def = rfactor_id->definition();
if (def == nullptr) {
continue;
}
auto rfactor_id_inputs = ir_utils::filterByType<IterDomain>(def->inputs());
if (std::all_of(
rfactor_id_inputs.begin(),
rfactor_id_inputs.end(),
[&](IterDomain* rfactor_id_input) {
return isPermissivelyMappedWithAny(
rfactor_id_input, consumer_all_ids);
})) {
return rfactor_id;
}
}
// No mapped ID found, which means the consumer is a post-view
// tensor. In that case, it shouldn't matter which view path to
// traverse, so just return the first one.
return rfactor_ids.at(0);
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|